

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 830892.

D5.4 Appendix J
ATE – Tests – Vertical 2 – SAML IdP Server

Scenario

Project number 830892

Project acronym SPARTA

Project title
Strategic programs for advanced research and
technology in Europe

Start date of the project 1st February, 2019

Duration 36 months

Programme H2020-SU-ICT-2018-2020

Deliverable type Report

Deliverable reference number SU-ICT-03-830892 / D5.4/ v1.0 / Appendix J

Work package contributing to the
deliverable

WP5

Due date Jan 2022 – M36

Actual submission date 2nd February, 2022

Responsible organisation SAP

Editor Henrik Plate

Dissemination level PU

Revision V1.0

Abstract

This document provides a description of the test
procedure and report for the SAML IdP Server
scenario of the “Complex System Assessment
Including Large Software and Open-Source
Environments, targeting e-Government Services”
vertical (also known as e-Government services
vertical or Vertical 2).
The document demonstrates how the CAPE tools
ProjectKB, Steady and VI contribute to secure the
SAML IdP Server scenario.

Keywords Vulnerability Assessment, Security Tests

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page I

Editor

Henrik Plate (SAP)

Contributors

Mirko Malacario, Claudio Porretti (LEO)

Reviewers

Maximilian Tschirschnitz (TUM)

Rimantas Zylius (L3CE)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information
is fit for any particular purpose. The content of this document reflects only the author`s view – the European
Commission is not responsible for any use that may be made of the information it contains. The users use the

information at their sole risk and liability.

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page II

Table of Content

Chapter 1 Introduction .. 1

1.1 Document Overview .. 1

Chapter 2 Test preparations ... 2

2.1 System overview ... 2

2.1.1 Hardware preparation .. 2

2.1.2 Software preparation ... 2

Chapter 3 Test descriptions ... 4

3.1 T1195.001-S1_TC1 ... 4

3.1.1 Security Requirements addressed ... 4

3.1.2 Test preconditions ... 4

3.1.3 Expected test results ... 5

3.1.4 Criteria for evaluating results ... 5

3.1.5 Test Procedure .. 5

3.1.6 Test Results... 6

3.1.6.1 Deviations from test procedure .. 10

3.2 T1195.001-S2_TC1 ... 10

3.2.1 Security Requirements addressed ... 10

3.2.2 Test preconditions ... 10

3.2.3 Expected test results ... 10

3.2.4 Criteria for evaluating results ... 10

3.2.5 Test Procedure .. 10

3.2.6 Test Results... 11

3.2.6.1 Deviations from test procedure .. 14

3.3 T1195.001-S3_TC1 ... 14

3.3.1 Security Requirements addressed ... 14

3.3.2 Test preconditions ... 14

3.3.3 Expected test results ... 14

3.3.4 Criteria for evaluating results ... 14

3.3.5 Test Procedure .. 14

3.3.6 Test Results... 14

3.3.6.1 Deviations from test procedure .. 17

3.3.6.2 Problems encountered ... 17

Chapter 4 Test Summary Coverage ... 18

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page III

Chapter 5 List of Abbreviations .. 20

Chapter 6 Bibliography ... 21

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page IV

List of Figures

Figure 1: Build pipeline with CAPE tools ... 3

Figure 2 Example screenshot of the "Vulnerabilities" tab in Steady's Web frontend 6

Figure 3 Screenshot of Steady's Html result report ... 7

Figure 4 Example screenshot of the "Dependencies" tab in Steady's Web frontend 11

List of Tables

Table 1: Security Requirements covered by Steady, ProjectKB and VulnEx. 4

Table 2 Application dependencies subject to known vulnerabilities ... 9

Table 3 Table with archives unknown to Maven Central .. 12

Table 4 Archives with release date older than 5 years .. 13

Table 5 Potentially un-used archives with scope compile, runtime and provided 17

Table 6: Test Summary Coverage (Tests vs Requirements) ... 18

Table 7: Test Summary Coverage (Requirements vs Test) ... 18

Table 8: Matrix of test coverage .. 19

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 1 of 21

Chapter 1 Introduction

1.1 Document Overview

This document provides a description of the test procedure and report for the SAML IdP Server
Scenario (also known as CIE ID SERVER) of the “Complex System Assessment Including Large
Software and Open-Source Environments, Targeting e-Government Services” vertical (a.k.a. e-
Government services vertical or Vertical 2).

We will show how the CAPE tools Steady, ProjectKB and VulnEx contribute to secure the SAML IdP
Server scenario. In particular, we will show how:

 we properly integrated in the development process of the SAML IdP Server the continuous
integration techniques developed in the context of Task 5.3 for Steady, ProjectKB and
VulnEx, and

 Steady, ProjectKB and VulnEx perform a security assessment of the SAML IdP Server,
providing a security report to the security analyst.

The structure of the document is organized as follows:

 Chapter 1 Introduction, is the current section presenting the objectives, scope and structure
of the document.

 Chapter 2 Test preparations, presents the hardware and software used for testing.

 Chapter 3 Test descriptions, details the different test cases to be executed and their results.

 Chapter 4 Test Summary Coverage, shows the completeness of tests coverage.

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 2 of 21

Chapter 2 Test preparations

2.1 System overview

The e-Government services vertical (Vertical 2) has been fully described in D5.2 [1]. In this section,
we provide an overview of the case study description, focusing on the SAML IdP Server scenario.

The demonstration scenario of the vertical 2 involves the development and testing environments
managed by FBK (one of the institutions of the SPARTA partner CINI), where the preliminary
versions of the SAML IdP Server is developed, deployed, and tested, before being migrated on the
Italian Ministry of the Interior servers.

The SAML IdP Server is developed by the Italian National Mint and Printing House. It is a custom
implementation based on Shibboleth, a standard-based, open-source software package for Single
Sign-on (SSO) system across or within organizational boundaries. SAML IdP is responsible for
supplying information about users at a domain to relying parties protected by service providers
leveraging the information contained in the Italian electronic identity card (CIE 3.0).

Each communication is through an API REST via HTTPS. Shibboleth is mostly a set of software
components made using the Spring framework based on Java programming language and built with
Apache Maven.

As mentioned in D5.3 [2], FBK has extended the Gitlab environment in such a way to use the
continuous integration functionalities offered by Gitlab. Every time a git commit is pushed on the
repository, the source code is automatically built and deployed (using Apache Maven) on an Azure
virtual machine.

The system under test used for SPARTA consists of the source code of the SAML IdP Server and
its integration in the DevSecOps pipeline.

To avoid any risk of disclosing sensitive information concerning the official version of the SAML IdP
Server, the tests are performed on an old version of the source code of the server. Indeed, the
purpose of the tests is to show that the CAPE tools are properly integrated in the development
process and are indeed helpful to spot relevant vulnerabilities.

2.1.1 Hardware preparation

The dockerized versions of Steady, ProjectKB and VulnEx runs on a virtual machine (VM), so there
is no needed hardware preparation for using the tools. The VM used to host the tools is an Azure
Standard DS3 v2 equipped with a processor Intel Xeon E5-2673 v4 2.29 GHz 4 Cores, 14 GB of
RAM and two drives, one hard disk drive of 30 GB used by the OS and 10GB of solid-state drive
used by the tools.

2.1.2 Software preparation

The testing environment consists of a Gitlab platform hosted by FBK, and cloud-hosted Azure virtual
machines controlled by FBK.

Gitlab provides:

 a version control system (Git-repository), storing the source code of SAML IdP Server;

 Issues tracking and continuous integration and deployment pipeline.

The Azure VM hosting the CAPE tools runs Linux distributions (Ubuntu 20.04) and supports the
Docker technology. We installed in the VM the GitLab Runner application, which works with GitLab
CI/CD to run jobs in a pipeline.

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 3 of 21

Figure 1: Build pipeline with CAPE tools

As mentioned in D5.3, to assess the security of the SAML IdP Server, we deployed the DevSecOps
scenario depicted in Figure 1. In particular, concerning ATE, the Steady and ProjectKB CAPE tools
are used to evaluate the security and risk requirements for the SAML IdP Server (highlighted in
green). The pipeline has been designed as a set of integration scripts that are attached to the GitLab
repository hosting the SAML IdP Server source code.

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 4 of 21

Chapter 3 Test descriptions

Table 1 shows the Security Requirements (SRs) allocated to Steady/VI in the traceability matrix for
Vertical 2 as per D5.4 [3] for the SAML IdP Server. In the next sections we describe the test
descriptions that have been elaborated to support the test of these requirements.

Security Req (ID) Short Description

T1195.001-S1

The SAML IdP Server must not depend on components with known
vulnerabilities.

(This can be checked in the vulns and mitigation tabs).

T1195.001-S2

The SAML IdP Server must not depend on components that are
unmaintained or do not produce security patches anymore.

(This can be checked in the dependencies and mitigation tabs)

T1195.001-S3

The SAML IdP Server must not include un-used components.

(This can be checked through Steady's reachability analysis, displayed
in the dependencies tab)

Table 1: Security Requirements covered by Steady, ProjectKB and VulnEx

3.1 T1195.001-S1_TC1

3.1.1 Security Requirements addressed

T1195.001-S1

The use of components with known vulnerabilities is among the OWASP Top 10 security risks for
Web applications. Such vulnerable components represent low hanging fruits for attackers, since
exploits are readily available and can be easily and automatically tested on internet-facing
applications.

The corresponding requirements are as follows:

1) It is required to check on a continuous basis whether the application depends on components
with known vulnerabilities.

2) Every component vulnerability discovered (finding) requires an assessment regarding (a) its
actual exploitability in the context of the application, and (b) the potential impact on its integrity,
confidentiality and availability requirements.

3) The assessment must be reflected either by updating the respective component(s) (such that the
finding disappears), or by providing a rationale why such update is not necessary (e.g. because
of non-exploitability, because the components in question are test dependencies, or because
safeguards are implemented by the application, etc.).

4) Whenever component updates are not performed, the reasoning must be documented in the
versioning control system, for tracking purposes and to make the exemption available to the scan
tool.

3.1.2 Test preconditions

 An instance of Steady’s backend application is reachable from the CI/CD system.

 The database of this instance has been populated with vulnerability information loaded from
Project KB.

 The CI/CD system is able to download the scan client needed for the respective development
project from Maven Central (Steady’s plugin for Maven is required for the SAML IdP Server).

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 5 of 21

 The build job is configured to invoke Steady’s scan client on the given development project
such that the build job breaks in case of non-exempted (non-justified) component
vulnerabilities. The detailed analysis goals to be configured in the build job are as follows:

o The goal APP creates a method-level bill-of-materials of the application and all its
dependencies, and identifies all component vulnerabilities.

o The goals A2C, PREPARE-AGENT, TEST and UPLOAD collect information
regarding the reachability of vulnerable code, thus, input supporting the above-
mentioned risk assessment.

o The goal REPORT creates a summary report in different formats and breaks the build
job depending on the findings.

 The Steady <workspace> used for persisting the analysis results is known to the evaluator.

3.1.3 Expected test results

Build jobs must succeed, which means that either there are no known component vulnerabilities or
they are properly exempted/justified.

3.1.4 Criteria for evaluating results

The only criteria is whether the build succeeds or not. If it fails, the application under tests violates
the requirements mentioned before.

3.1.5 Test Procedure

The following steps must be followed in order to obtain the test results:

 Point your browser to the GitLab Web frontend and open the respective/latest build job

 In case the build job failed because of Steady’s REPORT goal, one can find the details about
known vulnerabilities with help of two alternative steps:

o Open the context menu of the build job  Download and extract the ZIP file containing
Steady’s result reports  Open the HTML report (cf. screenshot in Figure 3) and
document all vulnerabilities

o Point your browser to the Steady Web frontend
(http://<host>:8033/apps/#/<workspace>)  Select all modules of the project under
analysis (using the table on the left-hand side)  For each module: open the tab
“Vulnerabilities” on the right-hand side (cf. example screenshot in Figure 2) 
Document all vulnerabilities (archive, CVE) that have not been exempted (i.e. have
no audit icon in the left-most column)

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 6 of 21

Figure 2: Example screenshot of the "Vulnerabilities" tab in Steady's Web frontend

3.1.6 Test Results

Status: FAILED

The Html report, created by Steady’s REPORT goal, and a screenshot of which is depicted below,
provides the following information:

 The analysis has been performed on Nov 11, 2021 with Eclipse Steady v3.2.0.

 The analysis concluded with a failure, due to the presence of 75 vulnerabilities. Those exist
in 15 different Java components, as visible in the Table below.

 22 other vulnerabilities have been exempted due to Steady’s default configuration (which
exempts vulnerabilities in dependencies of type test and provided).

The screenshot also visualizes more detailed information for one of the vulnerabilities, CVE-2016-
1000338 in Java component bcprov-jdk15on-1.54.jar. The vulnerability has a CVSS rating of 7.5,
and – illustrated by red paws - the vulnerable code is potentially reachable in module idp-authn-impl
(and others), according to static source code analysis.

The different links in the report lead to Steady’s user frontend, where more information is provided.

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 7 of 21

Figure 3: Screenshot of Steady's Html result report

The following Table 2contains all component vulnerabilities identified in the project under analysis
(across all 30 modules):

Component CVE

1 ant-1.9.4.jar CVE-2020-1945

2

bcprov-jdk15on-1.54.jar

CVE-2015-6644

3 CVE-2016-1000338

4 CVE-2016-1000339

5 CVE-2016-1000340

6 CVE-2016-1000341

7 CVE-2016-1000342

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 8 of 21

Component CVE

8 CVE-2016-1000343

9 CVE-2016-1000344

10 CVE-2016-1000345

11 CVE-2016-1000346

12 CVE-2016-1000352

13 CVE-2018-1000180

14 CVE-2018-1000613

15 CVE-2019-17359

16
c3p0-0.9.2.1.jar

CVE-2018-20433

17 CVE-2019-5427

18 cryptacular-1.1.1.jar CVE-2020-7226

19 dom4j-1.6.1.jar CVE-2018-1000632

20 guava-19.0.jar CVE-2018-10237

21 jackson-databind-2.8.3.jar CVE-2017-15095

22

CVE-2017-17485

23 CVE-2017-7525

24 CVE-2018-11307

25 CVE-2018-12022

26 CVE-2018-12023

27 CVE-2018-14718

28 CVE-2018-14719

29 CVE-2018-14720

30 CVE-2018-14721

31 CVE-2018-19360

32 CVE-2018-19361

33 CVE-2018-19362

34 CVE-2018-5968

35 CVE-2018-7489

36 CVE-2019-12086

37 CVE-2019-12384

38 CVE-2019-12814

39 CVE-2019-14379

40 CVE-2019-14439

41

CVE-2019-14540

42 CVE-2019-14892

43 CVE-2019-14893

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 9 of 21

Component CVE

44 CVE-2019-16942

45 CVE-2019-16943

46 CVE-2019-17267

47 CVE-2019-17531

48 CVE-2019-20330

49 CVE-2020-10650

50 CVE-2020-10672

51 CVE-2020-10673

52 CVE-2020-10968

53 CVE-2020-10969

54 CVE-2020-11111

55 CVE-2020-11112

56 CVE-2020-11113

57 CVE-2020-24616

58 CVE-2020-24750

59 CVE-2020-8840

60

CVE-2020-9546

61 CVE-2020-9547

62 CVE-2020-9548

63 logback-classic-1.1.3.jar CVE-2017-5929

64 logback-core-1.1.3.jar CVE-2017-5929

65 retrofit-2.1.0.jar CVE-2018-1000850

66 spring-core-4.3.2.RELEASE.jar CVE-2018-1272

67 spring-expression-
4.3.2.RELEASE.jar

CVE-2018-1270

68 CVE-2018-1275

69
spring-web-4.3.2.RELEASE.jar

CVE-2018-15756

70 CVE-2020-5421

71 spring-webflow-
2.4.4.RELEASE.jar

CVE-2017-4971

72 CVE-2017-8039

73
spring-webmvc-
4.3.2.RELEASE.jar

CVE-2016-9878

74 CVE-2018-1271

75 CVE-2020-5421

Table 2: Application dependencies subject to known vulnerabilities

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 10 of 21

3.1.6.1 Deviations from test procedure

None

3.2 T1195.001-S2_TC1

3.2.1 Security Requirements addressed

T1195.001-S2

The regular update of components to recent releases, independent of known vulnerabilities, is
important for several reasons:

First, in case a vulnerability becomes disclosed, an update to a non-vulnerable version is easier if
the gap between the version in use and the target version is small. Secondly, old components risk
to run out of maintenance, thus, no fixes will be produced anymore, and nobody validates whether
newly discovered vulnerabilities affect such old components. Finally, using later releases can also
mean to benefit from hidden security fixes, which have not been publicly communicated by the open-
source project.

Besides regular updates, it is preferable to avoid custom-built versions of open-source components,
e.g. forks of the official open-source project, or otherwise modified versions. The reason is that the
security fix of custom versions or forks can be significantly more difficult than updating to non-
vulnerable versions of the standard component.

The corresponding requirements are as follows:

 The application must not depend on components that are older than 60 months (5 years).

 The application must not depend on components having digests that are unknown to Maven
Central.

3.2.2 Test preconditions

 A build job ran Steady’s APP analysis goal on the project under analysis.

 The Steady <workspace> used for persisting the analysis results is known to the evaluator.

3.2.3 Expected test results

None of the dependencies has been released more than 5 years ago.

All of the dependencies have a SHA1 digest known to Maven Central (unless the dependency is a
module of the same development project, thus, has been created in the context of the same build
job).

3.2.4 Criteria for evaluating results

No outdated and non-standard components in the different modules of the project under analysis.

3.2.5 Test Procedure

 Point your browser to the Steady Web frontend (http://<host>:8033/apps/#/<workspace>)

 Select all modules of the project under analysis (using the table on the left-hand side)

 For each module: open the tab “Dependencies” on the right-hand side (cf. example
screenshot in Figure 4)

 Document all dependencies with “False” in column “Well-known digest”, and all
dependencies with a release date older than 5 years in column “Release date”

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 11 of 21

Figure 4: Example screenshot of the "Dependencies" tab in Steady's Web frontend

3.2.6 Test Results

Status: FAILED

The following table contains 10 dependencies of the project under analysis (out of 147 distinct
dependencies across all 30 project modules) with SHA1 digests unknown to Maven Central.

Note, however, that a manual check of the digest of javassist-3.18.1-GA.jar revealed that the archive
is indeed present in Maven Central. This false-positive is due to a bug in Maven Central’s search
API1.

Filename of
dependency

SHA1 digest Scope

1 opensaml-saml-api-
3.4.0.jar

538E1E54E5E8160F2D284B08F1B8A7B93053E0DA COMPILE

2 opensaml-saml-impl-
3.4.0.jar

06336645EC0B0FBD98A7A5E719B4C4C284A4D79F COMPILE

3 opensaml-security-
impl-3.4.0.jar

EE6158D53B576D6A63D3C7A0CF063C8518E75126 COMPILE

4 opensaml-soap-api-
3.4.0.jar

830B14C47A7E3E21ED377BE4C82E6F19FF5C6749 COMPILE

5 opensaml-soap-impl-
3.4.0.jar

23F0B2732C87A34C0179584E71A52839EAF9C186 COMPILE

6 opensaml-xmlsec-
impl-3.4.0.jar

94EA339D9E63436CDF4A2247B5EF85867E66D302 COMPILE

1 Reproducible via
https://search.maven.org/search?q=1:D9A09F7732226AF26BF99F19E2CFFE0AE219DB5B

https://search.maven.org/search?q=1:D9A09F7732226AF26BF99F19E2CFFE0AE219DB5B

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 12 of 21

Filename of
dependency

SHA1 digest Scope

7 UserAgentUtils-
1.18.jar

41982CF6B5B321B65FE3B45C7F1B59CB1512E306 COMPILE

8 DuoWeb-1.1.jar 24D0DDF6726D8F9CCA5AABBD07C4A60215AD6A66 COMPILE

9 idwsfconsumer-
1.0.0.jar

99302B79C4D30BA0FF25B98E0353B10BFAC05F8D COMPILE

10 javassist-3.18.1-
GA.jar

D9A09F7732226AF26BF99F19E2CFFE0AE219DB5B TEST

Table 3: Table with archives unknown to Maven Central

The following table contains 58 dependencies of the project under analysis (out of 147 distinct
dependencies across all 30 project modules) with a release date older than 5 years ago.

Outdated dependencies with scopes COMPILE and RUNTIME are of primary interest, because they
are expected and exposed at application runtime. Outdated dependencies with scope TEST have
been omitted. For those with scope, it should be checked whether they exist as-is in the runtime
environment, or whether a more recent version is provided therein.

Filename of dependency Scope Release Date

1 activation-1.1.jar COMPILE 02/05/2006

2 ognl-2.6.11.jar COMPILE 18/02/2007

3 commons-lang-2.4.jar COMPILE 19/03/2008

4 stax-api-1.0-2.jar COMPILE 04/10/2008

5 velocity-1.7.jar COMPILE 29/11/2010

6 mail-1.4.7.jar COMPILE 09/03/2013

7 javax.json-api-1.0.jar COMPILE 24/04/2013

8 stax2-api-3.1.4.jar COMPILE 28/02/2014

9 ant-1.9.4.jar COMPILE 30/04/2014

10 ant-launcher-1.9.4.jar COMPILE 30/04/2014

11 woodstox-core-asl-4.4.1.jar COMPILE 12/09/2014

12 httpcore-4.3.3.jar COMPILE 18/10/2014

13 httpclient-4.3.6.jar COMPILE 02/11/2014

14 httpclient-cache-4.3.6.jar COMPILE 02/11/2014

15 commons-codec-1.10.jar COMPILE 06/11/2014

16 janino-2.7.8.jar COMPILE 30/01/2015

17 commons-compiler-2.7.8.jar COMPILE 30/01/2015

18 slf4j-api-1.7.12.jar COMPILE 26/03/2015

19 metrics-core-3.1.2.jar COMPILE 26/04/2015

20 metrics-json-3.1.2.jar COMPILE 26/04/2015

21 xmlsec-2.0.5.jar COMPILE 10/07/2015

22 jsr305-3.0.1.jar COMPILE 09/10/2015

23 joda-time-2.9.jar COMPILE 24/10/2015

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 13 of 21

Filename of dependency Scope Release Date

24 jai-imageio-core-1.3.1.jar COMPILE 09/11/2015

25 commons-collections-3.2.2.jar COMPILE 12/11/2015

26 guava-19.0.jar COMPILE 09/12/2015

27 bcprov-jdk15on-1.54.jar COMPILE 30/12/2015

28 opensaml-xmlsec-impl-3.2.0.jar COMPILE 27/04/2016

29 okio-1.8.0.jar COMPILE 02/05/2016

30 okhttp-3.3.0.jar COMPILE 25/05/2016

31 retrofit-2.1.0.jar COMPILE 15/06/2016

32 spring-webflow-2.4.4.RELEASE.jar COMPILE 20/07/2016

33 spring-binding-2.4.4.RELEASE.jar COMPILE 20/07/2016

34 spring-js-2.4.4.RELEASE.jar COMPILE 20/07/2016

35 spring-js-resources-2.4.4.RELEASE.jar COMPILE 20/07/2016

36 spring-context-support-4.3.2.RELEASE.jar COMPILE 28/07/2016

37 spring-aop-4.3.2.RELEASE.jar COMPILE 28/07/2016

38 spring-beans-4.3.2.RELEASE.jar COMPILE 28/07/2016

39 spring-context-4.3.2.RELEASE.jar COMPILE 28/07/2016

40 spring-core-4.3.2.RELEASE.jar COMPILE 28/07/2016

41 spring-expression-4.3.2.RELEASE.jar COMPILE 28/07/2016

42 spring-web-4.3.2.RELEASE.jar COMPILE 28/07/2016

43 spring-webmvc-4.3.2.RELEASE.jar COMPILE 28/07/2016

44 json-20160810.jar COMPILE 10/08/2016

45 cryptacular-1.1.1.jar COMPILE 10/08/2016

46 core-3.3.0.jar COMPILE 16/09/2016

47 javase-3.3.0.jar COMPILE 16/09/2016

48 jackson-annotations-2.8.3.jar COMPILE 18/09/2016

49 jackson-core-2.8.3.jar COMPILE 18/09/2016

50 jackson-databind-2.8.3.jar COMPILE 18/09/2016

51 jackson-datatype-joda-2.8.3.jar COMPILE 18/09/2016

52 jsonapi-converter-0.5.jar COMPILE 21/10/2016

53 ldaptive-1.0.9.jar COMPILE 02/11/2016

54 jsp-api-2.1.jar PROVIDED 17/07/2006

55 jstl-1.2.jar PROVIDED 23/06/2011

56 javax.servlet-api-3.0.1.jar PROVIDED 12/07/2011

57 logback-core-1.1.3.jar RUNTIME 24/03/2015

58 bcpkix-jdk15on-1.54.jar RUNTIME 30/12/2015

Table 4: Archives with release date older than 5 years

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 14 of 21

3.2.6.1 Deviations from test procedure

None

3.3 T1195.001-S3_TC1

3.3.1 Security Requirements addressed

The use of open-source dependencies does not only come with the risk of vulnerabilities that have
been accidentally created by benign open-source developers, but also with the risk of supply chain
attacks, where rogue open-source contributors deliberately hide vulnerable or malicious code in
open-source components. In this context, the scope of dependencies does not matter any more.

To reduce the attack surface, it is therefore worthwhile to remove all dependencies that are not
actually needed for the project under analysis. The presence of un-used or bloated dependencies
can be due to different reasons, e.g. when developers forget to remove old components, or if the
need for transitive dependencies is not well understood.

The corresponding requirements are as follows:

 The project must be regularly checked regarding the presence of un-used bloated
dependencies. This can be achieved using the static and dynamic analysis techniques of
Eclipse Steady.

 In case neither static nor dynamic analysis find any constructs of a given dependency
reachable, project developer shall check whether the dependency can be removed
altogether.

3.3.2 Test preconditions

 A build job ran Steady’s APP, A2C, PREPARE-AGENT, TEST and UPLOAD analysis goals
on the project under analysis, in order to collect as much information as possible about the
reachability of dependency code.

 The Steady <workspace> used for persisting the analysis results is known to the evaluator.

3.3.3 Expected test results

The test will result in a table of open-source components that were found to be unreachable, i.e.
neither the static nor the dynamic analysis showed that any of its classes is needed.

Each of the dependencies shall be checked by application developers to see whether it can be
removed altogether, herewith minimizing the attack surface and future maintenance efforts.

3.3.4 Criteria for evaluating results

Number of reachable constructs per component, as visible on each module’s dependency tab, plus
the assessment by developers for components that were not found to be reachable.

3.3.5 Test Procedure

 Point your browser to the Steady Web frontend (http://<host>:8033/apps/#/<workspace>) 
Select all modules of the project under analysis (using the table on the left-hand side)  For
each module: open the tab “Dependencies” on the right-hand side (cf. example screenshot
in Figure 4)  Document all dependencies with 0 in column “Static analysis” and 0 in column
“Dynamic analysis”  Present the findings to the developer(s)/architect(s) of the project to
get an assessment for each component whether it is required or whether it can be removed

3.3.6 Test Results

Status: PASSED WITH DEVIATIONS

The following table shows 69 components of the project under analysis (out of 147 distinct
dependencies across all 30 project modules) that have not been found reachable.

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 15 of 21

Again, the 14 unused components with scope COMPILE and RUNTIME are of primary interest,
because they can contain deserialization gadgets that can be exploited at application runtime.
However, in order to minimize the risk of supply chain attacks, it is advisable to also check whether
any of the other dependencies can be removed.

Filename of dependency Scope

activation-1.1.jar COMPILE

jackson-annotations-2.8.3.jar COMPILE

mail-1.4.7.jar COMPILE

ognl-2.6.11.jar COMPILE

opensaml-saml-api-3.4.0.jar COMPILE

opensaml-soap-api-3.4.0.jar COMPILE

spring-js-resources-2.4.4.RELEASE.jar COMPILE

stax-api-1.0-2.jar COMPILE

stax2-api-3.1.4.jar COMPILE

jai-imageio-core-1.3.1.jar COMPILE

okhttp-3.3.0.jar COMPILE

okio-1.8.0.jar COMPILE

retrofit-2.1.0.jar COMPILE

jstl-1.2.jar PROVIDED

bcpkix-jdk15on-1.54.jar RUNTIME

ant-1.7.0.jar TEST

ant-launcher-1.7.0.jar TEST

bsh-2.0b4.jar TEST

hamcrest-core-1.1.jar TEST

java-support-7.3.0-tests.jar TEST

jcl-over-slf4j-1.7.12.jar TEST

jul-to-slf4j-1.7.12.jar TEST

junit-4.10.jar TEST

log4j-over-slf4j-1.7.12.jar TEST

snakeyaml-1.15.jar TEST

testng-6.9.9.jar TEST

xmlunit-1.6.jar TEST

antlr-2.7.7.jar TEST

dom4j-1.6.1.jar TEST

hibernate-commons-annotations-
4.0.4.Final.jar TEST

hibernate-core-4.3.5.Final.jar TEST

hibernate-entitymanager-4.3.5.Final.jar TEST

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 16 of 21

Filename of dependency Scope

hibernate-jpa-2.1-api-1.0.0.Final.jar TEST

jandex-1.1.0.Final.jar TEST

javassist-3.18.1-GA.jar TEST

jboss-logging-3.1.3.GA.jar TEST

jboss-logging-annotations-1.2.0.Beta1.jar TEST

jboss-transaction-api_1.2_spec-
1.0.0.Final.jar TEST

jetty-http-9.2.14.v20151106.jar TEST

jetty-io-9.2.14.v20151106.jar TEST

jetty-server-9.2.14.v20151106.jar TEST

jetty-util-9.2.14.v20151106.jar TEST

mockito-core-1.10.8.jar TEST

objenesis-2.1.jar TEST

spring-jdbc-4.3.2.RELEASE.jar TEST

spring-orm-4.3.2.RELEASE.jar TEST

spring-tx-4.3.2.RELEASE.jar TEST

spymemcached-2.11.4.jar TEST

xml-apis-1.0.b2.jar TEST

opensaml-profile-api-3.3.0-tests.jar TEST

opensaml-saml-api-3.3.0-tests.jar TEST

antlr-runtime-3.4.jar TEST

jna-4.1.0.jar TEST

jna-platform-4.1.0.jar TEST

jsch.agentproxy.connector-factory-0.0.7.jar TEST

jsch.agentproxy.core-0.0.7.jar TEST

jsch.agentproxy.pageant-0.0.7.jar TEST

jsch.agentproxy.sshagent-0.0.7.jar TEST

jsch.agentproxy.svnkit-trilead-ssh2-0.0.7.jar TEST

jsch.agentproxy.usocket-jna-0.0.7.jar TEST

jsch.agentproxy.usocket-nc-0.0.7.jar TEST

platform-3.4.0.jar TEST

sequence-library-1.0.3.jar TEST

spring-extensions-5.3.0-tests.jar TEST

trilead-ssh2-1.0.0-build220.jar TEST

hsqldb-2.3.3.jar TEST

unboundid-ldapsdk-2.3.8.jar TEST

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 17 of 21

Filename of dependency Scope

mockito-all-1.10.8.jar TEST

opensaml-soap-impl-3.3.0-tests.jar TEST

Table 5: Potentially un-used archives with scope compile, runtime and provided

3.3.6.1 Deviations from test procedure

The analysis by the developers/architects is outstanding.

3.3.6.2 Problems encountered

None

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 18 of 21

Chapter 4 Test Summary Coverage

This chapter shows the completeness of tests coverage: each test covers at least one requirement,
and every requirement has been tested at least by one test.

The following Table 6 demonstrates that each test cover at least one requirement.

Test ID
Requirement

code

Results
(including

section
reference)

Notes

T1195.001-
S1_TC1

T1195.001-S1 FAILED
(3.1.6)

The project depends on open-source
components with known vulnerabilities. They
must be assessed and either fixed or exempted
(providing a justification why the vulnerability is
not critical/exploitable).

T1195.001-
S2_TC1

T1195.001-S2 FAILED
(3.2.6)

The project depends on 58 outdated
components with scope COMPILE and
RUNTIME (released >5 years ago) and on 10
components unknown to Maven Central.

T1195.001-
S3_TC1

T1195.001-S3 PASSED
WITH
DEVIATION
S (3.3.6)

The project depends on 69 components that
were not found to be reachable, the developer
assessment is outstanding.

Table 6: Test Summary Coverage (Tests vs Requirements)

The following Table 6 demonstrates that each requirement has been verified at least through one
test.

Requirement
code

Test ID

Results
(including

section
reference)

Notes

T1195.001-S1 T1195.001-
S1_TC1

FAILED
(3.1.6)

The project depends on open-source
components with known vulnerabilities. They
must be assessed and either fixed or exempted
(providing a justification why the vulnerability is
not critical/exploitable).

T1195.001-S2 T1195.001-
S2_TC1

FAILED
(3.2.6)

The project depends on 58 outdated
components with scope COMPILE and
RUNTIME (released >5 years ago) and on 10
components unknown to Maven Central.

T1195.001-S3 T1195.001-
S3_TC1

PASSED
WITH
DEVIATION
S (3.3.6)

The project depends on 69 components that
were not found to be reachable, the developer
assessment is outstanding.

Table 7: Test Summary Coverage (Requirements vs Test)

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 19 of 21

The following matrix (Table 8) shows the complete coverage between Security Functional
Requirements and tests

 T1195.001-S1 T1195.001-S2 T1195.001-S3

T1195.001-S1_TC1 X

T1195.001-S2_TC1 X

T1195.001-S3_TC1 X

Table 8: Matrix of test coverage

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 20 of 21

Chapter 5 List of Abbreviations

Abbreviation Translation

API Application Programming Interface

App Application

ATE Assurance Family Test

CAPE Continuous Assessment in Polymorphous Environments

CI/CD Continuous Integration/Continuous Delivery

CIE Carta d'Identità Elettronica

CINI Consorzio Interuniversitario Nazionale per l'Informatica

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

DevSecOps Development Security Operations

FBK Fondazione Bruno Kessler

GB Giga Byte

GitLab Open source end-to-end software development platform

GitLab-CI/CD GitLab-Continuous Integration/Continuous Delivery

HTML HyperText Markup Language

HTTP/HTTPS
Hypertext Transfer Protocol / Hypertext Transfer Protocol Secure

OS Operating System

OWASP Open Web Application Security Project

RAM Random Access Memory

REST Representational State Transfer

SAML Security Assertion Markup Language

SAML IdP Security Assertion Markup Language Identity Provider

SHA-* Secure Hash Algorithm-*

SRs Security Requirements

SSO Single Sign-On

VM Virtual Machine

D5.4 Appendix J – ATE – Tests – Vertical 2 – SAML IdP Server Scenario

SPARTA D5.4 - Appendix J Public Page 21 of 21

Chapter 6 Bibliography

[1] SPARTA CAPE D5.2 “Demonstrator specifications”, January 2021

[2] SPARTA CAPE D5.3 “Demonstrator prototypes”, January 2021

[3] SPARTA CAPE D5.4 “Integration on demonstration cases and validation”, January 2022

[4] Common Criteria for Information Technology Security Evaluation, Version 3.1, revision 5,
April 2017. Part 1: Introduction and general model.

[5] Common Criteria for Information Technology Security Evaluation, Version 3.1, revision 5,
April 2017. Part 3: Assurance security components.

[6] Bundesamt für Sicherheit in der Informationstechnik (BSI) Guidelines for Developer
Documentation according to Common Criteria Version 3.1 Version 1.0

	Table of Content
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Document Overview

	Chapter 2 Test preparations
	2.1 System overview
	2.1.1 Hardware preparation
	2.1.2 Software preparation

	Chapter 3 Test descriptions
	3.1 T1195.001-S1_TC1
	3.1.1 Security Requirements addressed
	3.1.2 Test preconditions
	3.1.3 Expected test results
	3.1.4 Criteria for evaluating results
	3.1.5 Test Procedure
	3.1.6 Test Results
	3.1.6.1 Deviations from test procedure

	3.2 T1195.001-S2_TC1
	3.2.1 Security Requirements addressed
	3.2.2 Test preconditions
	3.2.3 Expected test results
	3.2.4 Criteria for evaluating results
	3.2.5 Test Procedure
	3.2.6 Test Results
	3.2.6.1 Deviations from test procedure

	3.3 T1195.001-S3_TC1
	3.3.1 Security Requirements addressed
	3.3.2 Test preconditions
	3.3.3 Expected test results
	3.3.4 Criteria for evaluating results
	3.3.5 Test Procedure
	3.3.6 Test Results
	3.3.6.1 Deviations from test procedure
	3.3.6.2 Problems encountered

	Chapter 4 Test Summary Coverage
	Chapter 5 List of Abbreviations
	Chapter 6 Bibliography

