

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 830892.

D5.4
Demonstrators evaluation

Project number 830892

Project acronym SPARTA

Project title
Strategic programs for advanced research and

technology in Europe

Start date of the project 1st February, 2019

Duration 36 months

Programme H2020-SU-ICT-2018-2020

Deliverable type Demonstrator

Deliverable reference number SU-ICT-03-830892 / D5.4/ V1.0

Work package contributing to the

deliverable
WP5

Due date Jan 2022 – M36

Actual submission date 2nd February, 2022

Responsible organisation LEO

Editor Malacario Mirko

Dissemination level PU

Revision V1.0

Abstract

This deliverable aims to validate tools and

processes developed during the CAPE programme

by performing evaluability activities using Vertical 1

& Vertical 2 use cases.

Keywords
Cybersecurity, Evaluability, Certification, Standard,

Process, Protection Profile, Security Requirements.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page I

Editor

Mirko Malacario (LEO)

Contributors

André Maroneze, Loïc Correnson (CEA)

Philippe Massonnet, Sébastien Dupont, Guillaume Ginis (CETIC)

Yuri Gil Dantas (FTS)

Henrik Plate (SAP)

Marc Ohm (UBO)

Víctor Jiménez (EUT)

Cristina Martínez, Estibaliz Amparan, Angel López (TEC)

Paul-Henri Mignot, Gregory Blanc (IMT)

Andrea Bisegna, Roberto Carbone, Luca Verderame (CINI)

Gabriele Restuccia, Alessandro Pellegrini, Francesco Quaglia (CNIT)

Artsiom Yautsiukhin (CNR)

Claudio Porretti, Nicoletta Imperatori (LEO)

Andrius Bambalas (MRU)

Jordan Samhi, Jacques Klein (UNILU)

Reviewers

Maximilian Tschirschnitz (TUM)

Rimantas Zylius (L3CE)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information
is fit for any particular purpose. The content of this document reflects only the author`s view – the European
Commission is not responsible for any use that may be made of the information it contains. The users use the
information at their sole risk and liability.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page II

Executive Summary

The main objective of Task 5.4 is the validation of the tools developed in the CAPE program through
a demonstration of the verticals described in D5.2 [2]. This deliverable (that includes twelve
appendixes), is a supporting document for showing the results reached by the task.

For reaching this objective, this document introducesd the concept of “evaluability”. Evaluability is
the process of verifing whether the set of evidences, consisting of documentation and the Target Of
Evaluation (the product or the system under assessment), are sufficient to carry out an evaluation
process for Cybersecurity certification.

In order to perform the evaluability task, the tools involved in the verticals have produced a set of
evidences, based on Common Criteria standard.

Results from that evidences were verified as complete from an evaluability perspective by checking
their completeness and their quality. In particular, they allow to understand the gap to be filled before
starting a formal evaluation allowing the owner of the product to make the necessary changes timely.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page III

Table of Content

Chapter 1 Introduction ... 1

1.1 Structure of the Document .. 2

Chapter 2 Validation process definition ... 3

2.1 Purpose ... 3

2.2 The Concept of Evaluability .. 3

2.3 Evaluability approach for the CAPE program .. 4

Chapter 3 Vertical 1: Demonstration of converging tools for assessing Connected
and Cooperative Car Cybersecurity (CCCC) in the context of Euro NCAP 8

3.1 Description .. 8

3.2 Validation elements and tools for Vertical 1 .. 9

3.3 Evaluability results for Vertical 1 ... 12

3.3.1 OpenCert (OC) .. 13

3.3.2 TEC Demonstrator ... 13

3.3.3 AutoFocus3 ... 13

3.3.4 Sabotage ... 14

3.3.5 Frama-C .. 14

3.3.6 Verification Tooling (including SysML usage) .. 15

3.3.7 VaCSInE.. 15

3.3.8 Vertical 1 Traceability Matrix .. 17

3.4 Considerations .. 21

Chapter 4 Vertical 2: Demonstration of a Complex System Assessment Including
Large Software and Open Source Environments, Targeting e-Government Services ..
 .. 24

4.1 Description .. 24

4.2 Validation elements and tools for Vertical 2 .. 24

4.3 Evaluability results for Vertical 2 ... 27

4.3.1 Approver and TSOpen ... 28

4.3.2 Project KB / Steady / VI ... 28

4.3.3 SafeCommit ... 29

4.3.4 Vertical 2 Traceability Matrix .. 29

4.4 Considerations .. 32

Chapter 5 Summary and Conclusions.. 33

Chapter 6 List of Abbreviations .. 36

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page IV

Chapter 7 Bibliography .. 39

Appendix A ATE Tests – Vertical 1 Scenario 1 (TEC Demonstrator) 41

Appendix B ATE Tests – Vertical 1 Scenario 1 (AutoFOCUS3) 42

Appendix C ATE Tests – Vertical 1 Scenario 5 (Sabotage tool) 43

Appendix D AVA Vulnerability Assessment – Vertical 1 Scenario 3 (Verification
Tooling) .. 44

Appendix E ADV Development – Vertical 1 (Frama-C) ... 45

Appendix F Protection Profile for a Safety and Security Platooning Management
Module including a firewall ... 53

Appendix G Impact Analysis Report - Vertical 1 - Scenario 2 54

Appendix H ALC Life-Cycle – Vertical 1 (OpenCert) ... 55

Appendix I ATE Test Procedure and Report - Vertical 2 - Mobile Scenario 61

Appendix J ATE Test Procedure and Report - Vertical 2 - SAML IdP Server Scenario
 .. 62

Appendix K ADV Development – Vertical 2 (SafeCommit) ... 63

Appendix L Additional test and results reported outside the Verticals scope 70

Appendix M Short videos description .. 71

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page V

List of Figures

Figure 1: V-model for cybersecurity certification, safety engineering and security engineering........ 1

Figure 2: Security-by-design phases and Common Criteria Assurance classes 5

Figure 3: Evidences provided by tools in the life-cycle phases .. 6

Figure 4: Assurance Continuity for Security Status Maintenance .. 7

Figure 5: Platooning scenario ... 8

Figure 6: Evaluability evidences collection for Vertical 1 ... 12

Figure 7: Evaluability evidences collection for Vertical 2 ... 27

Figure 8: Frama-C GUI screenshot showing an alarm ('position' must be positive), with the original
source on the top right corner, the normalized Frama-C code on the top left, and the current
callstack and possible values for the selected expression, 'position', in the bottom of the image).
 .. 46

Figure 9: VS Code with SARIF Viewer extension, showing the same alarm as displayed in Figure 1,
but with information provided by the SARIF report. ... 47

Figure 10: Alarm identified by Frama-C/Eva: possible index out of bounds, due to values -2 and 0 in
position.. 48

Figure 11: Frama-C GUI provides navigation via contextual menus. ... 48

Figure 12: Identifying the link between the position parameter in get_vehicle_broadcast and the
return value of get_position, which is temporary variable tmp_68. ... 49

Figure 13: Code of get_position: it returns a value between 1 and 5 when the participant with
specified id is found, or -1 otherwise. .. 49

Figure 14: VS Code screenshot after the patch adding a check for variable 'position'. 52

Figure 15: Functional decomposition for the OpenCert platform .. 55

Figure 16: Security evidence model structure ... 56

Figure 17: Example of an evidence stored in the OpenCert tool .. 57

Figure 18: Main assurance case for the Platooning system .. 59

Figure 19: Argumentation with evidences ... 60

Figure 20: Commit identification .. 63

Figure 21: safe.patch, a patch that does not introduce any vulnerability. 64

Figure 22: The test is passed meaning that SafeCommit does not detect any vulnerability in this
patch. .. 65

Figure 23: SafeCommit Report .. 65

Figure 24: Commit Identification of the unsafe.patch patch ... 65

Figure 25: unsafe patch that introduces a vulnerability .. 66

Figure 26: The test contains a warning meaning that SafeCommit has potentially detected a
vulnerability in this patch. .. 67

Figure 27: Safe Commit Report when it detects a vulnerability.. 67

Figure 28: Commit Identification of the safecommit_skip patch ... 67

Figure 29: patch that simply adds texts into a text file ... 68

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page VI

Figure 30: The test is passed meaning that SafeCommit does not detect any vulnerability in this
patch. .. 68

Figure 31: SafeCommit Report .. 69

List of Tables

Table 1: Elements and tool involved in Vertical 1 .. 11

Table 2: Evidences for the Vertical 1 ... 12

Table 3: Traceability matrix for Vertical 1 (Scenario 1 and 5) .. 19

Table 4: Elements and tool involved in Vertical 2 .. 26

Table 5: Evidences for the Vertical 2 ... 27

Table 6: Traceability matrix for Vertical 2 Mobile Scenario .. 31

Table 7: Traceability matrix for Vertical 2 SAML IdP Scenario... 31

Table 8: Short videos description for tools involved in Vertical 1 ... 72

Table 9: Short videos description for tools involved in Vertical 2 ... 72

Table 10: Short videos description for standalone tools .. 73

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 1 of 73

Chapter 1 Introduction

During the last decades the context of “Cybersecurity” certification has evolved, trying to follow the
fast evolution of the cyberspace in terms of growing number of devices interconnected and the
complexity of softwares running on top of them.

This evolution led to the creation of a plethora of security certifications as described in the D11.3 [6]
bringing a set of advantages and disadvantges.

After the end of the cold war the certification scheme developed in Europe for the certification of IT
products was Common Criteria.

This deliverable is the output the last task of WP5 (also named as CAPE - Continuous Assessment
in Polymorphous Environments that is one of the four programs of the SPARTA project):

 T5.1 - Assessment procedures and tools: during the task 5.1 tools and methods for
continuous assessment and certification have been defined.

 T5.2 - Convergence of security and safety: during the task 5.2 have been studied
techniques and specifications in order to integrate security and safety aspects

 T5.3 - Risk discovery, assessment and management for complex systems of systems:
during the task 5.3 has been addressed security requirements on SoS using modern software
engineering methods

 T5.4 - Integration on demonstration cases and validation: the objective of task 5.4 is to
validate tools and techniques described in T5.1, T5.2 and T5.3 in the CAPE verticals.

In task 5.1 “Assessment Prodedures and Tools” and D5.1 [1], starting from the V-Model adopted for
the development life cycle, Common Criteria activities was mapped to each V-model step .

The following Figure 1 shows the iterative process applied to the secure development of a
system/product. In the figure, both Safety Engineering and Security Engineering processes go in
parallel with the cybersecurity certification process (Common Criteria standard has been used in this
specific case).

For further details about the construction of this framework please refer to the D5.1 “Assessment
specifications and roadmap” [1].

Figure 1: V-model for cybersecurity certification, safety engineering and security engineering

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 2 of 73

Activities performed in task 5.4, and summarized in this deliverable D5.4, show how the tools of the
CAPE program, used in the different V-Model phases of the Verticals life-cycle, produce a set of
evidences evaluable against a future cybersecurity certification scheme.

Appendix L has been created in order to provide a demonstration of standalone tools or tools not
fully integrated in the two verticals, or for showing specific results not directly related to the context
of the verticals.

1.1 Structure of the Document

This deliverable has been structured as following:

 Chapter 1 Introduction, presents an introduction to the activities performed in the task 5.4 and
the structure of this deliverable.

 Chapter 2 Validation process definition, presents the validation process that has been defined
for performing Task 5.4. In particular, the validation of CAPE tools will be made through selected
activities related to Common Criteria certification. The objective is not to perform a Common
Criteria evaluation but to demonstrate how the tools developed in the scenarios of verticals are
able to produce evidences evaluable with respect to a security certification scheme such as
Common Criteria.

 Chapter 3 Vertical 1: Demonstration of converging tools for assessing Connected and
Cooperative Car Cybersecurity (CCCC) in the context of Euro NCAP, presents the result of
evaluability activities performed with tools involved in Vertical 1 use case.

 Chapter 4 Vertical 2: Demonstration of a Complex System Assessment Including Large
Software and Open Source Environments, Targeting e-Government Services, presents the
result of evaluability activities performed with tools involved in Vertical 2 use case.

 Chapter 5 Summary and Conclusions, collects considerations resulting the activities performed
during the execution of task 5.4.

 Appendixes from A to H collect the output report from the tools involved in the Vertical 1 as
results of the Task 5.4.

 Appendixes from I to K collect reports from the tools involved in the Vertical 2 as results of the
Task 5.4.

 Appendix L contains a set of additional tests and results performed by tools outside the two
verticals scope.

 Appendix M contains a short description of the videos developed for demonstration purpose.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 3 of 73

Chapter 2 Validation process definition

2.1 Purpose

Task 5.4 provides a demonstration that activities, techniques and tools resulting from previous tasks
(T5.1, T5.2 and T5.3), applied to CAPE verticals, can provide a product evaluable with respect to a
future unified Certification Scheme based on Common Criteria ([7], [8] and [9]), considering that
EUCC has selected the Common Criteria as basis for the future cybersecurity certification scheme,
successor of the SOG-IS.

It is important to highlight that the objectives of the task is not to certify the products/ realized with
the verticals, nor the tools developed in CAPE program.The objective is to demonstrate how the
tools, developed in the scenarios of verticals, are able to produce evidences evaluable with respect
to a future security certification scheme.

The goal of the security process is to start from existing consolidated concepts (e.g. the V-Model)
and build on them “agile” procedures and tools that allow the application of security also to complex
systems and services. This does not mean less security, but a better distribution of security
throughout the product / system / process life cycle. In other terms the security activities are not
performed only at the end of the process, for example performing security configuration as the
hardening, but including the security since the early stages by clearly define the security
requirements and security objectives to be reached).

This can be achieved by evaluating that that security measures, distributed to the whole life-cycle,
have been implemented.

For clarification, the term “evaluation” will not be referred in the following of this document, because
this term is in general related to a formal certification. The term “Evaluability” will be used instead.
(for further detail see section 2.2), meaning the effectiveness of the tools in producing evidences for
a future security certification.

The objective of the task, which was to test the tools developed in CAPE program, was therefore
achieved by using the tools to verify the evaluability of the two verticals, according to a future unified
certification schema based on Common Criteria.

2.2 The Concept of Evaluability

As introduced in the previous section, the activities performed during the execution of T5.4 have
yielded a set of evidences related to a future unified Certification Scheme. Such evidences allow the
evaluator to perform “Evaluability” activities in orderto define whether the set of evidences provided,
consisting of documentation and the Target Of Evaluation1, are sufficient to carry out an evaluation
process for Cybersecurity certification purposes.

In particular, evaluability activities performed on single evidences have the objective to define
whether the evidences themselves have been created in a way that, in the future, can be used for
evaluation purposes (in this way the tool that developed that evidence can be tested assessing its
effectiveness in the context of evaluability).

Through two distinct use cases, the Task 5.4 explores and verifies that all the elements deriving from
the activities and tools developed in the other tasks of the WP5, applied to the single use case, could
lead to a lean and agile definition and verification of the security requirements characterizing the
prototypes.

It is important to introduce two important terms that are used in the following:

1 Product or System under assessment

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 4 of 73

 Developer: when we refer to the Developer in the context of the certification process it is
intended the natural/legal person that develop the product under certification. This person is
also in charge to provide the evidences for the future certification.

 Evaluator: the evaluator is the natural/legal person in charge to perform the evaluation of the
evidences against the Certification Scheme. During a formal evaluation he/she is part of an
accredited Cybersecurity Evaluation Facility (see also [6]).

Due to the fact that “evaluability” activities, are not considered as a formal certification, they can be
performed directly by developers (although having an“evaluability” team different from the
development team could help to obtain better results) in order to “internal assess” the evidences
produced during the life-cycle of the product/system that will be certified.

In this way the “evaluability team” can evaluate the completeness of the evidences and the
improvement area that need to be implemented to the product/system and evidences for filling the
gap.

The evaluability activities represent an important shift-left 2in the certification process because if the
evaluability process finds an improvement area in a timely manner, the cost to fill the gap is minor
respect of discovering it at the end of the development (with the risk of still developing a large part
of the product/system).

This is the means of performing “better distribution of security throughout the life-cycle”.

2.3 Evaluability approach for the CAPE program

In order to meet the goals introduced in the previous sections, the evaluability approach for the CAPE
program is strictly related to the tools developed and involved in the scenarios of the following two
verticals:

 Vertical 1 – Demonstration of converging tools for assessing Connected & Cooperative Car
Cybersecurity (CCCC) in the context of Euro NCAP.

 Verticals 2 – Demonstration of a complex system assessment including large software and
open source environments, targeting e-government services.

Further details about the two verticals can be founded in the D5.2 [2] and D5.3 [4].

The decision of performing an evaluability activitiy of the outputs of the tools in the context of the two
verticals clearly defines the boundaries and the purpose of the tool testing.

As introduced in Chapter 1, in the following, only the tools fully integrated within the two verticals
have been taken into account for the concept of evaluability purpose. Test results coming from the
other tools outside the context of the two verticals are shown in the dedicated Appendix L.

The concept of Secure-by-design process has been taken into account for the CAPE program. In
particular, it is possible to map the security engineering activities with the Common Criteria
Assurance Class as depicted in Figure 2.

2 Shift-left testing is an approach to software testing and system testing in which testing is performed earlier in
the lifecycle. In this case the term has been used also for highlighting that evaluability activities allow to
discover possible non-compliance to the certification scheme during the development life-cycle instead to
discover them at the end of the process causing an incrementation of costs.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 5 of 73

Figure 2: Security-by-design phases and Common Criteria Assurance classes

As introduced in the D5.3 [4] the Common Criteira Assurance classes are the following:

 “ASE (Security Target Evaluation): this class deals with the evaluation of the consistency of
the ”Security Target” which also contains the definition of the security requirements of the
TOE, therefore it is closely linked to the security requirements management phase.

 ADV (Development): this class deals with the evaluation of the six families of requirement for
structuring and representing the security functionality realized by the target of evaluation
(TOE) at various levels and varying forms of abstraction that the developer must produce
during the product development phase, naturally it is linked to the features of the Secure by
design processes adopted by the supplier.

 AGD (Guidance Documentation): this class takes care of the evaluation of the manuals that
are delivered to the customer. These manuals contain both the secure configuration process
of the TOE in its user environment and its safe use methods for each category of defined
end-user.

 ALC (Life-cycle support): this is a very important class that evaluates all aspects of the
management of the TOE during its life cycle: in the development phase in which it is under
the responsibility of the developer, during the transitional phase of transport in its final
operating environment and of course the management in the operating environment under
the responsibility of the customer and the developer, in the hypothesis of maintaining the
certification (security patch management).

 ATE (Tests): it is the class that takes into consideration all the tests that demonstrate that
security functionalities operate according to its design descriptions, both the functional ones
proposed by the developer and the independent ones proposed by the evaluators.

 AVA (Vulnerability Assessment): this class takes care of vulnerability assessment activity to
analyse vulnerabilities in the development and operation of the TOE. Development
vulnerabilities are those introduced during its development and these can be minimized with
the adoption by the developer of ”security by design” processes. Operational vulnerabilities
are those that could exploit the weaknesses of non-technical countermeasures to violate the
TOE security functionality. This analysis is carried out by the evaluators during TOE
evaluation deliverables analysis or from the classic vulnerability analysis performed also
adopting automatic tools.”.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 6 of 73

Figure 3: Evidences provided by tools in the life-cycle phases

Figure 3 shows the life-cycle of a product/system through the different phases of the Security
Engineering Process. For each phase the application of CAPE tools and/or methods allow to create
evidences related to the abovementioned Common Criteria Assurance Classes.

Thus, starting from the requirements up to the operational environment, the evaluability activity has
the objective to check the evidences generated by the tools during the different phases in order to
verifiy if the security requirements have been addressed and maintained during the whole life-cycle,
up to the delivery in the operational environment of the product/system being assessed (in case of
T5.4, the two verticals).

Summarizing, the general approach defined for performing the task is the usage of the tools during
the different phases of the life-cycle as shown in Figure 3. This approach allows to collect all available
evidences and perform an evaluability analysis.

In particular:

 Requirement Definition phase allow to collect evidences of the ASE class (related to
Security Target/Protection Profile). The objective of this phase is to ensure that the
requirements have been clearly defined.
For the two verticals, the evaluability starts from two different perspectives: in Vertical 1 it
starts from requirements clearly stated in the Protection Profile defined during the task 5.2
[3], while in Vertical 2 it starts from a tailoring of security requirements stated in common
methodologies such as OWASP and CWE.

 Security by design phase has the objective to check that the previously defined
requirements have been correctly addressed in the design phase (design is intended for both
high-level/system design and low-level/component design). These activities can be grouped
in the Common Criteria ADV, ATE and AVA Assurance Classes.

 Manual Definition phase has the objective to check that the guidance documentation for all
users roles of the certified product/system is clearly defined in order to maintain the
implementation of security requirements during the operational life of the product/system.
This activity can be translated in the AGD CC Assurance Class.

 Secure Design, Delivery & Configuration Management phase has the objective to
guarantee that the security requirements are continuously considered in the life-cycle of the
product and that the certified product/system and the related evidences are clearly and
uniquely identified. This activity can be translated in the ALC CC Assurance Class.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 7 of 73

 Test definition phase has the objective to define a set of tests that ensure the coverage and
verification of the requirements defined in the early stages and managed during the whole
life-cycle. This activity can be translated in the ATE CC Assurance Class.

 Cyber security assessment phase allows to check the vulnerabilites of the operational
environment and the software supporting the product/system under evaluation. This activity
can be translated in the AVA CC Assurance Class.

During the execution of the task, other than the Common Criteria Assurance class, another Common
Criteria process has been considered: the Assurance Continuity [12]. This activity is related to the
Security Status Maintenance phase of the life cycle.

In fact, it is important to bear in mind that a product is certified in a “static” way. The security problem
solved with a certified product is well defined and freezed. A certificate is issued in respect to a
specific version of the product, configured as per certified guidance documents and running in a
specific operational environment.

This implies that activities such as Patch Management and Improvement/Evolution of a certified
product lead to a modification of the abovementioned boundaries modifying, potentially, the define
security problem,

This lead to a set of considerations to be addressed in maintaining the certification of a product due
to the “static” approach of a cybersecurity certification.

From a certain point of view, these activities (that we can call as Security Status Maintenance
activities) became critical in the recent years due to the fast evolution of the cybersecurity world that
requires products to be constantly updated and maintained in order to counter new threats. On the
other hand it is important, for a vendor or a users, take advantage by using certified IT products.

The Assurance Continuity process defined in the Common Criteria Assurance Continuity (CCRA)
addresses this challenging phase of keeping the product updated and maintaining the Certificate.

Assurance Continuity, as shown in the following Figure 4, has the objective to define a set of actions
that can be performed in ordert to maintain the Common Criteria certification of a product during its
evolution.

Figure 4: Assurance Continuity for Security Status Maintenance

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 8 of 73

Chapter 3 Vertical 1: Demonstration of converging tools
for assessing Connected and Cooperative Car
Cybersecurity (CCCC) in the context of Euro NCAP

3.1 Description

The goal of the Connected Car Vertical (Vertical 1), which has been been fully described in D5.2 [1],
is to advance the cyber-security of connected vehicles driving in platoon mode. A platoon is a
sequence of vehicles as depicted in Figure 5, that it is composed by a leader vehicle and a sequence
of followers.

Each vehicle in the platoon communicates using dedicated communication channels. Moreover,
each vehicle in the platoon possesses sensors, such as cameras, distance sensors, enabling a
highly automated mode of operation. Indeed, when formed, the platoon requires only driver
supervision.

Figure 5: Platooning scenario

This Vertical deals with a platoon consisting of three members, with one leader and two followers
using Cooperative Adaptive Cruise Control (CACC). All cars have the same hardware and the same
platooning software but with different configurations. The platoon vehicles navigate on the circuit
designed and can communicate each other thanks to a WiFi 802.11n access point.

For the purpose of T5.4 the evaluability starts from the reading of the Protection Profile developed
in the context of the task 5.2 [3]. The Protection Profile allows the following:

 Clearly defines the Security Problem affecting the Platooning Management Module

 Security Problem Definition states Security Objectives for the TOE and its Operational
Environment that counter the Threats and address Assumptions and Security Policies

 Security Objectives for the TOE are reached through the implementation of a set of
requirements (SFRs listed in the PP).

The Evaluability task aims to check that the selected requirements (see section 3.3.8) have been
correctly implemented during the entire life-cycle of the Vertical 1. This has been done by verifying
the evidences of tools developed in WP5 for Vertical 1.

In T5.4 it was demonstrated how tools can support:

 the developer, in the correct implementation of security requirements during the entire life-
cycle

 the developer, during the entire secure process/life-cycle (e.g. requirement definition,
configuration management, etc.)

 the evaluator, to assure the correct implementation of security requirements and the
management of secure process/life-cycle.

It is important to highlight that, as described above, the Security Problem defined and solved by the
Protection Profile is focused to specific aspects of cyber-security (and safety).

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 9 of 73

It should be noted that considering criteria established with respect to evaluability and data to be
exchanged between CACC members (speed, direction and positioning), the ethical, legal and social
aspects (ELSA) of CACC platooning3, have not been analysed, but rather outlined as possibilities
for further considerations, which would be of utmost importance during the implementation phase of
CACC platooning.

3.2 Validation elements and tools for Vertical 1

The following Table 1 lists the set of tools/activities involved in the Vertical 1 use case.

The table shows also the mapping with the Process Element defined in SPARTA D11.2
“Cybersecurity compliant development processes” [5]. The process elements consist of a set of
activities related to the security-by-design process and their definitions aim to define a catalogue of
elements that should become the founding stone of a process-centric security certification scheme.

 PE1 Organizational Security Framework

 PE2 Product/Service Risk Assessment

 PE3 SDLC Instance Definition

 PE4 Security Planning

 PE5 Software Architecture

 PE6 Threat Modelling

 PE7 Security Functional Requirements Definition

 PE8 Secure Programming Guidelines

 PE9 Code-level Security Analysis

 PE10 Security Testing

 PE11 Security Assessment of 3rd Party / Open Source Software

 PE12 Assessment of the Operational Environment

 PE13 Development Environment

 PE14 Vulnerability Analysis

 PE15 Continuous Vulnerability Checks

 PE16 Patch / Update Processes

 PE17 Secure Configuration by Default

 PE18 Secure Deployment

 PE19 Formal Modelling and Analysis

 PE20 Tools and Automation

 PE21 User Guidance.

Tool / Activity Partner Description

Process
Element

(PE)
mapping

TEC demonstrator TEC

TEC Demonstrator has been used for
performing ATE test. The tool has verified a
subset of PP Security Functional Requirements.
The report (see Appendix A) also shows the
coverage matrix for demonstrating the
completeness of test execution.

PE10

PE20

Sabotage (SB) TEC
Sabotage has been used for performing ATE
test against a minimal subset of PP Security
Functional Requirements (Sensor based

PE10

PE20

3 Such as processing of personal data as well as liability for damage (due to malfunction, failure to recognise
object etc.)

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 10 of 73

Tool / Activity Partner Description

Process
Element

(PE)
mapping

Plausibility check security mechanism). The
report (see Appendix C) also shows the
coverage matrix for demonstrating the
completeness of test execution.

Verification Tooling
(including SysML

usage)
EUT/IMT

EUT performs a Vulnerability Assessment
activity (see Appendix D) by assessing the
TECNALIA rovers.

Vulnerability analysis (including penetration
testing activities) have been performed on both
OSS and Operational Environment.

PE11

PE12

PE14

PE20

VaCSInE (VCS) CETIC

VaCSInE orchestrates the security response by
deploying and updating a firewall on the rovers
to protect them. This is based on OpenSCAP
vulnerability scans, Ansible automation and
GitLab-CI. The Impact Analysis Report (see
Appendix G) describes the security remediation.

PE15

PE20

AutoFocus3 (AF3) FTS

AutoFOCUS3 supports both the design of the
logical architecture, including the software
behaviour of logical components and design
exploration of safety pattern, task allocation, etc.
This is done by using formal methods and
solvers (e.g., DLV and Z3). AutoFOCUS3
supports safety argumentation based on formal
models (for details see D5.3 [4]).

Moreover, in task 5.4 AutoFOCUS3 has been
used for performing ATE test. The tool has
verified a subset of PP Security Functional
Requirements. The report (see Appendix B)
shows also the coverage matrix for
demonstrating the completeness of test
execution.

PE5

PE10

PE19

PE20

Frama-C (FC) CEA

Frama-C has been used to verify the absence of
certain runtime errors in the source code that
could lead to security vulnerabilities: every part
of the code that is not indicated with an alarm is
free of such vulnerabilities. Frama-C also
allowed identifying some possible weaknesses
in the source code and suggesting measures to
mitigate them (see Appendix E).

PE9

PE19

PE20

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 11 of 73

Tool / Activity Partner Description

Process
Element

(PE)
mapping

OpenCert (OC) TEC

OpenCert has been used to manage the safety
and security assessment. It has been used to
store the evidences of the evaluation process,
such as the ATE and AVA documents, and to
generate the necessary argumentations to
justify the assessment by using the previous
stored evidences and explanations (see
Appendix H).

PE1

PE20

Table 1: Elements and tool involved in Vertical 1

The elements and tools involved in the Vertical 1 produce a set of evidences that have been used
for completing the “evaluability” task. These evidences have been organized as following:

 The OpenCert tool (Scenario 4) allows to manage the full life-cycle of evidences (part of the
ALC4 evidence)

 ASE Requirements are constituted by the Protection Profile developed in D5.2 Appendix [3]
and Protection Profile developed for the Assurance Continuity purposes (Appendix F5).

 ADV evidences are the design of Vertical 1 as described in D5.2 [2], D5.3 [4] and evidences
provided by Frama-C tool (Appendix E)

 ATE evidences have been obtained by the usage of the TEC Demonstrator, AutoFOCUS3
(both for Scenario 1) and Sabotage tool (Scenario 5)

 AVA evidences have been obtained by the activities performed with Verification Tooling,
including the SysML tool (Scenario 3)

 Assurance Continuity evidences have been obtained by using Vacsine tool (Scenario 2).

4 As described in section 3.3.5 Frama-C supports also the ALC
5 This Protection Profile has been developed in strict relationship to the Assurance Continuity activities.
Security Requirements stated in the document have been considered only insed the Impact Analysis Report.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 12 of 73

Figure 6: Evaluability evidences collection for Vertical 1

3.3 Evaluability results for Vertical 1

The following table lists the evidences produced by the tools involved in the context of Vertical 1.

Evidences Tool / Activity
Results/Considerations
paraghraph reference

ASE – Security
Requirement Definition

D5.2 Appendix B [3]

D.5.4 (this document) Appendix F5
3.4

ADV – Development
D5.2 [2], D5.3 [4]

Frama-C

3.4

3.3.5

Evidences Management
(ALC)

OpenCert 3.3.1 and 3.4

ATE - Test Report

TEC Demonstrator

Sabotage

Autofocus3

3.3.2

3.3.3

3.3.4 and 3.4

AVA – Vulnerability
Assessment Report

Verification Tooling (including
SysML usage)

3.3.6 and 3.4

Impact Analysis Report6 VaCSInE (including OpenSCAP) 3.3.7 and 3.4

Table 2: Evidences for the Vertical 1

6 In order to prepare an Impact Analysis Report, a new Protection Profile has been developed during the T5.4

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 13 of 73

The following sections provide a brief analysis of the report generated by the use of the tools.

3.3.1 OpenCert (OC)

OpenCert is a product and process assurance/certification management tool to support the
compliance assessment and certification of Cyber- Physical Systems (CPS). The tool has been used
in the T5.4, inside the context of Vertical 1, to manage the life-cycle of the evaluability evidences and
evidence chain.

As described in Appendix H, the tool allows the evaluator to explore the Security Evidences artefacts,
moreover the evaluator can go through a set of minor goals that allow to achieve the high-level goal.
In other terms the use of the OpenCert tool allows to track the requirements stated in the Protection
Profile up to the high-level goal of the certification.

3.3.2 TEC Demonstrator

TEC demonstrator has allowed to check the implementation status of a subset of Security Functional
Requirements (SFRs) defined in the Protection profile [3].

As described in Appendix A, tests have been described with sufficient level of detail allowing them
to be repeatable. Moreover, they have been fully traced providing a clear view of the
requirements/test coverage.

The information gathered from the evaluability activity is very important for the developer to
understand the gap that should be filled in order to perform a future security evaluation.

The activities, as per report in Appendix A, produced 17 tests against 16 SFRs. Results show that
all the tests can be considered as passed even if some of them have been passed with some
deviation. This deviation can be analysed for taking a decision in view of a future security certification.

The test cases have been performed against the Security Functional Requirements stated in the
Protection Profile. The PP has been produced in order to be applicable to a generic CACC. The
tailoring phase during an evaluation can be performed developing the Security Target applying the
Common Criteria operators (refinement, selection, assignment, iteration) to the SFRs.

In the specific case of the tested rovers, for example, there is no GPS on-board providing Geo-
Position even if it is an attribute listed in the requirements, and this implies a deviation from the
original requirement.

The evaluability activities therefore produced important information for the developer to prepare a
future certification by knowing the current limits of the tested product and having the possibility to
find multiple solutions in order to successfully achieve future certification.

3.3.3 AutoFocus3

As introduced in Table 1, the AutoFOCUS3 tool supports the design of the logical architecture as
described in the D5.4 [4] providing a support for the ADV (Development, including design).

Moreover, in the context of the evaluability activity the tool has been successfully used for performing
test activities related to the ATE class.

As described in Appendix B, AutoFOCUS3 has allowed to check the implementation status of a
subset of Security Functional Requirements (SFRs) defined in the protection profile.

Tests have been described with sufficient level of detail allowing them to be repeatable. They have
also been fully traced providing a clear coverage of the requirements/test coverage.

The activities, as per report in Appendix B, produced 18 tests against 16 SFRs. Results show that
all the tests can be considered as passed even if some of them have been passed with some
deviation.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 14 of 73

In this specific case, the tests have been performed in a simulated scenario where some information
was not available during the test. This has led to have some deviation on the information available
as output of the tests.

Also in this case, the evaluability activities therefore produced important information for the developer
to prepare a future certification by knowing the current limits of the tested product and having the
possibility to find multiple solutions in order to successfully achieve future certification.

3.3.4 Sabotage

The Sabotage tool has been used for testing a specific requirement stated in the Protection Profile
regarding the sensor plausibility check algorithm that aims to detect if the information received from
the preceding vehicle is reliable or, on the contrary, the vehicle may be under attack.

As described in Appendix C, the SFR related to the sensor plausibility check has been tested through
3 different test cases. The tests are cleary stated and described in a reproducible way.

The report shows that all the 3 test cases have been passed demonstrating the correct
implementation of the SFR.

In this case the evaluability activity allows to obtain an assurance that the abovementioned SFR has
been fully correctly implemented. A wider consideration can be made on the usage of specific tools
such as Sabotage, in the context of a certification. The tools, in fact, could be become the reference
tool for testing that SFR in the context of a certification against the CACC Protection Profile [3]. The
tool could be considered as supporting tool for the developer in order to verify the correct
implementation of the SFR and as supporting tool for the evaluator for verifying the implementation
of that requirement.

3.3.5 Frama-C

The Frama-C tool, as per Appendix E, provides a report concerning the development phase (ADV).

The analysis performed by the tool is able to exhaustively prove the absence of runtime errors. This
analysis, however, may produce some false alarms that need to be inspected by the user. While the
tool tries to provide as much automation as possible, two important tasks still require human
intervention: finding the actual root cause of an alarm and providing a patch for it.

Some alarms, even if they do not arise in a specific test case, are possible under different
circumstances, such as malicious or accidental changes. Adding extraneous checks, e.g. “is this
number always positive”, or “is this pointer definitely not null”, reinforces defense in layers, providing
a more convincing argument (both to evaluators and to analysis tools) about the lack of vulnerabilities
in the code.

In the CACC code generated by Fortiss, Frama-C reports 15 alarms for over 11k statements, which
is a very low number.

The report shows also the approach that allows easily removing 2 of them, and many of the
remaining ones are low-priority (e.g. integer overflows related to counters).

From an evaluability point of view this allows to understand the gap that needs to be filled in order
to improve the overall code.

Further development of the analysis, including better automation, guidance for root causes of alarms,
and tool integration (e.g. support for LSP protocol to obtain better information about variables inside
an IDE such as VS Code) will further help to automate test evaluation by supporting better the
developer in having more clear evidence for evaluability purpose.

In addition, the tool, as depicted in Figure 6, supports the ALC phase because it is a supporting tool
for developing, analysing and implementing the TOE (see also ALC_TAT described in [8]).

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 15 of 73

3.3.6 Verification Tooling (including SysML usage)

Vulnerability Assessment activities carried out in task 5.4 in Vertical 1 have been performed on
Tecnalia’s rovers by performing different type of attack (WiFi/Communication Channel, Ultrasound,
etc.). No hardware attacks have been considered.

The activity found 7 vulnerabilities: 1 critical, 5 high and 1 medium and propose possible “lite”
remediations for 3 of them.

The others could require a change in the architecture (HW/SW).

Even if during a formal Common Criteria evaluation, the AVA_VAN activies are carried out only by
the evaluator, it is useful, in the context of “evaluability”, for the developer to perform them in order
to diminish the risk of unsuccessful certification by addressing the discovered vulnerability in time.

The AVA_VAN activity allows to focus not only on the implementation of the Target Of Evaluation
but also to evaluate and check the operational environment around it.

This activity allows for a good understanding of the security problem and its resolution, and to
manage better the operational environment, e.g. by avoiding misconfiguration or reducing the attack
surface for a potential attacker.

3.3.7 VaCSInE

Assurance Continuity activities have been performed by means of the VaCSInE tool and other
supporting tools.

The scenario extends the Target Of Evaluation (TOE) described in Protection Profile for CACC [3]
by inserting a firewall as new element in the TOE. For this purpose a new Protection Profile for this
extended TOE has been produced (see Appendix F).

The activity assumes that the product under assessment has been already certified and some
changes occur (due to updates) to the firewall part of TOE.

This triggers the necessity to perform assurance continuity activities and generating an Impact
Analysis Report (see Appendix G) with the objective to analyse and explain to the evaluator the
changes occurred and how they have been categorized in major or minor impact. This is important
to understand if a maintenance of the certification is easy or if there is the need to execute a subset
of certification activities, or in the worst case, execute the entire certification from scratch.

By means of VaCSiNE and the DevSecOPs pipeline the developer can know more quickly the
changes occurring to the TOE in terms of the part of code that has changed and the related security
functional requirements impacted by these updates, and thus prepare the updates for the impacted
evidences.

Moreover by using threat modelling and risk analysis tools the developer is able to understand if any
implementation of the security functional requirements has been impacted or not, providing also a
justification, and establish if the impact can be categorised as minor or major.

The activites have produced a set of updated evidences that can be submitted to the evaluator in
order to ask the maintenance of the certificate.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 16 of 73

THIS PAGE IS LEFT INTENTIONALLY BLANK

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 17 of 73

3.3.8 Vertical 1 Traceability Matrix

The following Table 3 provides a traceability between the SFR stated in the Protection Profile [3] and the tools involved in the life-cycle phases (in
this case, the development phase of the requirement and test).

In particular, the matrix shows part of the evaluability chain: starting from the definition of a clear requirement (SFR), the tools that have supported
their design and implementation until the verification.

In particular, the ADV phase has been supported also by Frama-C tool. In fact, this tool is fundamental for performing a secure development phase,
but it is not focused only on the implementation of the SFRs. Frama-C, in fact, provides a check of the whole source code even if it is not part of the
TOE. For this reason, no specific requirement has been addresed through this tool.

The same reasoning can be made for the OpenCert tool that support the ALC phase and the life-cycle of the “evaluabilty” evidences itself. Also, in
this case the tool does not map any specific Security Functional Requirement (SFR) because it is mainly in charge to ensure the correct management
of the evidences (Security Assurance Requirement).

Regarding Vulnerability Assessment, as described before, the AVA activity does not focus on specific SFR and it is mainly related to evaluate the
security posture of the operational environment of the TOE and its supporting component.

Finally, the Assurance Continuity has not been tracked in this matrix. The activity has been focused on a specific Security Functional Requirement
stated in the Protection Profile in Appendix F in order to evaluate the possibility to generate in an automatic way evidences regarding the impact on
the certified product/system.

SFR Description ADV7 ATE

PMM_IF.1
Maintain heart-beat data (vehicle

identifier, speed, direction, geo-position,
timestamp) to VCS

AutoFOCUS3 / TEC
DemonstratorDemonstrator

AutoFOCUS3 /TEC Demonstrator

PMM_IF.2 Maintain heart-beat data from VCS AutoFOCUS3 / TEC Demonstrator AutoFOCUS3 /TEC Demonstrator

PMM_IF.3 Maintain incoming emergency brake AutoFOCUS3 / TEC Demonstrator AutoFOCUS3 /TEC Demonstrator

7 Evidence of design phase has been taken from the D5.3 document [4].

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 18 of 73

SFR Description ADV7 ATE

PMM_IF.4 Maintain outgoing emergency brake AutoFOCUS3 / TEC Demonstrator AutoFOCUS3 /TEC Demonstrator

PMM_IF.5 Maintain data from VCM AutoFOCUS3 / TEC Demonstrator AutoFOCUS3 /TEC Demonstrator

PMM_IF.6 Maintain data to VCM AutoFOCUS3 / TEC Demonstrator AutoFOCUS3 /TEC Demonstrator

PMM_PC.1 Data passes all VCS plausibility checks AutoFOCUS3 / TEC Demonstrator AutoFOCUS3 /TEC Demonstrator

PMM_PC.2
Data passes all VCM

plausilibity checks
AutoFOCUS3 AutoFOCUS3

PMM_PC.3 Inform on Failed Plausibility Checks TEC Demonstrator TEC Demonstrator

PMM_VCS-HPC.1 Maintain heart-beat data history AutoFOCUS3 (src D5.3) AutoFOCUS3 (src D5.3)

PMM_VCS-HPC.2
Heart-beat message consistent to the

history
AutoFOCUS3 (src D5.3) / TEC

Demonstrator
AutoFOCUS3 (src D5.3) / TEC

Demonstrator

PMM_VCS-HPC.3
Emergency brake consistent to the

history
AutoFOCUS3 AutoFOCUS3

PMM_VCS-SPC.1 Maintain distances history AutoFOCUS3 AutoFOCUS3

PMM_VCS-SPC.2
VCS message consistent to distances

history
AutoFOCUS3 AutoFOCUS3

PMM_VCS-SPC.3
Emergency brake consistent to distances

history
AutoFOCUS3 AutoFOCUS3

PMM_VCS-TPC.1 Consult the TOE vehicle internal clock -- --

PMM_VCS-TPC.2 Message freshness -- --

PMM_VCM-HPC.1 Maintain sensor data history AutoFOCUS3 AutoFOCUS3

PMM_VCM-HPC.2
Sensor message consistent to the

history
AutoFOCUS3 AutoFOCUS3 / Sabotage

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 19 of 73

SFR Description ADV7 ATE

PMM_VCM-TPC.1 Consult the TOE vehicle internal clock -- --

PMM_VCM-TPC.2 Message freshness -- --

FPT_ITA.1
Inter-TSF availability within a defined

availability metric
-- --

FPT_ITC.1
Inter-TSF confidentiality during

transmission
-- --

FPT_ITI.1.1 Inter-TSF detection of modification -- --

FPT_ITI.1.2 Inter-TSF verify integrity -- --

FPT_FLS.1 Failure with preservation of secure state -- --

FCO_NRO.1 Selective proof of origin -- --

FIA_UAU.2 User authentication before any action -- --

FIA_UAU.3 Unforgeable authentication -- --

FIA_UAU.6 Re-authenticating -- --

FIA_UID.1 Timing of identification -- --

FRU_FLT.1 Degraded fault tolerance -- --

FAU_GEN.1 Audit data generation -- --

FAU_GEN.2 User identity association -- --

Table 3: Traceability matrix for Vertical 1 (Scenario 1 and 5)

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 20 of 73

THIS PAGE IS LEFT BLANK INTENTIONALLY

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 21 of 73

3.4 Considerations

The activities carried out in Vertical 1 allowed to collect a fair number of evidences which almost
completely cover the entire life-cycle process of a product.

In particular, the collected evidences made it possible to conclude the "evaluability" task in a positive
way, allowing to verify that the selected requirements (see 3.3.8), as defined within the Protection
Profile, have actually been implemented in Vertical 1.

This assures that the life cycle, that goes from the definition of the requirements to their
implementation and verification (see the matrix in paragraph 3.3.8), was carried out efficiently using
the secure-by-design approach.

The activity carried out in the context of Vertical 1 was therefore able to confirm what it was
established in the approach defined in the previous paragraphs.

At the end of the task, the evaluator has a sufficient set of evidences (also in terms of their
completeness) which allow him to express regarding the evaluability.

The evaluability has not only the objective of verifying the presence of evidence and its completeness
in the perspective of a future certification, but also to identify improvements, indicating to the
developer the way to go to fill the gaps in order to carry out with success a possible future certification

For what concerns Vertical 1, the definition of the Security Functional Requirements was clearly
carried out within the Proteciton Profile. The design and development phase has been described
(although not in a formal way) within the deliverable D5.3 [4], allowing to have sufficient level of
functional specification.

The development phase (ADV) was also supported by the use of the Frama-C tool. The alarms
raised by the tool allow the developer to have clear indications on how to fill the highlighted gaps, in
order to assure an adequate level of security.

The presence of alarms does not compromise the success of an evaluability analysis.

In Common Criteria the life-cycle phase also includes the management of the evidence itself. The
OpenCert tool, through the Assurance Project Lifecycle Management and Evidence Management
functionality, has allowed the management of the evidence stored in SPARTA SVN.

The use of the AutoFocus3, TEC Demonstrator and Sabotage tools, allowed to generate evidences
relating to the Security Testing (ATE) phase by providing a reproducible set of exhaustive tests and
a demonstration of the coverage of the security requirements analysed.

It means that the traceability matrices confirm that each requirement has been tested by at least one
procedure and each procedure tests at least one requirement and that tests have been considered
exhaustive in testing the selected security requirement (e.g. there are a sufficient number of
parameters used for testing the requirement).

The evidences generated by these three tools allow in some cases to ensure (assurance) the
implementation of the security requirements defined in the Protection Profile, and in other cases to
highlight the gaps to be filled.

In fact, the presence of some remarks marked with the "passed with deviation" note, allow, in the
perspective of future certification, to be aware of which requirements, even correctly implemented,
contain fewer attributes than those required by the Protection Profile.

This knowledge allows the developer to have two choices in case of a future certification:

 Proceed, during the development of the Security Target, with a customization of the
Protection Profile requirements (using means provided by the Common Criteria such as
Refinement, Selection and Assignment) so as to adapt the product under certification, or

 Fill the gap related to the specific requirement by making necessary architectural /
implementation changes.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 22 of 73

Moreover, the Sabotage tool has been tested and validated for verifying the implementation of a
specific Security Functional Requirement (SFR). In the view of a future certification of a product
against the CACC Protection Profile [3], this tool could be used as “standard” tool for supporting the
developer in checking the correct implementation of the requirement and to the evaluator to carry
out the evaluation activities.

Vulnerability Assessment activities allowed to identify some general security improvements that can
be pursued in order to make the product “certifiable”.

The report attached in Appendix D details the vulnerabilities founded (explaining the execution of
the attack) and it propose remediation actions to be put in place in order to mitigate them.

It is important to note that the vulnerability assessment activities do not provide information directly
about the correct implementation of the security functional requirements functions (this verification
has been made through the ATE activities) but to check the robustness of the operating environment
where the TOE runs (e.g. supporting Operating Systems and other softwares). This allows to
improve the security of the component around the Target Of Evaluation in order to perform its
functionalities (Operational Environment).

A further general consideration can be made on the AVA activities. As anticipated in section 3.3.6,
during a formal Common Criteria evaluation the developer is not required to provide formal
evidences on AVA activities because they are fully carried out by the evaluator. However, by using
a shift-left approach in order to anticipate possible problems the developer could perform these
activities and, by using a reproducible report, perform periodically tests also for checking no-
regression in security functionality.

Furthermore, for the maintenance of security the activity has explored a flexible approach that in the
context of a DevSecOPs pipeline could be considered as “incremental” in order to integrate a
DevSecOPs pipeline with the Assurance Continuity activity. This integration makes it possible to
automate the collection of the evidences necessary to update the certification, and to quickly assess
the impact on the certified product.

Finally, as introduced in section 3.1, there were some considerations related to CACC platoon
operation that go beyond SPARTA’s T5.4 task, but are directly related with its ethical, legal and
social aspects (ELSA). The Security Problem defined for the CACC platooning model has a limited
range on variety of data input, which was employed in model of T5.4 (speed, direction and
positioning), did not provide a fertile ground for in-depth study on ethical, legal and social aspects of
CACC platooning. Nevertheless, even the limited range of parameters that were used in CACC
platooning allowed to identify the following ELSA aspects, that are important for further
considerations:

 Data which is shared/exchanged when there are changes in composition of CACC platoon
might have data protection implications under the GDPR8 and will depend on the following:

o The ‘business model’ of CACC platoons – how information is being transferred within
CACC platoon and between CACC platoons;

o How members of platoon identify each other, i.e. what information is processed and
stored in each CACC platoon unit?

o What information is shared/exchanged when platoon leader changes (how to
determine credentials/identity of new leader; what information is stored/processed
only by the leader;

8 Art. 4(1) of the Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection

of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing
Directive 95/46/EC prescribe that personal data is any information relating to an identified or identifiable natural person,
i.e. the one who can be identified, directly or indirectly, in particular by reference to an identifier such as a name, an
identification number, location data, an online identifier or to one or more factors specific to the physical, physiological,
genetic, mental, economic, cultural or social identity of that natural person. Moreover, Art. 5 of the Regulation indicate that
processing of persona data should satisfy the following requirements (principles): lawfulness, fairness and transparency;

purpose limitation; data minimisation; accuracy; storage limitation; integrity and confidentiality.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 23 of 73

o how the transfer/exchange of information between new leader and platoon is
conducted (direct vehicle-vehicle, cloud, internet)?

o How and what information is shared/exchanged when follower joins or leaves?
o With whom such information is exchanged/shared;
o What is the business model for management (collection, processing, storage) of such

information?

 Information gathered during actual operation of CACC platoon related to determination of
safe speed might have either liability or data protection considerations, in particular
depending on the following:

o What and from what direction do sensors of CACC platoon pick information – only
information that is ahead of them or also to the sides of the road?

o How do sensors identify the object that appears between CACC platoon and make
judgement on further actions (i.e. when decision is not made by the manually
operated leader)? In particular how does the car identify and differentiate leaf, bag or
other “safe” object from fatal one (e.g. pedestrian, stone etc.)) that might appear
between CACC platoon especially in urban environments with low speed?

o If such information is processed internally (within vehicle), who is liable for incorrect
assessment and accompanying damages under the applicable ‘business model’:
manufacturer, software developer?

 If information is processed in the cloud, what information is shared, processed, stored and
otherwise managed, who is liable for incorrect assessment and accompanying damages.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 24 of 73

Chapter 4 Vertical 2: Demonstration of a Complex System
Assessment Including Large Software and Open Source
Environments, Targeting e-Government Services

4.1 Description

The e-Government services vertical (Vertical 2), fully described in D5.2 [1], has the goal to improve
the cyber-security of the innovative authentication solutions based on the usage of the Italian national
electronic identity card (CIE). This vertical leverages the collaboration between Fondazione Bruno
Kessler (FBK, one of the institutions part of the SPARTA partner CINI) and Instituto Poligrafico e
Zecca dello Stato (IPZS), the Italian National Mint and Printing House, which handles the production
of the identity cards in Italy.

We identified two main scenarios: the CIE ID mobile app (CIE ID APP) and the SAML-based Identity
provider server (SAML IdP Server). The SAML IdP Server, based on Shibboleth, is responsible for
the authentication of the users willing to access the services offered by the Italian Public
Administrations. To authenticate the users, the SAML IdP Server interacts with the CIE ID APP. The
CIE ID APP is installed on the smartphone of the users, and leverages the CIE (through the NFC
interface) as an authentication tool.

The demonstration scenarios of the vertical 2 involve the development and testing environments
managed by FBK, where the preliminary versions of the CIE ID APP and SAML IdP Server were
developed and tested, before being migrated on the Italian Ministry of the Interior servers.

In the context of evaluability, Vertical 2 follows a different approach with regards to Vertical 1.

As mentioned above, during the Task 5.2 a Protection Profile has been defined in the context of
vertical 1; in Vertical 2 the activities of Task 5.4 start from the identification of a set of security
requirements. These requirements have been selected starting from international standards such as
OWASP Mobile Application Security [14], OWASP Top Ten [15] and MITRE ATT&CK tactics and
techniques [16].

Starting from these standards a set of Security Requirements has been tailored (the list of
requirements has been listed in section 4.3.4) in order to solve the Security Problem of Vertical 2

Also in this case, evaluability aims to test the security requirements in order to provide a set of
evidences useful for understanding the status of the product under assessment in the prespective of
a future certification.

4.2 Validation elements and tools for Vertical 2

The following Table 4 lists the set of tools/activities involved in the Vertical 2 use case.

The table shows also the mapping with the Process Element defined in SPARTA D11.2
“Cybersecurity compliant development processes” [5]. The process elements consist of a set of
activities related to the security-by-design process and their definitions aims to define a catalogue of
elements that should become the founding stone of a process-centric security certification scheme.

 PE1 Organizational Security Framework

 PE2 Product/Service Risk Assessment

 PE3 SDLC Instance Definition

 PE4 Security Planning

 PE5 Software Architecture

 PE6 Threat Modelling

 PE7 Security Functional Requirements Definition

 PE8 Secure Programming Guidelines

 PE9 Code-level Security Analysis

 PE10 Security Testing

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 25 of 73

 PE11 Security Assessment of 3rd Party / Open Source Software

 PE12 Assessment of the Operational Environment

 PE13 Development Environment

 PE14 Vulnerability Analysis

 PE15 Continuous Vulnerability Checks

 PE16 Patch / Update Processes

 PE17 Secure Configuration by Default

 PE18 Secure Deployment

 PE19 Formal Modelling and Analysis

 PE20 Tools and Automation

 PE21 User Guidance.

Tool / Activity Partner Description

Process
Element

(PE)
mapping

Approver (RAA) CINI

Approver supports the automatic evaluation of
security vulnerabilities in Android apps by
exploiting static and dynamic analysis
techniques.

The tool has been used for performing ATE
tests. The tool has verified a set of potential
Security Functional Requirements. The report
(see Appendix I) also shows the coverage matrix
for demonstrating the completeness of test
execution.

PE9

PE10

PE20

Logic Bomb
Detection
(TSOpen)

UniLu

TSOpen is a static analysis tool that is able to
detect logic bombs in Android applications.
Logic bombs are mechanisms used by malicious
apps to evade detection techniques. Typically,
an attacker uses a logic bomb to trigger the
malicious code only under certain chosen
circumstances (e.g., only at a given date) to
avoid being detected by the analysis.

The tool can be run by security analysts or
directly on the marketplace side. It can be run
over existing applications that could be removed
from the marketplace if a logic bomb happens to
be found.

In the context of Vertical 2, the tool has been
used for performing ATE tests (see Appendix I).
It demonstrated its ability to detect a time-related
logic bomb found in the app (when the logic
bomb has been artificially added).

PE9

PE10

PE20

SafeCommit UniLu

SafeCommit aims at automatically detecting
commits that introduce vulnerabilities in
Continuous Integration Ecosystem. SafeCommit
is built on top of AI techniques relying on
innovative features and advanced patch
representation learning.

PE9

PE10

PE15

PE20

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 26 of 73

Tool / Activity Partner Description

Process
Element

(PE)
mapping

SafeCommit has been integrated into the
repository of vertical 2 for verifying new commits
of source code for the SAML IdP Server
scenario (see Appendix K).

ProjectKB (KB) SAP

Supports the creation, management and
aggregation of a distributed, collaborative
knowledge base of vulnerabilities that affect
open-source sofòtware.

This repository contains both a tool and
vulnerability data.

Moreover, in the Vertical 2 evaluability context,
KB has been used for verifying a subset of
Security Requirements and producing the test
report ATE document ([reference to ATE
document]) also showing the coverage matrix for
demonstrating the completeness of test
execution

PE10

PE11

PE15

PE20

Steady (VA) SAP

Analyses Java and Python applications for
open-source dependencies with known
vulnerabilities, using both static analysis and
testing to determine code context and usage for
greater accuracy.

Moreover in the Vertical 2 evaluability context,
VA has been used for verifying a subset of
Security Requirements and producing the test
report ATE document ([reference to ATE
document]) also showing the coverage matrix for
demonstrating the completeness of test
execution

PE10

PE11

PE15

PE20

Visual investigation
of security

information (VI)
UKON

The Visual Investigation (VI) enables to audit
entire software development organizations. The
VulnEx (Vulnerability Explorer) demonstrator
allows investigating exposure to open-source
software vulnerabilities on an organization-wide
level. The demonstrator allows examining
problematic projects and applications
(repositories), third-party libraries, and
vulnerabilities across a software organization.

Moreover in the Vertical 2 evaluability context,
VI has been used for verifying a subset of
Security Requirements and producing the test
report ATE document ([reference to ATE
document]) also showing the coverage matrix for
demonstrating the completeness of test
execution

PE10

PE11

PE14

PE20

Table 4: Elements and tool involved in Vertical 2

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 27 of 73

Tools involved in Vertical 2 produced a set of evidences used for performing the “evaluability” task
for the Vertical 2.

In this second use case the evidences are the following:

 ASE requirements are the output of the first task performed during the T5.4. Starting from
standards (such as MITRE and OWASP) a set of security requirements has been tailored for
the vertical 2 (see section 4.3.4)

 ADV evidences have been provided by SafeCommit tool; this tool supports also the ALC
phase (in particular as supporting tool for developing, analysing and implementing the
product under evaluability task. See also Common Criteria ALC_TAT in [8]).

 ATE evidences have been obtained by running the following tools on the two scenarios of
Vertical 2: Approver, TSOpen, ProjectKB, Steady and VI.

Figure 7: Evaluability evidences collection for Vertical 2

The evaluability task for Vertical 2 has been focused more in detail to secure development and test
phase.

4.3 Evaluability results for Vertical 2

The following Table 5 lists the evidences produced by tools involved in the context of Vertical 2.

Evidences Tool Results / Consideration

ATE - Test

Approver

TSOpen

ProjectKB

Steady

VI

4.3.1 and 4.4

4.3.2 and 4.4

ADV – Development SafeCommit 4.3.3 and 4.4

Table 5: Evidences for the Vertical 2

In the following sections is presented a brief analysis of the report generated by using that tools.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 28 of 73

4.3.1 Approver and TSOpen

Approver and TSOpen have allowed to check the implementation status of a set of Security
Functional tailored starting from OWASP standard (see details in section 4.3.1).

Tests have been described with a sufficient level of detail in order to be repeatable.

Test summary coverage provides a demonstration that each test cover at least one requirement and
that each requirement has been verified at least by one test. The condition of “Necessary and
Sufficient” has been proved through the test coverage matrix that allow to demonstrate the
completeness of the test phase.

The activity, as per report in Appendix I, produced 37 tests in order to cover 37 Security
Requirements.

In this case some test results have been FAILED, however the developer provides a note with
mitigation instructions in order to make changes at the product under test and allowing the product
to pass the tests in a second iteration.

The report shows a “first” iteration of “evaluability”; the process should be repeated until the security
posture of the product under assessment reach an acceptable level.

The output of these tests should be presented to the developer in order to implement the corrective
countermeasures and the test should be repeated.

In particular in this case the target of vertical 2 is a SW product (for test scope) developed by an
“external” entity not part of the SPARTA program (Istituto Poligrafico Zecca dello Stato) and for this
reason only a single iteration has been performed.

This result, from an “evaluability” point of view, is very important because allows the developer to
know the improvement areas and the remediation to be implemented for addressing the failed tests.

Moreover the structure of the report allows the test to be repeatable and the developer can re-asses
the test in order to check if the suggested implementation meet the requirement.

This activity, in an iterative way, allow to meet well defined security requirements and ensure an
adequate security posture of the product under test.

4.3.2 Project KB / Steady / VI

This set of tools allowed to check the implementation status of Security Requirements tailored
starting from the MITRE ATT&CK (see 4.3.4).

Also in this case test coverage proofs the condition of “Necessary and Sufficient” for confirming that
all tests verify the implementation of at least one requirement and each requirement has been
checked by at least one test.

The activity, as per report Appendix J, produced 3 tests against 3 Security Requirements.

Also in this case some test results have been FAILED and a remediation has been suggested to the
developer in order to proceed to the mitigation phase for updating the product under test.

Also in this case the “evaluability” allows to anticipate possible non-compliance to the future
cybersecurity certification allowing the developer to address timely the changes before the end of
the project or the end of the certification.

Even if we discuss later this aspect, it is interesting to highlight that the selected requirements for
this phase are related to the vulnerability assessment phase.

This set of tool, in fact, provide results part of the ATE family but on the other hand starts to assess
the security posture of the product under testing from a vulnerability point of view.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 29 of 73

These requirements could be translated, in case of future certification, in Security Functional
Requirement9 in the Security Target document by using the Extended Component SFR as per
Common Criteria part 1 [7] and 3 [9]. On the other hand they could be translated in Security
Assurance Requirement (SAR)10 [9] and define specific activities related to the cybersecurity
evaluation of the product (or this family of product).

4.3.3 SafeCommit

The SafeCommit tool has the task of detecting if new commits introduce vulnerabilities

This tool has also been integrated into the DevSecOPs pipeline for Vertical 2 (see Appendix K).

The tool has not found vulnerable commit performed in the repository, and for this reason the
appendix shows how the tool could detect them during further development of the product by
committing a safe code and a potential vulnerable code.

SafeCommit product shows its potential in supporting the secure development phase of the Vertical
2 product. SafeCommit concurs to support the developer to understand timely potential vulnerability
introduced in the development phase and during the maintenance phase (in the context of Vertical
2 this phase has not been analysed but for further works could be an interesting area of analysis and
improvement).

4.3.4 Vertical 2 Traceability Matrix

The following Table 6 summarizes the set of security requirements taken in consideration for
performing the activities of Task 5.4 for the vertical 2 (Mobile Scenario).

The table has been organized as following:

 ID column: contains the unique ID for the requirement

 Detailed Verification Requirement: contains the descripton of requirement

 ATE column: provide a mapping between the requirement and the tool that has been used
for providing evidences about its implementation

ID Detailed Verification Requirement ATE

MSTG-STORAGE-2
No sensitive data should be stored outside of the CieID-
App container or system credential storage facilities. Approver

MSTG-STORAGE-3 No sensitive data is written to CieID-App logs. Approver

MSTG-STORAGE-4
No sensitive data is shared with third parties unless it is a
necessary part of the architecture. Approver

MSTG-STORAGE-8
No sensitive data is included in backups generated by the
mobile operating system. Approver

MSTG-STORAGE-9
The CieID-App removes sensitive data from views when
moved to the background. Approver

MSTG-CRYPTO-1
The CieID-App does not rely on symmetric cryptography
with hardcoded keys as a sole method of encryption. Approver

MSTG-CRYPTO-2
The CieID-App uses proven implementations of
cryptographic primitives. Approver

9 Security Functional Requirements (SFR) are a translation of security requirements in the standardised
(Common Criteria) language (see CC part 2 [8])
10 Security Assurance Requirements describe how the Target Of Evaluation is to be evaluated. In oderr words
they describe “of how assurance is to be gained that the TOE meets the SFRs” [7].

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 30 of 73

ID Detailed Verification Requirement ATE

MSTG-CRYPTO-3
The CieID-App uses cryptographic primitives that are
appropriate for the particular use-case, configured with
parameters that adhere to industry best practices.

Approver

MSTG-CRYPTO-4

Taking into account the constraints posed by the
cryptographic algorithms supported by the card (CIE), the
CieID-App does not use cryptographic protocols or
algorithms that are widely considered deprecated for
security purposes.

Approver

MSTG-CRYPTO-6
All random values used in the CieID-App are generated
using a sufficiently secure random number generator. Approver

MSTG-NETWORK-1
Data is encrypted on the network using TLS. The secure
channel is used consistently throughout the CieID-App. Approver

MSTG-NETWORK-2

The TLS settings are in line with current best practices, or
as close as possible if the mobile operating system does
not support the recommended standards.

Approver

MSTG-NETWORK-3
The CieID-App verifies the X.509 certificate of the CieID-
Server when the secure channel is established. Only
certificates signed by a trusted CA are accepted.

Approver

MSTG-NETWORK-4

The CieID-App pins the CieID-Server certificate or public
key, and subsequently does not establish connections with
endpoints that offer a different certificate or key, even if
signed by a trusted CA.

Approver

MSTG-NETWORK-6
The CieID-App only depends on up-to-date connectivity
and security libraries. Approver

MSTG-PLATFORM-1
The CieID-App only requests the minimum set of
permissions necessary. Approver

MSTG-PLATFORM-4
The CieID-App does not export sensitive functionality
through IPC facilities, unless these mechanisms are
properly protected.

Approver

MSTG-PLATFORM-5
JavaScript is disabled in WebViews unless explicitly
required.

Approver

MSTG-PLATFORM-6

WebViews are configured to allow only the minimum set of
protocol handlers required (ideally, only https is
supported). Potentially dangerous handlers, such as file,
tel and app-id, are disabled.

Approver

MSTG-PLATFORM-10
A WebView's cache, storage, and loaded resources
(JavaScript, etc.) should be cleared before the WebView is
destroyed.

Approver

MSTG-CODE-1
The CieID-App is signed and provisioned with a valid
certificate, of which the private key is properly protected. Approver

MSTG-CODE-2
The CieID-App has been built in release mode, with
settings appropriate for a release build (e.g. non-
debuggable).

Approver

MSTG-CODE-3
Debugging symbols have been removed from native
binaries.

Approver

MSTG-CODE-4

Debugging code and developer assistance code (e.g. test
code, backdoors, hidden settings) have been removed.
The CieID-App does not log verbose errors or debugging
messages.

Approver

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 31 of 73

ID Detailed Verification Requirement ATE

MSTG-RESILIENCE-1

The CieID-App detects, and responds to, the presence of a
rooted or jailbroken device either by alerting the user or
terminating the app.

Approver

MSTG-RESILIENCE-9
Obfuscation is applied to programmatic defenses, which in
turn impede de-obfuscation via dynamic analysis. Approver

TSOpen-1 The CieID-App's specific values are symbolically executed TSOpen

TSOpen-2 The CieID-App's suspicious checks are identified TSOpen

TSOpen-3
Suspicious checks' behavior is scanned to check for
malicious behavior TSOpen

TSOpen-4 Based on control dependency, logic bombs are identified TSOpen

TSOpen-5

Apps are checked against existing logic bombs that trigger
malicious code under specific circumstances, bypassing
detection techniques.

TSOpen

Table 6: Traceability matrix for Vertical 2 Mobile Scenario

The following Table 7 summarizes the set of security requirements taken in consideration for
performing the activities of Task 5.4 for the vertical 2 (Mobile Scenario).

The table has been organized as following:

 ID column: contains the unique ID for the requirement

 Detailed Verification Requirement: contains the descripton of requirement

 ATE column: provide a mapping between the requirement and the tool that has been used
for providing evidences about its implementation

ID Detailed Verification Requirement ATE

T1195.001-S1

The SAML IdP Server must not depend on components with
known vulnerabilities.

Steady/VI

T1195.001-S2

The SAML IdP Server must not depend on components that
are unmaintained or do not produce security patches
anymore.

Steady/VI

T1195.001-S3 The SAML IdP Server must not include un-used components. Steady/VI

Table 7: Traceability matrix for Vertical 2 SAML IdP Scenario

Security Requirments stated in both Table 6 and Table 7 could be “translated” in Security Functional
Requirement as per Common Criteria during a future cybersecurity evaluation activity and tested as
shown in the reports of Appendix I and Appendix J.

It is important to highlight that the implementation of these requirements could imply also the creation
of of development (ADV) evidences, because some of this tools work for verifying source code
implementation (in particular for what concerning security requirements stated in Table 6).

Concerning Table 7 these requirements could support the creation of security evidences related to
Vulnerability Assessment activities (AVA) by checking vulnerabilities and component obsolescence.
In particular this second set of requirement could be translate in Security Assurance Requirement

https://attack.mitre.org/versions/v8/techniques/T1195/001/
https://attack.mitre.org/versions/v8/techniques/T1195/001/
https://attack.mitre.org/versions/v8/techniques/T1195/001/

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 32 of 73

allowing to perform specific assurance activities during the future evaluation (e.g. about the
management of software components obsolescence).

4.4 Considerations

As introduced in D5.3 [4] and mentioned in section 4.1, the approach of CAPE tool testing in Vertical
2 is different with respect to the Vertical 1.

In Vertical 2, in fact, Common Criteria Protection Profile tailored for this use case has not been
developed.

However, as introduced before, the Security Problem defined and solved with a Protection Profile
(and after with a Security Target for the specific TOE) is a formalization in a standardized language
of a security problem.

The security problem, in the first instance, can be developed in “natural language” then translated in
Common Criteria “language” starting from the Security Requirements (as per Table 6 and Table 7)
and translating them by using the Common Criteria catalogue (CC part 2 [8] and part 3 [9]) or the
Extended Component Definition (CC part 1 [7] and part 3 [9]).

Even if the Security Requirements have not been stated with the formalism required by the Common
Criteria, the evaluability activities allow to verify the completeness of requirement traceability against
their implementation through the testing phase.

In Vertical 2 starting for requirements tailored from standard such as OWASP ([14] and [15]) and
MITRE ATT&CK ([16]) it is possible to evaluate the overall security posture of the product under test.

In particular, tools have produced results useful for the “evaluability” of the product under
assessment by founding different improvement areas and providing information for filling the gap
and improving the robustness of the future TOE.

In particular, the Vertical 2 use case highlights a potential improvement in view of a security
certification.

In Vertical 2 the tools have been integrated in a DevSecOPs pipeline. This could allow to stress the
concept of security-by-design and the related creation of evidence during the whole life-cycle of the
product that should be vertified.

The tools, in fact, provide a set of evidences useful for the evaluability purpose. This allows to
understand that possible future works could led to an evolution where the tools in the DevSecOPs
pipeline could support, in a more automated way, the creation of formal evidences for an evaluation
against a defined certification scheme.

In view of evaluability task, the tools of Vertical 2 have been used focusing to the verification of the
implementation of security requirements by providing results in Security Test category (ATE).

However the tools demonstrate to be useful for supporting the production of evidences concercing
the development phase (ADV in particular for the development of secure code) and the vulnerability
assessment activities.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 33 of 73

Chapter 5 Summary and Conclusions

This deliverable collects the output of activities performed during the execution of Task 5.4 by
applying the “evaluability” concept on the use cases of Vertical 1 and Vertical 2.

The evaluability process, applied to the use case of the two verticals, allows to test the CAPE tools
involved in both Verticals by verifying the evidences produced for a future certification involving the
use cases.

In addition, a set of validation tests on the tools outside the scope of the two verticals (standalone
tools) has been performed, providing evidences about the results reached by these tools (collected
in Appendix L).

In summary, the evaluation activities involved 13 tools that performed 78 security tests in order to
check 73 security requirements (other than security test, the tools provide Life-Cycle management
support, security development support ADV and Vulnerability Assessment activities support). And
additional tests have been performed for 5 tools outside the vertical context.

In both Vertical 1 and Vertical 2, the tools have reached the objectives. As introduced in the previous
sections, the evaluability task is not a formal certification of the Verticals and aims to check the
completeness and the quality of the security evidences produced, by the CAPE tools, for a future
security certification.

Evaluability has also the objective to understand any gap to be filled before starting a formal
evaluation. In particular, the tools producing evidences for “evaluability”, since the early stages of
the life-cycle allow to have the advantages of a shift-left approach. Any issues related to the future
security certification could be addressed timely, instead of discovering it during the certification
phase (where typically the product is finished and modifications could have an important impact on
costs and time-to-market).

Even if the entire life-cycle has been managed during the execution of the task, the activities focused
particularly on the output provided by the CAPE tools for the ATE Phase. This phase is the most
critical phase in an evaluation because ensures that the Security Problem11 countered by the Target
Of Evaluation has been correctly solved. In other terms, the testing phase and the demonstration of
the coverage of all security requirements allow the evaluator to have a confidence that the
requirements have been correctly implemented.

The CAPE tools have provided complete evidences in order to complete the ATE phase of
evaluability task of both two verticals.

It is important to highlight that the security requirements of Vertical 1 have been defined by
performing a risk analysis, and the validation of them through the test performed by using the CAPE
tools is a proof of the correct resolution of the Security Problem (see chapter 3 “Security Problem
Definition” in Appendix B of D5.2 [3]). Security Requirements of Vertical 2 have been derived from
standard/best-practices for solving the general Security Problem of a mobile app scenario and server
scenario.

Also, another analysis has been performed during the task in order to map the CAPE tools involved
in the two verticals with the Process Element defined in D11.2 [5]. This mapping allows to perform
the following consideration: tools created for specific purpose (such as modelling and design, see
e.g. Sabotage, TEC Demonstrator, AutoFOCUS3, etc.) can provide Security Test evidences for a
future cybersecurity certification scheme.

PE10 “Security Testing” in particular, is described as following: “Perform security testing against the
product/service. This includes traditional functional testing for the implementations of the
security functional requirements as well as the application of dedicated dynamic security analysis

11 That is how the threats are countered by the product/system under evaluation

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 34 of 73

and test methods and tools for the full code base in order to find known vulnerabilities. A test
coverage analysis should be included in the element.”

All the tools providing ATE evidences, provide a demonstration of security functional requirements,
providing testing and coverage analysis.

An evolution of such tools could allow to make more “automatic” the generation of security test
against functional security requirements, allowing the developer to collect certification evidences
quickly during the whole life-cycle of the product under certification.

Concerning specific results for Vertical 1, the activities performed in this use case allow to make
some considerations about two main themes. The first one is related to Skill and Tools adopted by
the Cybersecurity Evaluation Facility during the certification, and the second one is related to the
maintenance of security certification.

About the first topic, the following considerations apply: Protection Profiles typically are accompanied
by supporting documents that describe the actions to be performed by the evaluator when checking
that specific requirements have been met and defining more in detail the security assurance
requirement (this is done in addition to what is defined in the Common Criteria Evaluation
Methodology [10]). The supporting documents assist the Cybersecurity Evaluation Facilities
(CSEFs) in understanding the skills and tools required for the evaluator to perform the specific
evaluation. Starting from a consideration stated in D11.3 about the CSEFs “Skills and tools,
moreover, could benefit also by involving in certification process R&D and Research Institutes in a
more structured way, in order to take advantage from competences of Subject Matter Experts and
by using, for example, complementary software tools for performing security tests, vulnerability
assessment and penetration test activities”, the Sabotage tool, in the context of the Vertical 1, is a
candidate for performing specific tests against specific security requirements.

In this case a potential supporting document, developed as annex to the CACC Protection Profile
[3], could suggest to the evaluator the usage of such tools for verifying the specific requirement.

Sabotage, for example, addresses exactly what is specified in the previous statement. In the same
view the OpenCert tool could be used, in general, for supporting both developer and evaluator to
maintain a clear view about the traceability between security functional requirements, their
implementation and their tests (see Figure 19 Appendix H).

The second main topic is related to the certification maintenance (automation in production of an
Impact Analysis Report, in this case produced by the usage of the VaCSIne tool). This activity
generates potential added value:

 From a developer’s point of view, it allows the developer to make a better trade-off analysis
in defining where to make changes by having a DevSecOPs pipeline as support in
understanding the changes that occur to the evaluated product. In other words, the developer
could be aware if a change that he makes has a major impact on certification and requires to
perform a new certification (impact on time and costs, or minor impact that implies a
certification maintenance with a subset of activities)

 From an evaluator’s point of view, having a standardized impact analysis report defined and
implemented by apriori defined DevSecOPs pipeline, allows to perform checks quickly (in
particular for minor changes) making faster the process of certificate maintenance.

In a longer term vision, as stated in [22], making faster and cheaper the maintenance of a security
certification could lead to benefits in having a growing number of updated certified product improving
the global security posture.

Considerations for results coming from Vertical 2 are similar to the points described above. The
results obtained in this second Vertical highlight that possible improvement and future evolution of
the tools could allow to define and integrate a complete DevSecOPs pipeline that supports the
developer in providing cybersecurity certification evidences timely. This could allow the developer to
address timely potential no-compliance or to fill the gap to meet specific security requirements.
Possible evolution could allow to provide evidences in a more automated way.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 35 of 73

Is important to note that from an evaluability point of view it’s not necessary to provide evidences in
a standardized language, but it is important to ensure, during the whole life-cycle, that the security
requirements have been correctly defined, implemented and tested by proving the complete
coverage between tests and security requirements. This provides the developer a sufficient level of
assurance that the Security Problem has been solved.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 36 of 73

Chapter 6 List of Abbreviations

Abbreviation Translation

AGD Guidance documents Assurance Class

ADV Development Assurance Class

AF3 AutoFOCUS3

APP Application

ASE Security Target Evaluation Class

ATE Tests Assurance Class

AVA Vulnerability Assessment Assurance Class

BSI Bundesamt für Sicherheit in der Informationstechnik

CACC Cooperative Adaptive Cruise Control

CAN Controller Area Network

CAPE Continuous assessment in polymorphous environments

CC Common Criteria

CCCC Connected and Cooperative Car Cybersecurity

CCRA Common Criteria Recognition Arrangement

CD Continuous Development

CEM Common Criteria Evaluation Methodology

CI Continuous Integration

CIE Carta d'Identità Elettronica

CPS Cyber – Physical Systems

CSEF Cybersecurity Evaluation Facility

CWE Common Weakness Enumeration

DevSecOps Development Security Operations

ELSA Ethical Legal and Social Aspects

EUCC
Common Criteria based European candidate cybersecurity certification
scheme

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 37 of 73

Abbreviation Translation

Euro NCAP European New Car Assessment Programme

FBK Fondazione Bruno Kessler

FC Frama-C

GDPR General Data Protection Regulation

GSN Goal Structuring Notation

GUI Graphical User Interface

HW/SW Hardware/Software

IDE Integrated Development Environment

ISO International Organization for Standardization

JSON JavaScript Object Notation

JSON JavaScript Object Notation

LSP Language Server Protocol

LSP Language Server Protocol

MITRE ATT&CK MITRE Adversarial Tactics, Techniques, and Common Knowledge

MSTG Mobile Security Testing Guide

OC OpenCert

OSS Open Source Software

OWASP Open Web Application Security Project

PP Protection Profile

SAE Society of Automobile Engineers

SafSecPMM Safety and Security Platooning Management Module

SAML IdP Security Assertion Markup Language Identity Provider

SAR Security Assurance Requirement

SARIF Static Analysis Results Interchange Format

SB Sabotage

SFR Security Functional Requirement

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 38 of 73

Abbreviation Translation

SOG-IS MRA
Senior Officials Group Information Systems Security Mutual
Recognition Agreement

SVN Subversion

SysML Systems Modeling Language

TARA Threat Analysis and Risk

TOE Target of Evaluation

VA Vulnerability Assessment

VCS VaCSInE

VI Visual Investigation

VS Code Visual Studio Code

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 39 of 73

Chapter 7 Bibliography

[1] SPARTA CAPE D5.1 “Asessment specifications and roadmap”, 31st January 2020
https://www.sparta.eu/assets/deliverables/SPARTA-D5.1-Assessment-specifications-and-
roadmap-PU-M12.pdf

[2] SPARTA CAPE D5.2 “Demonstrators specifications”. January 2021.

[3] SPARTA CAPE D5.2 “Appendix B Protection Profile for a Safety and Security Platooning
Management Module”, January 2021

[4] SPARTA CAPE D5.3 “Demonstrator prototypes”. January 2021.

[5] SPARTA D11.2 “Cybersecurity compliant development processes”. 31st July 2020
https://www.sparta.eu/assets/deliverables/SPARTA-D11.2-Cybersecurity-compliant-
development-processes-PU-M18.pdf

[6] SPARTA D11.3 “Cybersecurity evaluation facilities”. August 2021.

[7] Common Criteria for Information Technology Security Evaluation, Version 3.1, revision 5,
April 2017. Part 1: Introduction and general model. CCMB-2017-04-001

[8] Common Criteria for Information Technology Security Evaluation, Version 3.1, revision 5,
April 2017. Part 2: Functional security components. CCMB-2017-04-002

[9] Common Criteria for Information Technology Security Evaluation, Version 3.1, revision 5,
April 2017. Part 3: Assurance security components. CCMB-2017-04-003

[10] Common Criteria for Information Technology Security Evaluation, Version 3.1, revision 5,
April 2017: Evaluation methodology. CCMB-2017-04-004

[11] Bundesamt für Sicherheit in der Informationstechnik (BSI) Guidelines for Developer
Documentation according to Common Criteria Version 3.1 Version 1.0

[12] Common Criteria Assurance Continuity: CCRA Requirements version 2.1 June 2012

[13] EUCC, a candidate cybersecurity certification scheme to serve as a successor to the existing
SOG-IS, V1.0 | 01/07/2020

[14] OWASP Application Security Verification Standard https://owasp.org/www-project-
application-security-verification-standard/

[15] OWASP Top Ten https://owasp.org/www-project-top-ten/

[16] MITRE ATT&CK tactics and techniques https://attack.mitre.org/versions/v8/

[17] SARIF Home: links to specification, tools, libraries and viewers related to the Static Analysis
Results Interchange Format. Microsoft. https://sarifweb.azurewebsites.net

[18] SARIF v2.1.0 specification, an OASIS standard. https://docs.oasis-
open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html

[19] Introducing JSON: brief overview of the JSON format, with railroad diagrams.
https://www.json.org

[20] Frama-C User Manual: presents the Frama-C platform, including a chapter on its Graphical
User Interface. https://frama-c.com/download/frama-c-user-manual.pdf

[21] SARIF Viewer: extension, developed by Microsoft, for Visual Studio Code, to visualize SARIF
files. https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer

[22] S. Dupont, G. Ginis, M. Malacario, C. Porretti, N. Maunero, C. Ponsard and P. Massonet
"Incremental Common Criteria Certification Processes using DevSecOps Practices," 2021
IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), 2021, pp. 12-
23, doi: 10.1109/EuroSPW54576.2021.00009.

https://www.sparta.eu/assets/deliverables/SPARTA-D5.1-Assessment-specifications-and-roadmap-PU-M12.pdf
https://www.sparta.eu/assets/deliverables/SPARTA-D5.1-Assessment-specifications-and-roadmap-PU-M12.pdf
https://www.sparta.eu/assets/deliverables/SPARTA-D11.2-Cybersecurity-compliant-development-processes-PU-M18.pdf
https://www.sparta.eu/assets/deliverables/SPARTA-D11.2-Cybersecurity-compliant-development-processes-PU-M18.pdf
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-top-ten/
https://attack.mitre.org/versions/v8/
https://sarifweb.azurewebsites.net/
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://www.json.org/
https://frama-c.com/download/frama-c-user-manual.pdf
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 40 of 73

[23] ISO26262. Iso 26262-1:2018 - funtional safety road vehicles. URL
https://www.iso.org/standard/68383.html

[24] SAEJ3061. Sae j3061 - cybersecurity guidebook for cyber-physical vehicle systems. URL
https://www.sae.org/standards/content/j3061_201601/

[25] GSN Community Standard Version 1. 2011. Available at
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf

https://www.iso.org/standard/68383.html
https://www.sae.org/standards/content/j3061_201601/
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 41 of 73

Appendix A
ATE Tests – Vertical 1 Scenario 1 (TEC Demonstrator)

Tests results obtained by the usage of the TEC Demonstrator tool for verifying the correct
implementation of Security Functionalities of Vertical 1 Scenario 1 are described in detail in
SPARTA-D5.4-M36_AppendixA.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 42 of 73

Appendix B
ATE Tests – Vertical 1 Scenario 1 (AutoFOCUS3)

Tests results obtained by the usage of the AutoFOCUS3 tool for verifying the correct implementation
of Security Functionalities of Vertical 1 Scenario 1 are described in detail in SPARTA-D5.4-
M36_AppendixB.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 43 of 73

Appendix C
ATE Tests – Vertical 1 Scenario 5 (Sabotage tool)

Tests results obtained by the usage of the Sabotage tool for verifying the correct implementation of
Security Functionalities of Vertical 1 Scenario 5 are described in detail in SPARTA-D5.4-
M36_AppendixC.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 44 of 73

Appendix D
AVA Vulnerability Assessment – Vertical 1 Scenario 3

(Verification Tooling)

Vulnerability Assessment results on TECNALIA Rovers (Vertical 1 Scenario 3) are described in detail
in SPARTA-D5.4-M36_AppendixD.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 45 of 73

Appendix E
ADV Development – Vertical 1 (Frama-C)

Presentation of the repository under test

The code under test comes from Fortiss’ Cooperative Adaptive Cruise Control (CACC) code. The C
code is generated by AutoFocus from a model, for running on a rover using a Raspberry Pi-based
board. The code includes:

 150 C source files, along with 150 C headers;

 Several sources correspond to hardware devices, such as accelerometers, back lights, and
other inputs;

 Other sources correspond to “higher-level” functions related to cruise control, such as “lane
keeping”, “acceleration/deceleration”, “target velocity”, etc.

 The code also includes some extra components, but without drivers nor source code, other than
function signatures in header files: a camera server and a rumblepad.

 The code contains about 11k statements, with 2k decision points (very few loops; mostly if
statements), 1.6k global variables, and 1.1k functions.

Overall, the code structure is relatively simple, with a main function performing general initialization
of several components, then a main loop periodically calling a worker function, which realizes the
behavior: reading sensors, computing new states of the automaton, and emitting control signals.

The code being generated from a model which incorporates security protections, it is supposed
isolated from external tampering and correct by construction, i.e., no undefined behaviors should be
produced by the code generator.

For the above reasons, the code does not incorporate redundant defensive programming measures.
Still, in order to help static analysis, and to provide an extra layer of defense, such measures can be
adopted.
Besides the existing CACC code, the following files were added to the analysis:

 Several Linux headers (for components such as the CAN network layer);

 Dozens of short specifications for function prototypes without code; these are needed by Frama-
C when the source is not available, or only available in assembly format.

Running the tool on the selected part of the code

We ran the exhaustive runtime error analysis performed by the Eva plug-in of the Frama-C platform.
The source files are parsed, then the program flow is statically evaluated, starting at the main
function, and following all possible execution paths. If, at any moment, Frama-C/Eva is not certain
that a runtime error is impossible, it emits an alarm, and continues the analysis. Alarms are either
true or unknown: true means there is definitely an error in the code (which may or may not trigger
an actual runtime exception), while unknown means that there may be an error.

Thus, the absence of alarms guarantees the code is safe, but their presence does not mean it is
unsafe.

The analysis has been prepared using Frama-C scripts, which populate a template with some
interactive prompts.

They produce a Makefile which contains:

 the list of sources to be parsed;

 a set of default command-line options;

 placeholders for adding or changing command-line options;

 a set of targets for the most useful operations: parse, eva, sarif.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 46 of 73

Running ‘make parse’ will parse the sources; ‘make eva’ will run the analysis; and ‘make sarif’ will
produce a SARIF report, a file in a standardized JSON format which can be opened by different
tools, such as VS Code.

Showing results

The standard output format for Frama-C is a detailed textual log, which includes alarms, warnings,
and several sorts of feedback. It also outputs a summary of the analysis:

 --

 791 functions analyzed (out of 1051): 75% coverage.

 In these functions, 10746 statements reached (out of 11224): 95% coverage.

 --

 Some errors and warnings have been raised during the analysis:

 by the Eva analyzer: 0 errors 3 warnings

 by the Frama-C kernel: 0 errors 1 warning

 --

 15 alarms generated by the analysis:

 2 accesses out of bounds index

 10 integer overflows

 1 nan or infinite floating-point value

 2 illegal conversions from floating-point to integer

 --

 Evaluation of the logical properties reached by the analysis:

 Assertions 0 valid 0 unknown 0 invalid 0 total

 Preconditions 75 valid 8 unknown 0 invalid 83 total

 90% of the logical properties reached have been proven.

 --

The most important data are the warnings and alarms. As mentioned before, such warnings and
alarms indicate potential issues in the code, which arise due to the inherent imprecision of the
analysis12.

Frama-C also provides a graphical user interface, where alarms can be inspected for further details,
including complete information about variables related to the alarms, as illustrated in the screenshot
below.

Figure 8: Frama-C GUI screenshot showing an alarm ('position' must be positive), with the original source
on the top right corner, the normalized Frama-C code on the top left, and the current callstack and possible

values for the selected expression, 'position', in the bottom of the image).

For better integration with external tools (including CI/CD pipeline outputs), Frama-C implemented,
during the SPARTA project, an output based on the SARIF13. When viewed on an IDE such as VS

12Static analyses cannot be both complete (exhaustive) and precise (exact) for all programs; Frama-C opts for
completeness at the cost of some loss of precision (false alarms).
13 Static Analysis Results Interchange Format; see References at the end of this document for more details.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 47 of 73

Code, which includes a free SARIF Viewer extension, we obtain results such as the one displayed
in the screenshot below.

Figure 9: VS Code with SARIF Viewer extension, showing the same alarm as displayed in Figure 1, but with
information provided by the SARIF report.

In the top right corner, we have the SARIF Viewer extension panel, which includes a table with the
alarms, their location, and their kind (signed_overflow, bool_value, etc). The bottom right corner
displays the full details of the alarm, including the assertion generated by Frama-C. The left half of
the screen displays the original source code, with warning squiggles for the lines mentioned in the
report. Note that, unlike the Frama-C GUI, VS Code does not display the variable values for each
expression at each program point, so we cannot know, for instance, which values caused the
index_bound alarm.

Note that an equivalent output can also be obtained via other interfaces; e.g. Github supports SARIF
integration with code scanning14.

Finding the root cause of an alarm

As illustrated in the above figures, Frama-C/Eva can report all occurrences of possible runtime errors
in the code, but to identify their origin and fix them, some manual work and expertise remains
necessary.

Using the Frama-C GUI, a few clicks allow us to inspect the variables, navigate to the caller, quickly
grasp the code pattern, and identify a possible fix.

Here’s the initial point, at one of the alarms identified in the code:

14https://docs.github.com/en/code-security/code-scanning/integrating-with-code-scanning/sarif-support-for-
code-scanning

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 48 of 73

Figure 10: Alarm identified by Frama-C/Eva: possible index out of bounds, due to values -2 and 0 in position.

The variable position is a parameter coming from the caller. The Frama-C GUI allows quickly
navigating to the caller:

Figure 11: Frama-C GUI provides navigation via contextual menus.

In the caller, we inspect the expression, which is used as parameter, and via its occurrences we
identify where it comes from, a few lines above.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 49 of 73

Figure 12: Identifying the link between the position parameter in get_vehicle_broadcast and the return value
of get_position, which is temporary variable tmp_68.

Note that the normalized code used by Frama-C expands some expressions, adding temporary
variables such as tmp_67 and tmp_68. These variables can be inspected and their values provide
useful information about where lies the problem.

In this example, the “spurious” values -1 and 1 come from get_position. Again, using the GUI we
navigate to the function, and see its code.

Figure 13: Code of get_position: it returns a value between 1 and 5 when the participant with specified id is
found, or -1 otherwise.

Now, we turn our attention to the list of participants, which is shown as [--..--] in the Frama-C GUI.
This value, an unbounded interval, means “any value”. Such values often arrive due to loss of
precision, but that is not necessarily bad for the analysis: here, it means the function is assuming it
must handle all arrays of 5 integers, that is, with any IDs for any of the participants.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 50 of 73

While this is overly general, one could imagine a scenario where an attacker might want to disrupt
the vehicle platoon by arbitrarily modifying the IDs of the participants. In this specific case, such
situation should never happen: the upper layers developed by Fortiss already provide defenses
against this; however, from the point of view of the code, it could be interesting to add supplementary
protection against such cases; even hardware defects could lead to such cases (although, to be fair,
there are many other parts of the code where such protection would be needed, if we assume this
kind of errors is possible).

In any case, adding defensive programming to this part of the code might, if nothing else, help placate
static analysis tools (and, possibly, inquisitive evaluators) by convincing them very clearly that values
leading to undefined behaviors cannot happen in practice.

Therefore, we now focus on what happens after get_position is called. In particular, we have the
following if condition, where the return value of get_position is used three times15:

if (hasHistory(get_vehicle_history(historyOld_ID_72073,

 get_position((platoonInfoIn_ID_46649.participants), roverID()))) == 1 &&

 simplePlausibilityCheck(getVelocity(get_vehicle_broadcast(

 (platoonInfoIn_ID_46649.broadcastPlatoon),

 (get_position((platoonInfoIn_ID_46649.participants), roverID()) - 1))),

 computeMeanVelocityHistory(get_vehicle_history(historyOld_ID_72073,

 get_position((platoonInfoIn_ID_46649.participants), roverID())), roverID()), 0.3) == 0)

{

In the interest of readability, let us refactor the above code to an equivalent form, by introducing

some temporaries to compute intermediate values; we also rename the GEN_TYPE_* types to their

equivalent ones, e.g. GEN_TYPE_int is actually defined to int.

int roverId = roverID();

int position = get_position(platoonInfoIn_ID_46649.participants, roverId);

HistoryPlatoon broadcast =

 get_vehicle_broadcast(platoonInfoIn_ID_46649.broadcastPlatoon, position – 1);

if (hasHistory(get_vehicle_history(historyOld_ID_72073, position)) == 1 &&

 simplePlausibilityCheck(

 getVelocity(broadcast),

 computeMeanVelocityHistory(

 get_vehicle_history(historyOld_ID_72073, position), roverId

), 0.3) == 0) {

It is still very hard to read, but the overall idea is: the position is given to

get_vehicle_broadcast and get_vehicle_history, where it will be used as index in an

array, to obtain other information.

Therefore, if position is a negative value (or 0, since it will be subtracted), the code will try to access a

negative array index, leading to undefined behavior: a runtime error (crash) at best, or a silent error

that may lead to catastrophe later.

We identified the cause of the alarm emitted by Frama-C, which points to a solution based on

defensive programming: before using the result of get_position, we check that it is valid (> 1), and if

that is not the case, then we abort the execution: raise an exception, emit an error message, fallback

to a “safe mode”, etc. This will not change the behavior of the code in case nothing goes wrong;

except for an extra test (with minimal impact to execution time), the code will do exactly as it did

15 The attentive reader will notice that get_position is always called with the same arguments; modern
compilers should be able to optimize the calls, so this should not incur any performance issues.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 51 of 73

before. If, for any reason, the index should become invalid (attacker, hardware fault, undiagnosed

bug), the check will detect it and fail quickly and cleanly. This may also help future-proof the code:

should some of the components change, breaking the invariant, it will be detected by the check.

Patching the code

Assuming the refactored code above, we simply insert a call to an appropriate error handler; for

simplicity, here we print an error message and call exit():

int roverId = roverID();

int position = get_position(platoonInfoIn_ID_46649.participants, roverId);

if (position <= 1) {

 fprintf(stderr, “invalid position: %d”, position);

 exit(1);

}

HistoryPlatoon broadcast =

 get_vehicle_broadcast(platoonInfoIn_ID_46649.broadcastPlatoon, position – 1);

if (hasHistory(get_vehicle_history(historyOld_ID_72073, position)) == 1 &&

 simplePlausibilityCheck(

 getVelocity(broadcast),

 computeMeanVelocityHistory(

 get_vehicle_history(historyOld_ID_72073, position), roverId

), 0.3) == 0) {

Note that, since we are dealing with generated code, this patch is not intended to be permanent,

but a proof of concept. For a persistent solution, the code generator needs to be modified to

incorporate the change.

Re-running the analysis

In order to ensure that the code change does remove the possible undefined behavior, we re-run

the analysis on the patched code and observe the results. Indeed, we had 15 alarms, and now we

have 14:

 --

 14 alarms generated by the analysis:

 1 access out of bounds index

 10 integer overflows

 1 nan or infinite floating-point value

 2 illegal conversions from floating-point to integer

 --

This verification also ensures we did not inadvertently add a different alarm. This can happen due to
loss of precision, even if the patch is correct.

Using an IDE, we can also see that the warning disappeared, as in the figure below.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 52 of 73

Figure 14: VS Code screenshot after the patch adding a check for variable 'position'.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 53 of 73

Appendix F
Protection Profile for a Safety and Security

Platooning Management Module including a firewall

A base Protection Profile (PP) for a Safety and Security Platooning Management Module
(SafSecPMM) including a firewall is described in detail in the document SPARTA-D5.4-
M36_AppendixF.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 54 of 73

Appendix G
Impact Analysis Report - Vertical 1 - Scenario 2

An Impact Analysis Report for the Vertical 1 Scenario 2 is described in detail in the document
SPARTA-D5.4-M36_AppendixG.

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 55 of 73

Appendix H
ALC Life-Cycle – Vertical 1 (OpenCert)

OpenCert (https://www.eclipse.org/opencert/) is an open source product and process
assurance/certification management tool to support the compliance assessment and certification of
Cyber - Physical Systems (CPS) spanning the largest safety and security-critical industrial markets,
such as aerospace, space, railway, manufacturing, energy and health. OpenCert supports a number
of features, including Standards & Regulations Information Management, Assurance Project
Management concerned with the development of assurance cases and evidence management,
Cross/intra-domain Reuse of assurance assets, Compliance Management, and Modular and
Incremental Certification. For more details about OpenCert, we refer the interested reader to D5.1
[1] and D5.2 [2].

At high-level, OpenCert is divided into 8 functional groups, as shown in Figure 15. The functional
groups that are involved in the Connected Car Platooning scenario (Vertical 1) are marked with the
SPARTA’s project logo:

 Prescriptive Knowledge Management: This feature supports management of knowledge
about standards.

 Assurance Project Lifecycle Management: This functionality factorizes aspects such as the
creation of safety assurance projects and any project baseline information related with the
product to certify (the baseline includes only those parts of the standards that are applicable
to the asset to be certified, in our case, the platooning system).

 Safety Argumentation Management: This feature manages argumentation information in a
modular fashion.

 Evidence Management. This functionality allows to manage the full life-cycle of evidences
and evidence chains.

Figure 15: Functional decomposition for the OpenCert platform

In D5.3 [4] we described the activities that were developed in the first iteration of the scenario 4
(“Safety and Security compliance assessment and certification”) of Vertical 1. These activities
include: (i) the digitalization of a safety standard (ISO 26262 “Functional Safety Road Vehicles” [23])
and a security standard (SAE J3061 “Cybersecurity Guidebook for Cyber-Physical Vehicle System”
[24]); (ii) the creation of an Assurance project, named “Platooning Assurance”, with two baselines,
one per each standard that the Platooning Management System must comply with; (iii) the addition

https://www.eclipse.org/opencert/

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 56 of 73

of some of the evidences into the Assurance project; and (iv) the justification of the compliance of
the Assurance project with the argumentations.

In the second iteration of the Scenario 4, we have added the security evidences to the Assurance
project and have made the necessary argumentations to specify convincing justification that our
platoon system is adequately safe and secure according the ISO 26262 and SAE J3061 standards.
Co-assessment between safety and security has also been taken into account in our safety cases.

The security evidences have been added to the Assurance project by generating a new evidence
model in the OpenCert “Evidence Management” module. The evidences are obtained by analysing,
testing, simulating and estimating the properties of a system. The new evidence model added to the
“Platooning Assurance” project follows the structure of the Common Criteria standard, as is shown
the Figure 16.

Figure 16: Security evidence model structure

 ADV Development: This class deals with the evaluation of the six families of requirements
for structuring and representing the security functionality realized by the target of evaluation
(TOE). In the “Platooning Assurance” project, the D5.2 [2] and D5.3 [4] deliverables have
been added, as well as the Frama-C output results.

 AGD Guidance: This class takes care of the evaluation of the manuals that are delivered to
the customer. These manuals contain both the secure configuration process of the TOE in
its user environment and its safe use methods for each category of defined end-user. In our
case, no manual has been generated.

 ASE Requirements: This class takes care of all the security requirements of the Security
target of evaluation. In the “Platooning Assurance” project, the Protection Profile (PP)
developed in D5.2 Appendix B [3], the Protection Profile developed for the Assurance
Continuity purposes (Appendix F) and the Threat Analysis and Risk (TARA), which was
created during the first iteration of the scenario 4, have been added.

 ATE Tests: It is the class that takes into consideration all the tests that demonstrate that
security functionalities operate according to its design descriptions, both the functional ones
proposed by the developer and the independent ones proposed by the evaluators. In the
“Platooning Assurance” project, three test procedure documents have been added to
demonstrate the security of the “Platooning Assurance” project:

o ATE Tests – Vertical 1 Scenario 1 (TEC Demonstrator) (see Appendix A).
o ATE Tests – Vertical 1 Scenario 1 (AutoFOCUS3) (see Appendix B).
o ATE Tests – Vertical 1 Scenario 5 (Sabotage tool) (see Appendix C).

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 57 of 73

 AVA Vulnerability Assessment: This class takes care of the vulnerability assessment activity
to analyse vulnerabilities in the development and operation of the TOE. Development
vulnerabilities are those introduced during its development that can be minimized through
the adoption of “security by design” processes by the developer. Operational vulnerabilities
are those that could exploit the weaknesses of non-technical countermeasures to violate the
TOE security functionality. The vulnerabilities of the Platooning system have been analysed
during the operational phase. An exhaustive penetration testing has been performed by EUT
using different Verification tools and SysML tool. To obtain more information about
Vulnerability Analysis, please see Appendix D.

 Assurance Continuity: This activity is related to maintain the certificate of an evaluated
product during its phases of patch management and improvement/evolution. The document
reports the changes affected by the evaluated TOE and provide a classification of them in
minor (in this case a subset of evaluation activities should be performed for updating the
certification) or major (a re-certification is needed for the updated TOE). To see the impact
of the second iteration, an Impact analysis Report has been developed (see Appendix G).



All the evidences have been stored in the SPARTA SVN repository. Also, we have modelled
Artefacts inside the Evidence model in OpenCert that have been linked to the real documents in the
SVN folder. In this way the evidences can be opened and edited directly from OpenCert and the
history of changes is also shown in the tool. As an example, Figure 17 shows how the vulnerability
assessment document developed by EUT has been modelled in the “AVA Vulnerability assessment”
artefact in the operational phase, the evolution of different versions of the resource and the contents
of the document.

Figure 17: Example of an evidence stored in the OpenCert tool

Besides, we have created several argumentation models to confirm that our platooning is adequately
safe and/or secure for the platooning system in a highway environment. In addition, these evidences
should come with reasonable explanations indicating the acceptable security and safety, usually by
demonstrating compliance with requirements, avoidance of hazards and threats, etc. The assurance
case is created in a graphical way by adding argumentations using the Goal Structuring Notation

D5.4 – Demonstrators evaluation

SPARTA D5.4 Public Page 58 of 73

(GSN) [25] for presenting the goals/requirements, the evidences, the strategy adopted, the
justification and the context in which goals are stated. All the goals, subgoals and requirements are
defined, together with a context where the system is set, and the strategy to explain the approach
adopted.

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 59 of 73

Figure 18 shows how the main goal of our system is to obtain a safe and secure Platooning management module. To achieve this high-level goal,
some other minor goals have been defined. The strategy used has been to use the Protection Profile document of the Common Criteria standard as
a guide. As mentioned before, the Platooning system has been settled in a specific environment where the platooning is formed, the vehicles are on
highway and it is assumed that the system is HW tampered resistant. These subgoals are also divided in some requirements that are implemented
in the Platooning system. To have more information about the subgoals and requirements defined in the argumentation, the reader can refer to the
protection profile document [3] where are deeply described.

Figure 18: Main assurance case for the Platooning system

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 60 of 73

Figure 19 shows how the requirements of each subgoal are linked to one or more evidences justifying
the acceptable assurance level. The evidences added in the Assurance case are those that have
already been added previously in the “Evidence Management” module and it is possible to open
them by selecting the evidence, for example in this case, the “ATE Tests – Vertical 1 Scenario 1
(TEC Demonstrator)” document (see Appendix A).

Figure 19: Argumentation with evidences

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 61 of 73

Appendix I
ATE Test Procedure and Report - Vertical 2 - Mobile

Scenario

Tests results obtained by the usage of the APPROVER and TSOpen tools for verifying the
implementation of Security Functionalities of Vertical 2 Mobile Scenario are described in detail in
SPARTA-D5.4-M36_AppendixI.

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 62 of 73

Appendix J
ATE Test Procedure and Report - Vertical 2 - SAML IdP

Server Scenario

Tests results obtained by the usage of ProjetKB, Steady and VI for verifying the implementation of
Security Functionalities of Vertical 2 SAML IdP Server Scenario are described in detail in SPARTA-
D5.4-M36_AppendixJ.

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 63 of 73

Appendix K
ADV Development – Vertical 2 (SafeCommit)

SafeCommit Overall Goal:

SafeCommit aims at automatically detecting commits that introduce vulnerabilities (we will also refer
to commits as patches for the sake of simplification) in Continuous Integration Ecosystem.
SafeCommit is built on top of AI techniques relying on innovative features and advanced patch
representation learning.

Systematically and automatically identifying vulnerability introducing patches once a commit is
contributed to a code base is of the utmost importance: (1) To reduce the number of vulnerabilities
in a software code base; (2) To incite maintainers to quickly reject the relevant changes. The
proposed tool aims at being integrated into real-world software maintenance and usage workflows.

In the Wild Assessment: The Vertical 2 Case.

Introduction

SafeCommit has been integrated into the continuous integration system of Vertical 2 (i.e., into
GitLab). In particular, SafeCommit has been fully integrated into the repository of vertical 2 for
verifying new commits of source code for the SAML IdP Server scenario. Each time a patch is
committed into the code base of the SAML IdP Server repository, SafeCommit analyzes the patch,
and a report is generated indicating whether the patch introduces a vulnerability or not.

To assess SafeCommit in a such setting, we commit three different patches into the repository:

1- safe.patch, a patch that does not introduce any vulnerability.
2- unsafe.patch, a patch that does introduce a vulnerability.
3- safeCommit_skip, a patch that only adds text into a text file. So, this patch is not related to

code, and does not introduce any vulnerability.

We expect that SafeCommit will yield a security warning for unsafe.patch, and no warning for both
safe.patch and safeCommit_skip.

Test Case #1: safe.patch

For the first test case, we commit into the repository a patch that does not introduce any vulnerability.
The commit is identified in Figure 20, and the patch is detailed in Figure 21.

Figure 20: Commit identification

In Figure 21, we can see that the patch creates and instantiates a set (variable “cars”), and then
populates the set by adding car brands. Finally, each element of the set is “printed”.

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 64 of 73

Figure 21: safe.patch, a patch that does not introduce any vulnerability.

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 65 of 73

Once the patch is committed, SafeCommit automatically analyzes and “test” the patch. If the patch
does not contain any vulnerability, the test passes. This can be seen in Figure 22. By putting the
mouse on the green checkbox, a popup appears that indicates the test is passed.

Figure 22: The test is passed meaning that SafeCommit does not detect any vulnerability in this patch.

Eventually, SafeCommit also generates a report which can be seen in Figure 23. This report is an
xml file (Junit format). A message is generated in the report only if SafeCommit detects a
vulnerability. This is not the case for this test case.

Figure 23: SafeCommit Report

Test Case #2: unsafe.patch

For the second test case, we commit into the repository a patch that introduces a vulnerability. The
commit is identified in Figure 5, and the patch is detailed in Figure 24.

Figure 24: Commit Identification of the unsafe.patch patch

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 66 of 73

In Figure 25, we can see that the patch contains a buffer overflow vulnerability. Indeed, name is a

char array of size 64. The problem is that name is “controlled” by the user that can feed name with

no constraint because of scanf.

Figure 25: unsafe patch that introduces a vulnerability

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 67 of 73

Once the patch is committed, SafeCommit automatically analyzes and “test” the patch. If the patch
contains a vulnerability, the test is passed but with warnings. This process can be seen in Figure 26.
By putting the mouse on the red exclamation mark, a popup appears that indicates the test passed
but with warnings.

Figure 26: The test contains a warning meaning that SafeCommit has potentially detected a vulnerability in
this patch.

Eventually, SafeCommit also generates a report which can be seen in Figure 27. This report is an
xml file (Junit format). A message is generated in the report because SafeCommit detects a
vulnerability.

Figure 27: Safe Commit Report when it detects a vulnerability

Test Case #3: safecommit_skip.patch

For the third test case, we commit into the repository a patch that simply adds text into a text file.
Consequently, this patch does not introduce any vulnerability. The commit is identified in Figure 9,
and the patch is detailed in Figure 28.

Figure 28: Commit Identification of the safecommit_skip patch

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 68 of 73

In Figure 29, we can see that the patch adds three lines in a text file.

Figure 29: patch that simply adds texts into a text file

Once the patch is committed, SafeCommit automatically analyzes and “test” the patch. However,
since the patch targets a text file, the analyze stop immediately, and the test is marked as passed.
This can be seen in Figure 30. By putting the mouse on the green checkbox, a popup appears that
indicates the test is passed.

Figure 30: The test is passed meaning that SafeCommit does not detect any vulnerability in this patch.

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 69 of 73

Eventually, SafeCommit also generates a report which can be seen in Figure 31. This report is an
xml file (Junit format). In this report, we can see that no vulnerability has been reported (no message
has been generated), but also that the analysis has been skipped.

Figure 31: SafeCommit Report

Conclusion

Three test cases have been executed to assess SafeCommit on Vertical 2. The test cases are:

1- safe.patch => SafeCommit expected result: no vulnerability detected
2- unsafe.patch => SafeCommit expected result: a vulnerability detected
3- safeCommit_skip => SafeCommit expected result: no vulnerability detected

The three test cases passed meaning that the SafeCommit outputs were as expected.

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 70 of 73

Appendix L
Additional test and results reported outside the

Verticals scope

Tests results obtained by the usage of:

 SATRA (ex NeSSoS tool)

 Buildwatch

 SideChannelDefuse

 Steady/ProjectKB (tests outside the scope of the Vertical 2)

 Legitimate Traffic Generation System (LTGen)

are described in detail in SPARTA-D5.4-M36_AppendixL

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 71 of 73

Appendix M
Short videos description

In the following is presented a short description of the videos of tools developed during the Task 5.4
for demonstration purpose.

The following Table 8 provides information about the videos of tools involved in the Vertical 1.

Tool File Video Short Description

(TECNALIA)
TEC
demonstrator

ATE_Vertical1_Scenario1
_TEC_demo.mp4

The TEC demonstrator for Vertical 1
Scenario 1 implements a subset of
requirements described in the Protection
Profile for a Safety and Security Platooning
Management Module (PMM).

(TECNALIA)
Sabotage

ATE_Vertical1_Scenario5_
Sabotage_demo.mp4

The video shows the procedure to validate
the correctness of the implementations for
those requirements, using as an example
the test case to validate the generation and
the composition of Emergency Break
messages.

(Eurecat)
Verification
Tooling
(including
SysML usage)

AVA_Vertical1_Scenario3_
demo.mp4

The video describes the different steps
performed in the Verification Tooling
Scenario, from the analysis of the
protection profile and elaboration of an
attack tree, preparation of the Verification
Tools, pre-assessment in an internal
laboratory and AVA Vulnerability
assessment. Some vulnerabilities are
illustrated with real videos. 7 vulnerabilities
have been found and remediations actions
have been recommended

(CETIC)
Vacsine

AVA_Vertical1_Scenario2_
Vacsine_demo.mp4

Securing platoon firewall updates -
Improving security of the continuous
integration and deployment pipeline of
connected cars. We demonstrate a supply
chain attack on a connected car firewall
and how to protect it with a DevSecOps
approach: how to detect the attack with
vulnerability scanning and how to
orchestrate the remediation using the
Vacsine tool.

(FORTISS)
AutoFocus

Vertical1_Scenario1_Autofocus_
demo.mkv

This demo shows how one can validate the
requirement "reception of emergency brake
messages (EB) generated by the platoon
leader and received by a follower" from the
Protection Profile.

(CEA) Frama-
C

Video_Frama-C_Vertical1_
demo.mp4

The video shows how to setup Frama-C on
a code base and how to run an analysis to
identify security vulnerabilities, with an
example of a fix.

https://sparta.eu/videos/ATE_Vertical1_Scenario1_TEC_demo.mp4
https://sparta.eu/videos/ATE_Vertical1_Scenario1_TEC_demo.mp4
https://sparta.eu/videos/ATE_Vertical1_Scenario5_Sabotage_demo.mp4
https://sparta.eu/videos/ATE_Vertical1_Scenario5_Sabotage_demo.mp4
https://sparta.eu/videos/AVA_Vertical1_Scenario3_demo.mp4
https://sparta.eu/videos/AVA_Vertical1_Scenario3_demo.mp4
https://sparta.eu/videos/AVA_Vertical1_Scenario2_Vacsine_demo.mp4
https://sparta.eu/videos/AVA_Vertical1_Scenario2_Vacsine_demo.mp4
https://sparta.eu/videos/Vertical1_Scenario1_Autofocus_demo.mkv
https://sparta.eu/videos/Vertical1_Scenario1_Autofocus_demo.mkv
https://sparta.eu/videos/Video_Frama-C_Vertical1_demo.mp4
https://sparta.eu/videos/Video_Frama-C_Vertical1_demo.mp4

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 72 of 73

Tool File Video Short Description

TECNALIA
(OpenCert)

ALC_Vertical1_Scenario4_OpenCe
rt_

demo.mp4

The video shows the use of the OpenCert
tool for the management of the safety (ISO
26262) and security assessment (SAE
J3061) in the context of Vertical 1. It shows
how all the evidences of the evaluation
process for Vertical 1 are stored, and the
generation of argumentations to justify the
safety and security assessment by using
the previous stored evidences and
explanations.

Table 8: Short videos description for tools involved in Vertical 1

The following Table 10 provides information about the video of tools involved in the Vertical 2.

Tool File Video Short Description

- CINI (Approver)
- (UniLu) TSOpen
- (UniLu) Safe
Commit
- (SAP/UKON)
ProjectKB/Steady/VI

SPARTA_APP_
withComment.mp4

The video shows how the CAPE tools
SATRA, APPROVER and TSOpen have
been integrated in DevSecOps and
contribute to secure the CIE ID APP
scenario of Vertical 2.

SPARTA_IdP_
withComment.mp4

The video shows how the CAPE tools
SATRA, Steady, Vulnex and SafeCommit
have been integrated in DevSecOps and
contribute to secure the SAML IdP scenario
of Vertical 2

Table 9: Short videos description for tools involved in Vertical 2

The following Table 10 provides information about the videos of standalone tools.

Tool File Video Short Description

(CNR) SATRA SATRA demo.mp4

The video provides a quick overview of the
SATRA tool, a simple and fast approach for
quick risk assessment of a software
product based on the analysis of security
practices applied during the SDLC. The
video shows the key steps for operating the
tool and provides brief explanations for
these steps. It demonstrates the complete
process (omitting repeating steps like filling
in the questionnaire) and makes the viewer
familiar with the required inputs and
expected outcomes of the tool.

https://sparta.eu/videos/ALC_Vertical1_Scenario4_OpenCert_demo.mp4
https://sparta.eu/videos/ALC_Vertical1_Scenario4_OpenCert_demo.mp4
https://sparta.eu/videos/ALC_Vertical1_Scenario4_OpenCert_demo.mp4
https://sparta.eu/videos/SPARTA_APP_withComment.mp4
https://sparta.eu/videos/SPARTA_APP_withComment.mp4
https://sparta.eu/videos/SPARTA_IdP_withComment.mp4
https://sparta.eu/videos/SPARTA_IdP_withComment.mp4
https://sparta.eu/videos/SATRA-demo.mp4

D5.4 – Integration on demonstration cases and validation

SPARTA D5.4 Public Page 73 of 73

Tool File Video Short Description

(UBO) Buildwatch
UBO_buildwatch-

demo.mp4

This demo video shows how Buildwatch
may be integrated into a CI pipeline in
order to detect suspicious forensic artifacts
(e.g. files, processes, or network connects)
that occur during the build/install/test phase
of a software developed.
In this example a small projects updates
one of its dependencies two times.
The first time only benign forensic artifacts
are found.
On the second update there occurs a new
process that would create a reverse shell to
the attackers server.
As the code was tested in an isolated
sandbox in the background no harm to the
rest of the pipeline would happen.
A developer working on the project would
notice the use of a malicious dependency
and hence could stop the distribution of the
software

(CNIT)
SideChannelDefuse

CNIT_D64_SideChannelD
efuse

_DEMO.mp4

The video represents a demonstration of
the tool's capabilities of continuous
detection and mitigation at Kernel level of
Side Channel attacks. We first show a
regular usage of a Linux system. After that,
we launch a simulated Side Channel
attack. We show that the module
immediately detects and mitigates the
attack without impacting performances on
the host.

(IMT) LTGen IMT_LTGen_demo.mp4

The video demonstrates the workflow of
legitime traffic generation on a couple of
packet-level features (packet length, inter-
arrival time). It describes how from a set of
features to reproduce (min, max, mean,
std) of each feature, we are able to
generate a \beta-distribution that aims at
reproducing an existing legitimate flow
behaviour. The distribution is then
transformed into concrete packets using
scapy and replayed into an emulated
network environment using ContainerNet.
This demonstrates the ability to build a
testing environment with legitimate traffic
generation against security measures,
notably Network IDS. Ultimately, the video
shows how well the generation performs
with respect to the initial features provided

Table 10: Short videos description for standalone tools

https://sparta.eu/videos/UBO_buildwatch-demo.mp4
https://sparta.eu/videos/UBO_buildwatch-demo.mp4
https://sparta.eu/videos/CNIT_D64_SideChannelDefuse_DEMO.mp4
https://sparta.eu/videos/CNIT_D64_SideChannelDefuse_DEMO.mp4
https://sparta.eu/videos/CNIT_D64_SideChannelDefuse_DEMO.mp4
https://sparta.eu/videos/IMT_LTGen-DEMO.mp4

	Executive Summary
	Table of Content
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Structure of the Document

	Chapter 2 Validation process definition
	2.1 Purpose
	2.2 The Concept of Evaluability
	2.3 Evaluability approach for the CAPE program

	Chapter 3 Vertical 1: Demonstration of converging tools for assessing Connected and Cooperative Car Cybersecurity (CCCC) in the context of Euro NCAP
	3.1 Description
	3.2 Validation elements and tools for Vertical 1
	3.3 Evaluability results for Vertical 1
	3.3.1 OpenCert (OC)
	3.3.2 TEC Demonstrator
	3.3.3 AutoFocus3
	3.3.4 Sabotage
	3.3.5 Frama-C
	3.3.6 Verification Tooling (including SysML usage)
	3.3.7 VaCSInE
	3.3.8 Vertical 1 Traceability Matrix

	3.4 Considerations

	Chapter 4 Vertical 2: Demonstration of a Complex System Assessment Including Large Software and Open Source Environments, Targeting e-Government Services
	4.1 Description
	4.2 Validation elements and tools for Vertical 2
	4.3 Evaluability results for Vertical 2
	4.3.1 Approver and TSOpen
	4.3.2 Project KB / Steady / VI
	4.3.3 SafeCommit
	4.3.4 Vertical 2 Traceability Matrix

	4.4 Considerations

	Chapter 5 Summary and Conclusions
	Chapter 6 List of Abbreviations
	Chapter 7 Bibliography
	Appendix A ATE Tests – Vertical 1 Scenario 1 (TEC Demonstrator)
	Appendix B ATE Tests – Vertical 1 Scenario 1 (AutoFOCUS3)
	Appendix C ATE Tests – Vertical 1 Scenario 5 (Sabotage tool)
	Appendix D AVA Vulnerability Assessment – Vertical 1 Scenario 3 (Verification Tooling)
	Appendix E ADV Development – Vertical 1 (Frama-C)
	Appendix F Protection Profile for a Safety and Security Platooning Management Module including a firewall
	Appendix G Impact Analysis Report - Vertical 1 - Scenario 2
	Appendix H ALC Life-Cycle – Vertical 1 (OpenCert)
	Appendix I ATE Test Procedure and Report - Vertical 2 - Mobile Scenario
	Appendix J ATE Test Procedure and Report - Vertical 2 - SAML IdP Server Scenario
	Appendix K ADV Development – Vertical 2 (SafeCommit)
	Appendix L Additional test and results reported outside the Verticals scope
	Appendix M Short videos description

