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Chapter 1 Introduction 

This document presents a list of test and results reported outside the Verticals’ scope for tools that 
were presented as “stand-alone” or that need to be showed in an external scenario, not necessarily 
tied to the CAPE Verticals’ use-cases.  

1.1 Subset of CAPE Tools showed 

The next table shows a list representing the subset of CAPE tools which we have chosen to show 
outside the Verticals’ scope. Note that some of them still belong to a specific Scenario of the 
Verticals: that is because some (or all) of their results might need to be showed by themselves. Other 
tools might be also “stand-alone” by design. 

 

Tool Partner V-model Phase Task Scenario 

Buildwatch (BW) UBO Application development T5.3 
e-Government 

(Vertical 2) 

Legitimate Traffic 
Generation System 
(LTGen)  

IMT Operations T5.1 Stand-alone 

SATRA (ex NeSSoS) CNR 
Risk Management process at the 

global level 
T5.1 

e-Government 
(Vertical 2) 

Steady/Project KB (KB) SAP All phases T5.3 
e-Government 

(Vertical 2) 

SideChannelDefuse (FS) CNIT Deployment T5.1 Stand-alone 

Table 1: CAPE Tools showed outside Verticals’ scope 

1.2 Structure of the Document 

 Chapter 1 is the current section presenting an Introduction and the Structure of the document 

 Chapter 2 presents the tests and results SATRA tool from CNR 

 Chapter 3 presents the tests and results for the Buildwatch tool from UBO 

 Chapter 4 presents the tests and results for the SideChannelDefuse tool from CNIT 

 Chapter 5 presents the tests and results for the Steady/ProjectKB from SAP 

 Chapter 6 presents the tests and results for the Legitimate Traffic Generation system from 
IMT 
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Chapter 2 SATRA (ex NeSSoS tool) - CNR 

2.1 SATRA 

SATRA is a Self-Assessment Tool for Risk Analysis (this tool evolved from the previous its version, 
called NeSSoS, much due to the modifications made for the SPARTA project). The tool has been 
adapted for the needs of SPARTA to compute cyber security risks of software products.  

SATRA has the goal to provide a simple, fast and standardised way for assessment of cyber risks. 
This allows the tool to be useful as for the direct use (when a user interacts with the tool directly), as 
well as to be integrated with other tools and be able to conduct the risk analysis dynamically. 

For using SATRA, two sets of inputs are required. The first set, is the knowledge about security 
functional requirements and security assurance practices applied for securing the software product. 
This knowledge is provided in a form of a questionnaire, with the concrete questions based on the 
basic cyber security development practices described in ISO/IEC 15408 (Common Criteria) 
standard.  

 

Figure 1: Questionnaire of SATRA 

 

The second set of inputs is the list of main assets and estimated losses per product in case 
Confidentiality, Integrity and Availability of the software product is compromised. The main assets 
consist of: 1) Process, i.e., the software product itself and its internal data; 2) External process, i.e., 
the context in which the software product if expected to be used; 3) a set of user data, processed, 
transmitted or stored by the software product. The estimated losses are provided as a value between 
1 to 10, assuming that 1 is negligible loss, while 10 is a catastrophically loss (e.g., leasing to loss of 
many human lives). 
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Figure 2: Asset page of SATRA 

 

As a result, SATRA computes the overall risk value (a value from 0 to 100), and specific risk values 
per each of 6 STRIDE threats. The STRIDE threats were used as this methodology they are the 
ones among the most common for threat assessment.  

In scope of Vertical 2 of SPARTA, SATRA can be used to estimate risks of both mobile APP and 
SAML IdP service. It could be of use at different stages and by different actors.  

First, the developer may use SATRA to estimate risks for the software to be developed at the 
planning phase, when security requirements and strictness of the security development practices to 
be applied is selected. This can be required to estimate if the selected approach to securing the 
developed software is good enough, to identify poorly covered threats/risks, and increase protection 
for the relevant security aspects. 

Second, the risk assessment conducted by SATRA can be used to show how secure is the software 
developed product. The obtained risk results could be used first to see (and prove) how much better 
is the final software product protected in comparison to the “unprotected” version. Secondly, it can 
be used to compare different versions of the same system (and see how much the risk rises if the 
new versions do not follow some of the initially established risk assessment practices). Last but not 
least, the results of the assessment can be used to compare similar products, since SATRA 
produces absolute (not relative) final values. 

Finally, SATRA may compute results using objectively and dynamically provided (if continuous 
evaluation is possible) measures provided by external tools. Although possible this capability of 
SATRA is not used in Vertical 2 (but applied in Vertical 1). 

The SATRA tool is composed of three different modules, two for the interfaces (web platform and 
RESTful APIs) and one for the inner-work and computations. The engine module is written in Java, 
while the RESTful APIs are written in Python and follow the OpenAPI version 3 standard. The 
development of SATRA takes place in a git environment. Each module runs in a different Docker 
container and the entire tool and the communications between modules is managed by docker-
compose. 

2.2 Integration into the CI pipeline  

SATRA may be integrated into an existing repository project as a CI job. A new user of the SATRA 
tool (ideally, a developer of the project), has to register himself to the platform by asking for access 
credentials from an administrator. 

In the registration phase, the user account is linked to his/her GitLab project. The newly registered 
user receives an email for finalizing the registration on the SATRA web platform [6].  
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Logged into the platform, the user finds a list of contracts, one for each GitLab project he/she has 
registered. The contracts have different statuses: when a contract is “Open”, it is required for the 
user to complete a survey regarding the security measures and information about the GitLab project 
under analysis. 

 

Figure 3: SATRA web page, when the user log in into the web platform 

 

When the survey is completely fulfilled, the tool returns a risk evaluation based on the answers 
provided and shows the compliance percentage with regard to some Information Security categories. 
The survey can also be answered through the APIs [7], using the contract id (called UUID) and the 
personal API token provided in the web platform [8]. 

 

Figure 4: Example of the Risk Evaluation results provided when the survey is completed. 

 

When the survey is completed, the contract changes to a “Paused” state: the information on the 
survey cannot be changed until a new change is committed on the GitLab repository. Moreover, a 
GitLab issue with the risk computation results is automatically opened on the GitLab repository when 
the survey is submitted. 

2.3 Results evaluation 

Once the analyst receives the results of the risk analysis, it is possible to see how well the tool 
addresses security issues. The analyst can see the level of risk, estimated by the tool, according to 
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all security measures used in the security development process. Now, the analyst may decide if the 
risk is acceptable. It is advisable to compare the results, e.g., with no-security case (to see the 
amount of risk reduction), with a previous version (to monitor risk changes) or with a similar system 
(to compare alternatives).  

The analyst can also see the detailed risks per STRIDE threats. In the example in Figure 4, it is clear 
that tampering, information disclosure, DoS and elevation of privileges are the most important risk. 
This is because the associated potential losses are high for this example since confidentiality is high 
for the user data to be stored and processed, and integrity and availability is high for the tool itself. 
Nevertheless, these risks are significantly reduced by the security measures applied during the 
software development. 

2.4 Conclusion 

SATRA provides a simple and fast way to analyse risks for a software product. It can be integrated 
with the CI pipeline to ensure that all relevant risks are properly addressed and compare the risk 
levels. The results could be used by as by the developers and analysts of mobile APP as well as for 
the SAML IdP service for securing the system of Vertical 2. 

Analysing the results, one should keep in mind that risk results will hardly be close to zero for the 
software products with potentially high losses (e.g., the critical ones or the ones managing large 
amount of user data). This is because despite following good security development practices, there 
could always be ways for a hacker to discover and exploit a new vulnerability (this is especially true 
for complex products). Thus, even if the reduction in risks is high (e.g., ten times or more), potential 
losses may still keep risk significant enough. 
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Chapter 3 Buildwatch - UBO 

3.1 Presentation of the repository under test 

Shibboleth is a single sign on system often used by federations like universities or other public 

service organizations. Shibboleth itself is written in Java leveraging the Spring framework. It can be 

build from source using Apache Maven. 

The development of Shibboleth takes place in a git environment [9]. There, all changes are tracked 

and version increments are labeled accordingly. For our experiment, the component “Shibboleth 

Identity Provider” will be examined. This component is responsible for managing user data and 

corresponding authentication requests. 

As Buildwatch focuses on changes introduced when a software component is updated, three 

consecutive versions of Shibboleth Identity Provider were chosen. In order to proof that Buildwatch 

is able to secure the Shibbolet as presented in D5.2 [1] the git repository was cloned and analyzed 

for suspicious changes in the version increments from v4.1.2 to v4.1.3 and from v4.1.3 to v.4.1.4. 

3.2 Running Buildwatch as part of a CI pipeline 

 

Figure 5: New Commit on Buildwatch 
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Buildwatch may be integrated into an existing software project as a CI job. Buildwatch itself runs in 

a Docker container but leverages Cuckoo and VirtualBox for safe execution of the build 

instructions. We leveraged GitLab and the GitLab CI to trigger the analyses of the different 

versions of Shibboleth Identity Provider. 

As seen on Figure 5 a new commit (or in our case version) will trigger the analysis. The source 

code and corresponding build instructions are transferred into a isolated sandbox. There the 

software is build according to the instructions. All forensic artifacts, like created files and connected 

hosts, are recorded. In the default configuration the software is build three times in a clean (reset) 

sandbox in order to get more reproducible artifacts. 

Recorded forensic artifacts are grouped by categories, e.g. “files created”, “files removed”, 

“processes created”, and send back as JSON file to the CI job. In the screenshot on the left, that 

JSON is simply printed as part of the job’s log. Further processing of the JSON file is possible. 

When a new commit is pushed or a new version is tagged, Buildwatch will automatically compare 

all recorded artifacts to the already known ones of previous runs. This way the focus is on newly 

introduced changed. 

For the evaluation on Shibboleth, we used the build instructions as provided by CINI/FBK: 

mvn -DskipTests -Dmaven.javadoc.disable=1 clean install 

3.3 Results 

For the very first analysis of an software by Buildwatch a very verbose output is to be expected. 

Because there are no known artifacts to remove from the report, it will include all observed 

artifacts. Thus, the first report generated for v4.1.2 comprised 

 13,898 files that were written 

 14,914 files that were read 

 1,912 files that were removed 

 4 hosts that were connected 

 1 domain that was contacted 

 15 processes that were created 

It is not feasible to analyze all these recorded artifacts by hand. In order to reduce the number of 

artifacts Buildwatch tries to generate patterns of artifacts that can safely be removed the next time. 

For that first run as mentioned above, Buildwatch was able to generate 1206 patterns. 

 

 

 

Figure 6: Example of two patterns that handle name suffixes based on the sha1 hashsum of the software 
components. 
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For the next version (v4.1.3) the amount of presented artifacts was drastically reduced. Only 1475 

new files were written, 1402 read, and 184 removed. However, no new process, host, or domain 

was observed. It is visible that most of the new files (written and read) are due to updated 

dependencies. The identification of the updated component could easily be identified from the 

artifacts. Based on newly observed artifacts Buildwatch was able to generate more patterns for 

benign artifacts, increasing the number of patterns to 1673. 

In the next version of Shibboleth Identity Provider (v4.1.4), 197 new files were written and 77 were 

read. Again, no new hosts, domain, or processes were observed. This time even no new file 

deletion could be observed. Again, new patterns could be created increasing the number of 

patterns to 1750. 

3.4 Conclusion 

Shibboleth is huge projects that causes ten-thousands of forensic artifacts when build. Identifying 

suspicious or even malicious artifacts is like finding a needle in a haystack. Buildwatch tackles this 

ambitious goal by learning a software’s expected behavior over the time. 

As shown above, the first results are very generic as Buildwatch is not yet able to distinguish new 

from normal. Beginning with the second use of Buildwatch, known and benign artifacts are 

removed by extrapolated patterns. 

For the second and thirst build no unusual network activity during the build (CWE-200) could be 

identified. Even though the number of recorded file operations is high, most artifacts stem from 

updates of used third-party components. A more detailed look at this will also ensure that there are 

no trojanized dependencies present in the software (TOP10-A9-2017-N1). The remaining file-

related artifacts can be used to determine whether a dependency changed its expected behavior 

between versions (CWE-439) or that other unusual filesystem activity during the build are present 

(CWE-284). 

In conclusion, Buildwatch is able to strengthen the security of software by enabling insight into 
changes in the software’s behavior introduced by a developer or leveraged third-party components. 

  

 

Figure 7: Small snippet of the report for v4.1.4. It is easy to see that these five third-party components were 
updated to the also visible version number. 
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Chapter 4 SideChannelDefuse - CNIT 

SideChannelDefuse is a tool for continuous kernel-level system-wide detection, assessment, and 
reactive mitigation against side-channel attacks. This detection is continuous, because the (host) 
operating system kernel-based detection mechanism is always on, while introducing a minimal 
overhead in the system. It is system-level, in the sense that it monitors all applications running in 
the system and does assume which process is the attacker and which is the victim. 
 
If the tool detects that a (virtualized) application is trying to carry out a side-channel attack, that 
application is deemed as suspected. At this stage, the tool can activate per-application mitigation 
mechanisms, which is to reduce the likelihood that the application can exfiltrate data using the 
attack. The tool is developed as a patch to the Linux kernel. 
 
The cloud owner/maintainer deploys the patched kernel into the host system and lets it run. The 
tool continuously runs in the background. It relies on the use of Performance Monitoring Units 
(PMUs) equipped into modern CPUs to profile the performance or (to some extent) the behavior of 
applications. PMUs are composed basically of programmable Performance Monitor Counters 
(PMCs) also referred to as Hardware Performance Counters (HPCs). 
 
The tool currently only targets the Intel architecture, considering its widespread nature [10] and the 
fact that it has been repeatedly subject to multiple attacks in the last years. Nevertheless, as we 
discuss, our reference implementation can be easily ported to other architectures, such as AMD. 

4.1 Detecting Side-Channel Attacks 

The tool relies on a combination of measures taken from HPCs in real-time, which allows us to 
discriminate processes that are more likely to perform operations on the cache hierarchy, indicating 
that they are mounting a side-channel attack. At the kernel level, four major components are involved 
in the system-wide monitoring of the attacks to detect the activity of malicious processes. The 
Monitor module directly interacts with hardware performance counters, programming them to acquire 
the measures to build our detection metrics. Data coming from HPCs are stored directly in a process’ 

task_struct. The Detector module relies on these data to compute detection metrics and deem 

a running process as suspected or not—again, this information is stored in the task_struct. If a 

process is suspected, the Mitigator module will detect it and apply proper mitigations. The Scheduler 
module interacts with the operating system’s scheduler. It is one of the fundamental components to 

enable system-wide detection and per-process mitigations: every time a different task_struct is 

scheduled, both the Mitigator and the Monitor modules are notified to enable/disable mitigations and 
reprogram HPCs, respectively, to account for the newly scheduled process. 

4.1.1 Detection Metrics 

Considering inclusive caching systems, which represent our target, we know that bringing the cache 
into a given state (e.g. a cache line is flushed or a cache set is primed) means performing an 
operation that is necessarily reflected into the state of caches at all the levels, from First-Level 
Cache (L1) to Lowest-Level Cache (LLC). We decided to relate to different volumes of micro-
architectural events generated at different levels within the caching system. First, we know that the 
exploitation of a side channel is based on bringing the caching system into a known initial state. 
Successively, the attacker attempts to determine whether some change has occurred in the cache 
state. At the same time, we wanted to focus on events that are not easily manipulable (in terms of 
their volume generation at a specific cache level) by an attacker [11]. Therefore, we decided to avoid 
considering cache hits and to focus exclusively on cache miss events. 
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4.1.2 Observation Windows 

We divide the entire observation period into time slots, which are handled as observation windows 
of HPC values that are inspected one by one. This allows discriminating among different execution 
phases. Such a discretization is applied to the number of elapsed clock cycles (which defines a 
constant unit among all running processes) rather than events such as retired instructions—they 
may warp the time slot depending on the executed instruction [12]. This window is preserved across 
context switches and is not shared among processes/threads, thus guaranteeing a coherent 
inspection of the execution flow. 

The size of the time window is directly related to the overhead that the detection architecture 
introduces in the system because smaller slots imply more interrupts to be processed. 

We also tune the size of the observation window at the system startup. To this end, we use an 
adaptative approach: if we observe a significant fluctuation in the data observed across two 
consecutive windows, we reduce the size of the window (up to a minimum threshold, which accounts 
for the overhead in the measurement). Conversely, if variations are minimal, we increase its size (up 
to a compile-time-based threshold). This approach allows, for long-lasting programs, to self-adapt to 
a suitable value, which can also characterize the usage of the memory hierarchy. 

4.1.3 Suspecting Malicious Processes 

After calculating the Performance Monitoring Interrupt (PMI) metrics, they are compared to the 
respective thresholds, thus determining if the driving-suspicion predicates hold. Based on the results 
of the inequalities, we deem a process as malicious or not. Obviously, the classification of a process 
cannot be made based on a single observation because we would have an excessive number of 
false positives considering that, during its execution, a process can assume different behaviours. 
For this reason, we have introduced a scoring system. The process’s score will vary during execution 
as follows: 

 the score is increased by α if the results of metrics/thresholds comparison show a behaviour 
similar to a side-channel attack; 

 the score is decremented by β if the metrics do not detect any abnormal situation. 

If the score reaches the value of a threshold γ, then the process becomes suspected. α, β, and γ are 
tunable hyperparameters of our model. These parameters are related to each other in the following 
way. α indicates how fast a process becomes suspected: the higher the value, the smaller is the 
number of positive evaluations of the metrics required to flag it as malicious. Conversely, β 
determines how fast a process that was (incorrectly) considered suspicious starts again to be 
deemed benign. α and β can be used to control our scoring system’s responsiveness towards 
punctual activities (i.e., possibly malicious or not) exhibited within an observation window. In the 
general case, we assume α ≥ β to allow for a prompt-enough detection of a malicious process. 
Conversely, γ directly controls when a process becomes flagged as malicious. To some extent, it 
indicates the amount of data that the system tolerates to leak before deeming a process as 
suspected. 

4.1.4 Mitigation Strategies 

Our kernel-based detection subsystem can flag a process as suspected. A suspected process is one 
for which we can implement mitigations. We note that this is not a destructive operation: even if we 
have incurred a classification error (i.e., a false positive), we enable mitigations that will not cause 
runtime errors (e.g., abnormal termination) in the wrongly suspected process. Indeed, we could only 
cause a performance slowdown. Nevertheless, considering the overall system, this slowdown will 
not be comparable to that observed if the mitigations we discuss here were activated by default for 
all processes. We have foreseen two families of mitigations: one pertaining to side-channel attacks 
in general and one related to transient execution vulnerabilities. The mitigations we put in place have 
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value independently of whether our own approach is used to detect the attacks, or the system would 
use other support to determine (potentially) malicious processes. 

4.2 Results 

 

Figure 8: Overview of considered cache side-channel attacks and references to the used implementations 

 

We have carried out an experimental assessment relying on multiple generations of Intel CPUs, 
namely using the following processors: 

 

 i7-6700HQ 4x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 6MB 12-way; 

 i7-7600U 2x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 4MB 16-way (with TSX); 

 i5-8250U 4x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 6MB 12-way; 

 i7-9750H 6x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 16MB 16-way; 

 i7-10750H 6x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 12MB 16-way. 

 

To set up the thresholds and observation windows used by our detection system, we have run 
versions of the attacks listed in Figure 8, as well as the following set of benignware applications: (1) 
Firefox, with both textual pages, multimedia content access, and browser benchmarks such as 
JetStream2; (2) VLC, with both large and short videos and random skip of video portions, as well as 
repositioning; (3) Evince Reader, with both small and large size pdf files, and random skip of pages; 
(4) gedit for editing textual files of different sizes and random positioning onto the file portion to be 
edited; (5) all the kernel-level threads operating within the Linux kernel. 

4.2.1 Accuracy of HPC Events 

We evaluated HPCs accuracy in terms of both over-counting and determinism by comparing the 
data collected from HPCs with data obtained from software instrumentation—results are reported in 
Figure 9. We relied on a basic (single thread) benchmark for this experiment, which computes the 
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first x prime numbers, where x is a user-defined parameter. We used cachegrind [13] as a 

baseline, which automatically detects the underlying cache structure and builds an equivalent cache 

model while executing the program. With cachegrind, we can compare the results related to 

memory accesses and cache misses. Nevertheless, L3 cache misses, L2 filled lines (it counts 
opportunistic events at cache line grain and includes prefetcher activity), and TLB miss (we use a 
specific event that requires the emulation of a second-level TLB) are not available. For these events, 
we compared the HPCs values of several runs to compute the determinism degree of this source. 
The results in Figure 9 experimentally confirm that, although HPCs could be subject to reliability 
errors, we have selected more stable and portable events across different architectures. Although 
the L1 miss Err value may be a wake-up call to the reader, it is consistent among the tested 

architectures and the HPCs variation coefficient. This result stems from cachegrind’s inability to 

model all the hardware counterpart’s internal details vendors do not disclose. 

 

Figure 9: Comparison between HPCs and Software Instrumentation on all the architectures. Err represents 
the distance (%) between HPCs and SW while HPCerr shows the HPCs variation coefficient 

4.2.2 Accuracy of System-Wide detection approach 

To assess the capabilities of our detection system, we have performed a system-wide experimental 
evaluation by building sets of benignware and malware applications. The former relies on the 
Phoronix Test Suite [14], from which we selected 156 benchmarks (configured with different inputs) 
showing various behaviors and load profiles. Conversely, to build the set of malicious applications 
to exercise our solution’s capability to detect side-channel attacks, we have not found access to real-
world malware of this kind. As a consequence, we have crafted such malicious applications starting 
from the stress-ng suite [15]. We injected side-channel attacks (based on the implementations 
reported in Figure 8) into various benchmarks of the suite, generating a set of 100 malicious 
applications. The side-channel routine is placed within the benchmark stress function. The attack is 
anyhow enabled only after a random delay and, after its activation, the side-channel procedure 
executes with a specific probability—we set this probability to 10%. By introducing these sources of 
uncertainty, we increased the non-determinism degree that attacks may exploit in realistic scenarios. 
As described, the behavior of our detection system highly depends on the α, β, and γ 
hyperparameters. We set α and β to 1 for the entire experimental phase while varying γ to evaluate 
the detection according to different threshold levels. As discussed, α and β represent the rates that 
regulate the score progression of each process in the system. By setting α = β = 1, we are identifying 
a critical scenario for our detection system, as we slow down the detection of malicious applications 
while reducing the possibility for a benign application to "recover" from spurious actions being 
detected as malicious. At the same time, by varying γ, we somewhat change the responsiveness to 
an undergoing attack. 



D5.4 Appendix L – Additional test and results reported outside the Verticals scope 

SPARTA D5.4 - Appendix L  Public Page 13 of 37 

 

Figure 10: Detection accuracy evaluation for different values of γ (α, β = 1). P4 and S1 mark attacks that are 
detected by these predicates while OK indicates normal processes 

Figure 10 shows the results of the detection accuracy as confusion matrices. The standard 
benchmarks (i.e., with no side-channel attack injected) are labelled as OK, while S1 and P4 indicate 
the attacks detected by the corresponding predicate. Confusion matrices with γ = 1 illustrate the 
behavior of our detection system as if the scoring system were not available. In this configuration, 
any application becomes suspected after a single violation of any metric. As we can observe, the 
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number of false positives is non-minimal, and on the i7-6700HQ it is even higher than real negatives. 
Overall, the benchmarks which have been wrongly suspected are the ones which either: i) involve a 
large number of forks and therefore propagate the information associated with the measures across 
a large number of processes; ii) implement data processing or machine learning algorithms iii) are 
memory-intensive scientific applications or explicitly test the memory hierarchy. Nonetheless, the 
number of false positives quickly decreases as the value of γ increases. Indeed, this is related to the 
fact that subsequent observations can filter out any potential spike in applications’ activity without 
prematurely marking the process as suspected. This trend matches exactly our expectations, also 
validating the viability of the scoring system. Our experiments did not report any false-negatives 
detection. The approach we have proposed well fits scenarios in which a higher level of security is 
desired. However, the system is still prone to performance optimization under very low-security risks. 
Moreover, by design, the tuning mechanism aims to reduce the likelihood of experiencing false 
negatives at the cost of slightly increasing the number of false positives. Nevertheless, if γ is set to 
a suitably high value, this number becomes negligible. By definition, a detection system is not a 
predictor, but it reacts to some events and makes decisions according to its model. Indeed, such a 
characteristic is crucial. Before classifying a malicious process as suspected, we expect part of its 
attack to have been executed—at least, the portion required to generate an identifiable pattern by 
our detection system. Typical side-channel attacks rely on a preliminary preparation phase (e.g., 
probing the cache) during which no data is actually read. If our detection system can detect a side-
channel attack during this preparation phase, the attacker will not be able to read any data. 
Conversely, if the detection system identifies the attack during its extraction phase, then the attacker 
might read some amount of information. Overall, the amount of data that an attacker can read even 
if our detection system is active is an important metric to assess the accuracy of our system-wide 
detection approach. Therefore, we have carried out an experiment to quantify the amount of data 
that a malicious process can read before its detection. In this experiment, the attacker shares a 
chunk of read-only memory with the victim and tries to leak information by mounting a side-channel 
attack on a byte-by-byte basis. Concurrently, the victim repeatedly reads the shared buffer with some 
delay among subsequent accesses, generating all the conditions to perpetrate the cache-based 
attack. In this experiment, we have set the secret’s size to be extracted to 256 bytes—this is a non-
minimal buffer corresponding to the size of a large Advanced Encryption Standard (AES) key. We 
have run this attack with our detection system turned off, which forms the baseline for our 
assessment. Figure 11 shows the results of this experiment with detection capabilities turned on with 
various values of γ and different victim’s read rates. With γ = 100, our approach can detect the attack 
before it extracts a significant fraction of the data extracted when no detection was active, but only 
when the victim reads with minor delays. By decreasing γ, the percentage of correctly extracted data 
is reduced. Although the reader may think that by increasing the victim’s read rate the detection may 
fail to identify the attack promptly, our results show that the percentage of extracted bytes decreases 
for very high frequency reads on all examined architectures. This phenomenon is due to side-
channel attacks being more sensitive to the noise generated when the activity in the system 
increases. 

4.2.3 Performance Assessment 

We have studied the performance improvement that we can obtain with our monitoring proposal. To 
quantify the performance benefit of our approach, we have again relied on the Phoronix Test Suite, 
selecting a set of benchmarks that interacts with the system in different ways, according to the 
following classes of behavior: 

A. intensive disk I/O operations (compilebench); 
B. pressure on the scheduler and context switch operation, also considering multithreaded 

applications (hackbench, ctx_clock); 
C. a large number of system call invocations, such as fork, exec, and those related to memory 

management (OSBench); 
D. high usage of the network socket API (sockperf); 
E. high usage of the GNU C Library APIs (glibc-bench) 
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F. Complex workloads, related to browsers and databases (selenium, sqlite-speedtest, 
Apache). 
 
 

 

Figure 11: Percentage of a 256-byte secret that an attack can correctly extract before being detected, for 

different values of 𝛾 (𝛼, 𝛽 = 1) and victim’s read rates. 

 

We also note that selecting these benchmarks allows profiling multiple classes of applications, 
namely CPU- bound ones (in userspace) or applications that repeatedly interact with the kernel, 
forcing the application to make a substantial number of mode switches. Given the implementation of 
software patches, we should influence the performance of the considered applications. No side-
channel attack has been mounted in this experiment. 



D5.4 Appendix L – Additional test and results reported outside the Verticals scope 

SPARTA D5.4 - Appendix L  Public Page 16 of 37 

 

Figure 12: Performance Effects of the HPC-based Monitoring System on different Architectures (log scale on 

the 𝑥-axis). 

These benchmarks were run in the four following scenarios to evaluate the performance impact of 
the system-wide detection scheme, also accounting for the effect of the observation window: 

 

A. Mainline kernel 5.4.145 with KPTI, retpolines, SSB mitigations, and all the patches discussed 
in Section 6 enabled by default for all processes—referred to as Generic in the plots. 

B. Kernel 5.4.145, with our support for dynamic patching, but with system-wide monitoring 
disabled—referred to as Monitor OFF in the plots. 

C. Kernel 5.4.145, with our system-wide detection scheme activated, with an observation 
window set to 2 20 clock cycles, which was the minimum observation window value 
considered by the adaptative approach in our setup—referred to as Monitor (short window) 
in the plots. 

D. Kernel 5.4.145, with our system-wide detection scheme activated, with an observation 
window set to 2 24 clock cycles, which was the maximum observation window value 
considered by the adaptative approach in our setup—referred to as Monitor (long window) in 
the plots. 

 

The results for the benchmarks in these configurations are reported in Figure 12, where we show 
the overhead compared to the mainline kernel 5.4.145 with no active patch, which is vulnerable to 
all the discussed attacks—values are averaged over three different runs. By the results, we can 

observe that the Monitor OFF approach offers a performance slowdown with respect to the Generic 

configuration, which is up to 4 orders of magnitude lower while showing an overhead over the 
unpatched mainline kernel lower than 4% on all architectures and for all application classes. This 



D5.4 Appendix L – Additional test and results reported outside the Verticals scope 

SPARTA D5.4 - Appendix L  Public Page 17 of 37 

means that the supports which we have introduced in the kernel to enable/disable at runtime the 
various security patches are lightweight and non-intrusive. Conversely, the overhead of the Monitor 

configuration over the Monitor OFF configuration is negligible. It is interesting to note that the 

impact of the window length is minimal: considering that they are related to the maximum/minimum 
values supported by our system, this experiment shows that the expected overhead, also accounting 
for the adaptative optimization of the window, is reduced. Of course, this reduced overhead is 
coupled with the increased security level which our proposal can offer. Overall, this is additional 
evidence of the viability of our proposal. A similar trend can be observed for all tested architectures 
(except for the i7-10750H) and all classes of applications, although with different relative ratios. This 
is an indication of the stability of our approach with respect to the performance of applications. The 
results on the i7-10750H processor do not match the other models’ behaviour. This is because Intel, 
starting from the 10th generation of its processors, introduced design changes to patch some 
hardware vulnerabilities. Consequently, the Linux kernel does not require enabling all the software 
patches (such as KPTI) on these processors to mitigate the performance slowdown. Nevertheless, 
our approach can still detect side-channel attacks on more modern architecture for which a hardware 
patch has not been proposed, with reduced overhead.  

 

Figure 13: Performance Penalties by Mitigations on the i5-8250U. 

 

The last experiment we present—the data reported in Figure 13—relates to an assessment of the 
overhead due to transient execution mitigations and side-channel mitigations, also when there is 
significant interference with benignware on the same CPU cores. For this experiment, we only report 
data taken on the i5-8250U machine for the sake of space. In any case, the results on the other 
architectures show trends that are perfectly comparable with the data reported on this CPU. We 
have launched a number of benchmarks taken from the Phoronix Test Suite equal to the number of 
available cores on the considered processor. 

Each benchmark has been statically pinned to one CPU core. We then varied the number of 
malicious applications, pinned them to specific CPU cores, and ran them concurrently with the 
benignware benchmarks. This setup stress-tests also the per-process detection/mitigation 
capabilities of our system. We report data associated with the system run with all transient execution 
mitigations always active (Mitigations always active in the plot), with transient execution mitigations 
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activated only for suspected processes (Dynamic TE mitigations in the plot), and with transient 
execution/side-channel mitigation countermeasures started only for suspected processed (Dynamic 
TE+SC mitigations in the plot). The applications have been selected to avoid any false 
positive/negative. As in the previous experiment, we report the overhead as the percentage increase 
over an execution in which no mitigation at all (neither static nor dynamic) is present in the system. 
By the result, we observe again that enforcing dynamic mitigations provides a significant overhead 
reduction, as high as 95%. As expected, the overhead incurred when also SC mitigations are active 
is higher. Of course, depending on the system’s configuration, the user can determine what set of 
mitigations should be enforced upon the detection of a malware application. 

4.3 Conclusions and Future work 

The metrics we have devised have allowed us to detect attacks with a negligible percentage of 
false positives and no false negatives. The data have been collected on different flavours of x86 
Intel CPUs and with a comprehensive set of benchmark applications (either benignware or 
malware). Based on the comprehensive architecture we have presented in this paper, we plan to 
expand the set of detection metrics as future work to account for other kinds of memory-based 
attacks, such as Rowhammer [6]. Furthermore, we plan to port our solution to processors from 
vendors other than Intel, e.g. AMD. Concerning the effects of our mitigation strategies, we 
additionally plan to conduct an experimental assessment to show the impact on our approach’s 
power consumption.  
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Chapter 5 Steady/ProjectKB – SAP 

This chapter provides additional information regarding functionalities that have been developed and 
tested in the context of SPARTA, both for Project KB and Eclipse Steady. 

5.1 Vulnerability creation and end-to-end import 

This test covers the creation of vulnerability information in Project KB as well as its import into Eclipse 
Steady and, from there, into VulnEx. 

 

Procedure: 

The following test steps have been performed: 

1) Manual creation and digital signature of a vulnerability statement for CVE-2021-36373 and 
CVE-2021-36374 in a dedicated branch “sparta-test” of a fork of Projekt KB (covering 
Project KB’s software requirements SR1, SR2) 

2) Manual change of a vulnerability statement to track changes (Project KB SR-4) 
3) Configuration update of Steady component kb-importer to read statements from that fork 

and branch (Project KB SR3, Steady SR3) 
4) Restart of Steady’s Docker Compose application to make configuration change effective 
5) Observation of logs and Steady’s Web frontend to check whether the new vulnerability has 

been automatically imported 

 

Result: Success 

Figure 14 and Figure 15 show the creation and change of the vulnerability statement for CVE-2021-
3673. The “verified” icon indicates that the commit has been digitally signed using the committers 
private key. 

 

 

Figure 14: Creation and change of vulnerability statement in fork of Project KB 
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Figure 15: Change as part of commit 6b1d748 

 

Figure 16 shows a log file snippet demonstrating that the configuration for Steady component kb-
importer has been taken into account. 

 

 

 

Figure 16: Screenshot showing the use of the new configuration setting 

 

Finally, Figure 17 shows Steady’s Web frontend before the import of the above mentioned 
vulnerabilities from the dedicated branch in a clone of Project KB, whileFigure 18 , Figure 19 and 
Figure 20 show the Web frontends of Steady and VulnEx after the completion of the end-to-end 
import. 

Note that the application did need to be scanned another time, the information collected during past 
scans sufficed Steady to discover that it is affected also by the new vulnerabilities. 
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Figure 17: Screenshot of Steady before import of new CVEs 

 

Figure 18: Screenshot of Steady after import of new CVEs from Project KB fork 

 

Figure 19: Screenshot of Steady's bug frontend with imported CVEs 
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Figure 20: Display after import of new CVEs from Steady to VulnEx 

5.2 Comparison of Java source code and bytecode (Steady SR1) 

This test covers the implementation of the “checkcode” goal (Steady’s software requirement SR1), 
which has the goal to further improve the detection rate of Steady, for cases where Steady was not 
yet able to determine whether a given method’s body correspond to the vulnerable or the fixed 
version. See D5.3 for a description of the approach. 

 

Procedure: 

The following test steps have been performed: 

1) Identify an archive with method bodies identical to a non-resolved candidate vulnerability 
(orange hourglass) in the application under test 

2) Import the library into the Steady backend 
3) Assess the imported library as vulnerable using Steady’s bug frontend 
4) Run the “checkcode” goal on the IDP application 
5) Open the Steady Web frontend for the scanned application and verify that the orange 

hourglass disappeared (and switched to a red exclamation mark, herewith signaling a 
vulnerability) 

 

Result: Success 

1) We identified that the library with GAV 
(org.apache.servicemix.bundles:org.apache.servicemix.bundles.ant:1.7.0_1) contains the 
same vulnerable code related to CVE-2020-1945 as the dependency 
(org.apache.ant:ant:1.7.0), which is one of the IDP’s dependencies showing an orange 
hourglass (cf. Figure 21). 

2) The library was created in the Steady backend by uploading JSON via a CURL POST 
request. 

3) We opened Steady’s bug frontend, and the new servicemix archive was shown, and its status 
was manually changed to “vulnerable” (cf. Figure 22). 

4) When running the checkcode goal via command line on the IDP application, Steady 
discovered that the unassessed code in (org.apache.ant:ant:1.7.0) resembles the one in the 
assessed servicemix library, and applied the same “vulnerable” assessment to it (cf. Figure 
23). 
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Figure 21: Archive ant-1.7.0.jar potentially vulnerable to CVE-2020-1945 

 

 

Figure 22: Marking servicemix re-bundle as vulnerable (in Steady's bug frontend) 
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Figure 23: Automated change of CVE-2020-1945 through running of checkcode goal 

5.3 Light-weight scan client (Steady SR2) 

This test covers the implementation of a light-weight version of Eclipse Steady’s Docker Compose 
environment (Steady’s software requirement SR2), the main objectives being to facilitate the use of 
Steady without needing to operate a heavy backend, and to support quick experiments with an easy 
setup. 

 

The implementation consisted of rewriting the Docker Compose file such that the services are 
grouped into core services, UI services and service related to the vulnerability database (VDB). Both 
UI and VDB services can be started and stopped as needed, which reduces the footprint of the entire 
Docker Compose application. Moreover, one service was entirely removed and re-implemented. The 
management of those service groups is done via a new install and start scripts, which abstracts 
Docker specifics from the user. 

 

Procedure: 

The following test steps have been performed: 

1) Install Steady in a fresh environment 
2) Start all services 
3) Monitor resource consumption 
4) Stop all but core services 
5) Monitor and compare resource consumption 

 

Result: Success 

The Figures 24-28 show screenshots of the above-described test procedure. In particular, Figure 26 
and Figure 28 demonstrate the reduced footprint of running just 3 core services compared to all 9 
services. 
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Figure 24: Steady installation using the new install script 

 

 

Figure 25: Start-up of all 9 Steady services 

 

 

Figure 26: Docker stats for all 9 Steady services 
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Figure 27: Start-up of only 3 core services (required for application scans) 

 

 

Figure 28: Docker stats for 3 core services 
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Chapter 6 Legitimate Traffic Generation system (LTGen) – 
IMT 

This section deals with the redesign of the LTGen generator using a new approach in relation with 
traffic distribution learnt from real traffic datasets. Going beyond synthetic dataset generation, the 
new approach proposes to reconstruct realistic network packets from a limited number of features, 
at first. This prototype needs to be generalized to a greater number of features. This will enable 
evaluators to produce synthetic traffic to replay against intrusion detection systems, without incurring 
privacy issues, and having to re-dimension traffic captures. 

6.1 Introduction 

A flow is a communication between two machines on a network. In the Intrusion Detection System 
literature, several datasets propose different features to characterize a flow. This flow 
characterization from a set of features can be called a flow profile. The aim of this project is to 
generate packets to form a flow that will respect a given flow profile.  

The first part will introduce the features selection process that we performed. Then the second part 
will present the tools used to generate some packet flows. And the last part will report on and discuss 
the generation experiments. 

6.2 Flow features set 

We first analyze a sample of datasets from the Intrusion Detection System literature in order to gather 
a wide range of different flow features. The features of four popular datasets were extracted: 42 flow 
features from BOT_IoT [31] ; 49 features from UNSW-NB15 [32]; 44 flow features from TON_IoT 
[33] ; and 80 network traffic features from CICIDS2017 [34]. 

From these datasets, we extracted common and similar flow features to obtain a limited list of 
features to model flows to be generated (see Table 2). 

Flow features set 

Source IP address 

Source port number 

Destination IP address 

Destination port number 

Flow duration 

Protocol 

Source to destination bytes 

Destination to source bytes 

Source to destination packet count 

Destination to source packet count 
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Flow features set 

Source bits per second 

Destination bits per second 

Down/Up Ratio 

Number of flow packets per second 

Minimum packet length from Source 

Maximum packet length from Source 

Mean packet length from Source 

Standard deviation packet length from Source 

Minimum packet length from Destination 

Maximum packet length from Destination 

Mean packet length from Destination 

Standard deviation packet length from Destination 

Flow IAT Min* 

Flow IAT Max 

Flow IAT Mean 

Flow IAT Std 

Forward IAT Min 

Forward IAT Max 

Forward IAT Mean 

Forward IAT Std 

Forward IAT Total 

Backward IAT Min 

Backward IAT Max 

Backward IAT Mean 

Backward IAT Std 

Backward IAT Total 

Table 2: Set of the selected flow features 
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We then reduced this list from 37 features to 14, by making two simplification choices. The first 
simplification was to focus on reproducing a unidirectional flow, so we kept only features describing 
the forward direction of the flow. The second simplification was to keep a group of features that could 
not be computed from other features, to reduce redundancy. For example, we kept the features 
number of packet and IAT Mean, but excluded the Duration feature since it can be computed from 
the former two. Our packet generator is then able to generate traffic from feature vectors of size 14 
(see Table 2). 

Flow features set 

Source IP address 

Source port number 

Destination IP address 

Destination port number 

Protocol 

Source to destination packet count 

Minimum packet length from Source 

Maximum packet length from Source 

Mean packet length from Source 

Standard deviation packet length from Source 

Forward IAT Min 

Forward IAT Max 

Forward IAT Mean 

Forward IAT Std 

Table 3: Restricted set of flow features for LTGen generation. 

6.3 Generation 

In the following, we detail the different components of our generation approach: how to generate the 
distribution of a given traffic feature? How to emulate the network? How to generate a real packet? 
How to capture the traffic for analysis (i.e., evaluate our solution)? 

6.3.1 Distribution generation 

From the list of features in Table 3, the Packet length and IAT features have four parameters 
describing their distribution inside a flow: Min value, Max value, Mean value and Standard deviation. 
There are several distributions that can respect the four parameters (Min, Max, Mean, Std), we 
choose to use the beta distribution, in order to find one. 
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“The beta distribution1 is a family of continuous probability distributions defined on the interval [0, 1] 
parameterized by two positive shape parameters, denoted by α and β”. 

In Figure 29, the beta distribution shape flexibility is demonstrated by plotting the probability density 
function under different α and β values. 

 

Figure 29: Beta distribution probability density function 

 

From the four parameters (Min, Max, Mean, Std), we can compute α, β and a range to obtain a beta 
distribution that will allow us to generate values that will respect the four input parameters. 

The main advantage of this solution is that from our configuration (Min, Max, Mean, Std), we obtain 
a distribution from which we can sample as many values as we want. This allows a great flexibility 
in the generated flow size, but also a good diversity since each value is randomly sampled. These 
properties (similarity, scale, diversity) ensure that the generated traffic, although synthetic, is 
realistic, i.e., close enough to the real network traffic. 

6.3.2 Network emulation 

Our generated traffic needs to be flown within a network testbed in which the IDS under test would 
be deployed. We have experimented with several tools to emulate a network where we would test 
our packet generation models. For each solution, we have studied the capabilities and limitations of 
the tool. We finally selected Containernet [35], since it was the most versatile and practical tool to 
emulate a network. 

Containernet is a fork of the project Mininet Emulator [36]. Like Mininet,  it can emulate a network of 
hosts, links and switches. It has an interactive Command Line Interface to interact with the hosts or 
to modify the network configuration. It can emulate a link between hosts with a specific delay, jitter, 
bandwidth and packet loss. The link characteristics are emulated using NetEm [37]. It runs on a 
single system which can be inconvenient with resource limitation when emulating large networks. 
On top of the Mininet functionalities, Containernet can emulate hosts from a chosen Docker image, 
which allows more flexibility in the network creation. 

                                                

1 https://en.wikipedia.org/wiki/Beta_distribution 
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6.3.3 Packet generation 

First we tried to generate and send packets on the fly with a Python network packet crafting library, 
Scapy2, but it was not possible to reach low inter arrival times values since Scapy was already 
introducing too much delay in the execution. Thus we opted to generate packets with Scapy 
beforehand, and put them inside a pcap capture file. The packets were consequently flown on the 
emulated network using tcpreplay3 on the generated pcap file. 

6.3.4 Packet capture and analysis 

For analyzing a packet capture file, we used a Tshark4 script to extract packet information into a csv 
file, followed by a Python script to compute flow features. This allows us to evaluate how similar our 
generated traffic is to the input features. 

If the pcap file contains several flows, we first use we first have to use Splitcap5, to extract flows into 
individual pcap files. 

6.4 Experiments 

In the following experiments, we used a simple network emulation with Containernet, with a sender 
machine and a receiver machine, linked by a switch with two links of 100 ms of delay and 1000 bits/s 
of bandwidth. We choose not to add any jitter in the links, in order to observe the impact of 
Containernet on the flow IAT features. 

6.4.1 Experiment 1 

The aim of the experiment is to reproduce a targeted profile inside our network emulation. We set 
two capturing points using tcpdump, one on the interface of the Sender machine, and the other one 
on the interface of the Receiver machine. The Sender machine will generate packets using tcpreplay 
from a pregenerated pcap file. We choose the UDP protocol since it is connectionless, and we fill up 
the payload randomly following the size given by the beta distribution. 

A pcap will be generated beforehand: for each packet, a value for the packet length and the IAT will 
be sampled from their respective beta distribution.  

The resulting profiles are displayed in Table 4. 

On the Sender interface, we can observe that the packet generation from beta distribution with 
tcpreplay is quite similar to the targeted profile for packet length and IAT features. But we can see 
that the border values (Min, Max) are not always respected since from the beta distribution 
generated, they may be very unlikely to be produced. That is why the Maximum packet length from 
Source of the Sender interface is lower than the targeted one. 

On the Receiver interface, we observe the same characteristics for packet length, but some 
fluctuations for the IAT feature. The mean value is respected, however IAT Min and IAT Max are 
quite different, IAT Max being one hundred times bigger for the Receiver interface. Nonetheless, 
Figure 31 shows that the global shape of the distribution remains the same. 

                                                

2 https://pypi.org/project/scapy/ 

3 https://tcpreplay.appneta.com/ 

4 https://tshark.dev/ 

5 https://www.netresec.com/?page=SplitCap 



D5.4 Appendix L – Additional test and results reported outside the Verticals scope 

SPARTA D5.4 - Appendix L  Public Page 32 of 37 

Profile Targeted profile 
Sender interface flow 

profile 
Receiver interface flow 

profile 

Protocol UDP UDP UDP 

Source to destination 
packet count 

10000 10000 10000 

Minimum packet length 
from Source 

10 10 10 

Maximum packet length 
from Source 

230 196 196 

Mean packet length from 
Source 

64 64.20 64.20 

Standard deviation 
packet length from 
Source 

32 32.03 32.03 

Forward IAT Min 0.006 0.00660 0.0030 

Forward IAT Max 0.02 0.0186 1.574 

Forward IAT Mean 0.012 0.01203 0.01203 

Forward IAT Std 0.002 0.00202 0.0201 

Table 4: Flow profiles according to the location of capture 

 

 

Figure 30: IAT of packets from the Sender interface 
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Figure 30 and Figure 31 present two charts that group packets by inter arrival time (IAT). In red, 
packets generated by sampling the beta distributions, configured from the targeted profile, forming 
the pregenerated pcap. In blue, packets captured on an interface after being sent by tcpreplay from 
the pregenerated pcap. In Figure 30, is represented the capture at the Sender interface, while in 
Figure 31, it is from the Receiver interface.  

In dark green, is represented the targeted Mean IAT value. In light green, is represented the Mean 
(more or less the Standard deviation of IAT). It defines an interval where 68% of the generated 
values should be. 

In brown, is represented the density probability of the beta distribution configured from the targeted 
profile (Min, Max, Mean, Std). It displays a global pattern of value distribution. we can see that, in 
this profile configuration, border values are quite unlikely to be sampled. 

6.4.2 Experiment 2 

This second experiment aims to test a different profile configuration. More precisely, the case where: 

𝑀𝑒𝑎𝑛 − 𝑆𝑡𝑑 < 𝑀𝑖𝑛.  We will focus on the IAT feature and the beta distribution. Table 4 presents the 
results of the generation of IAT. 

In Figure 32, we observe that the Beta distribution can adapt from this situation by producing a 
distribution that looks like a Pareto distribution. 

6.5 Discussions 

6.5.1 Standard error 

The deviation of a generated profile to the targeted profile depends on the number of packets to be 
generated. The standard error is defined as the ratio of  the standard deviation on the square root of 
n, the number of samples. Thus, for flows with a small number of packets and a high standard 
deviation, the standard error of a generated profile to the targeted profile will be high. 

Figure 31: IAT of packets from the Receiver interface 
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Profile Targeted profile 
Sender interface flow 

profile 

Protocol UDP UDP 

Source to destination 
packet count 

10000 10000 

Forward IAT Min 0.0001 0.000104 

Forward IAT Max 0.6 0.048304 

Forward IAT Mean 0.002 0.001929 

Forward IAT Std 0.004 0.003929 

Table 5: Flow profiles for the specific case 𝑀𝑒𝑎𝑛 − 𝑆𝑡𝑑 < 𝑀𝑖𝑛 

 

Figure 32: IAT Distribution for the specific case 𝑀𝑒𝑎𝑛 − 𝑆𝑡𝑑 < 𝑀𝑖𝑛 

 

In the CICIDS2017 dataset, we observed a wide majority of flows containing less than 20 packets 
(more than 80% of the database). So this generation method may not be relevant for a majority of 
flows, since we will generate flows with a high standard error, in other words flows with a different 
profile.  

6.5.2 Temporal consistency 

For each packet of a generated flow, the packet length and IAT attributes are sampled 
independently. Yet, the value of these attributes may be correlated with the characteristics of the 
previous packets. But in order to improve the temporal consistency between packets of a flow, new 
features have to be designed to characterize it.  
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Chapter 7 List of Abbreviations 

 

Abbreviation Translation 

AES Advanced Encryption Standard 

CPU Central Processing Unit 

HPC High Performance Counters 

KPTI Kernel page-table isolation 

L1 First-Level Cache 

LLC Lowest-Level Cache 

PMC Performance Monitor Counters 

PMI Performance Monitoring Interrupt 

PMU Performance Monitoring Unit 

SR Software Requirement 

TLB Translation Lookaside Buffer 
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