
D5.1
Assessment specifications and roadmap

Project number 830892

Project acronym SPARTA

Project title Strategic programs for advanced research and
technology in Europe

Start date of the project 1st February, 2019

Duration 36 months

Programme H2020-SU-ICT-2018-2020

Deliverable type Report

Deliverable reference number SU-ICT-03-830892 / D5.1 / V1.0

Work package contributing to the deliver-
able WP5

Due date January 2020 – M12

Actual submission date 31st January, 2020

Responsible organisation CETIC

Editor Sébastien Dupont

Dissemination level PU

Revision V1.0

Abstract

This deliverable describes the scenarios and use
cases addressed in the CAPE program, defines a
generic assessment framework, positions the tools
of the partners within this framework, addressing
continuous cybersecurity certification needs, and
concludes with the program roadmap.

Keywords assessment, certification, safety, security, con-
nected cars, e-government

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 830892.

D5.1 – Assessment specifications and roadmap

Editor

Sébastien Dupont

Contributors (ordered according to beneficiary numbers)

Maroneze André (CEA)
Massonnet Philippe, Dupont Sébastien (CETIC)
Nigam Vivek (FTS)
Plate Henrik (SAP)
Sykosch Arnold (UBO)
Cakmak Eren (UKON)
Thanasis Sfetsos (NCSR)
Jimenez Victor(EUT)
Amparan Estibaliz, Martı́nez Cristina, López Angel (TEC)
Garcia-Alfaro Joaquin, Segovia Mariana, Rubio-Hernan Jose, Blanc Gregory, Debar Hervé (IMT)
Carbone Roberto, Ranise Silvio, Verderame Luca (CINI)
Spaziani Brunella Marco (CNIT)
Yautsiukhin Artsiom (CNR)
Morgagni Andrea (LEO)
Klein Jacques, Bissyande Tegawende, Samhi Jordan (UNILU)

Reviewers (ordered according to beneficiary numbers)

Jan Hajny (BUT)
Evaldas Bruze (L3CE)

Disclaimer

The information in this document is provided ”as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author’s
view – the European Commission is not responsible for any use that may be made of the information
it contains. The users use the information at their sole risk and liability.

SPARTA D5.1 Public Page I

D5.1 – Assessment specifications and roadmap

Executive Summary

Deliverable 5.1, CAPE Assessment Specifications and Roadmap, is the first deliverable of the CAPE
program. CAPE stands for Continuous assessment in polymorphous environments. This scientific
activity of the SPARTA project addresses the issue of assessing cybersecurity performance of two
environments, addressing security and safety co-design on one hand, complex software systems of
systems on the other hand.
The main highlights of the CAPE program at almost one year of execution are threefold. First, the de-
liverable describes a universal V-model of the software development lifecycle, that we have extended
to meet our needs, and that enables a common description of all our tools despite their diversity
in purpose and scope. Second, it describes a set of new features for software assessment, that
will constitute advances to the state of the art with respect to software security and safety. Third,
it specifies new controls that can be embedded into software, with the specific goal of meeting the
security-safety co-design objective of the CAPE program.
The deliverable describes two use cases associated with these environments, the connected vehicle
for security and safety co-design, and the e-government for complex systems of systems. It briefly
describes the assessment demonstration scenarios foreseen in the verticals context: small-scale
vehicle infrastructures to simulate behavior of real vehicles in the connected vehicles vertical, and
mobile/desktop authentications solutions in the e-government vertical. It also provides a descrip-
tion of a generic assessment framework and positions the tools provided or being developed by the
partners within this assessment framework.
The role of the framework is to describe in which phase of the security engineering process each
of the assessment tools can be used. The framework includes safety engineering and cybersecurity
certification evaluation processes in order to explain how each of the assessment tools could also be
useful in these processes. The framework approach provides a loose coupling approach between
tools that have been designed and developed independently: simulation-based fault injection, for-
mal verification, software verification, penetration testing, security analysis, etc. Original assessment
methods will be produced and demonstrated: for example vulnerability assessment based on abstract
code representation to increase the level of assurance in e-government authentication services, and
model-driven/simulation-based fault injection for early dependability evaluation of safety-critical sys-
tems such as connected cars. The deliverable describes plans for making the assessment tools
available in a continuous integration and DevSecOps approach for the verticals in the next years of
the project.
The deliverable concludes with a roadmap for the next years of the research program. Roadmaps are
given for each of the tasks, detailing objectives, activities and expected results that will be reported
in the next deliverables D5.2, D5.3 and D5.4.

SPARTA D5.1 Public Page II

D5.1 – Assessment specifications and roadmap

Table of Content

Chapter 1 Introduction . 1

Chapter 2 Assessment and Certification Requirements for the Verticals 3

2.1 Vertical 1: Demonstration of converging tools for assessing Connected and Coopera-
tive Car Cybersecurity (CCCC) in the context of Euro NCAP 3
2.1.1 Case Study Objectives, Description and Relevance 4
2.1.2 Architecture and Technology of the Case Study 5
2.1.3 Assessment and Certification Requirements 13
2.1.4 Standards and Certifications . 29
2.1.5 Assessment Methods and Tools . 30

2.2 Vertical 2: Demonstration of a Complex System Assessment Including Large Software
and Open Source Environments, Targeting e-Government Services (CINI) 32
2.2.1 Case Study Objectives, Description and Relevance 33
2.2.2 Architecture and Technology of the Case Study 34
2.2.3 Assessment and Certification Requirements 37

2.3 Summary of Certification Requirements . 40
Chapter 3 SPARTA Assessment Specifications . 41

3.1 T5.1 - Assessment Procedures and Tools . 42
3.1.1 SPARTA Cybersecurity Assessment Tool Framework 42
3.1.2 Tools Descriptions and Development Plans . 54
3.1.3 Frama-C (CEA) . 55
3.1.4 Approver (CINI) . 60
3.1.5 Foreshadow-VMM Assessment Tool (CNIT/University of Rome Tor Vergata) . . 61
3.1.6 NeSSoS Risk Assessment Tool . 64
3.1.7 IDS and SIEM Assessment Tool (IMT) . 65
3.1.8 Risk Assessment for Cyberphysical Interconnected Infrastructures (MRA) . . . 66
3.1.9 Steady (SAP) . 69
3.1.10 Package Scanner (SAP) . 73
3.1.11 OpenCert (TEC) . 75
3.1.12 Sabotage (TEC) . 79
3.1.13 Visual Investigation of Security Information for Larger Software Development

Organizations (UKON) . 81
3.1.14 Logic Bomb Detection in Android Apps (UniLu) 84
3.1.15 Vulnerability Detection Tool For DevOps Communities (UniLu) 86
3.1.16 AutoFOCUS3 (FTS) . 89
3.1.17 Buildwatch (UBO) . 91
3.1.18 VaCSInE (CETIC) . 92
3.1.19 Continuous Integration of Assessment Tools 92
3.1.20 Task Roadmap . 94

3.2 T5.2 - Convergence of Security and Safety . 96
3.2.1 Specifications . 96
3.2.2 Task Roadmap . 116

3.3 T5.3 - Risk Discovery, Assessment and Management for Complex Systems of Systems 119
3.3.1 Context and Background . 119
3.3.2 Controls Specification . 120
3.3.3 Task Roadmap . 124

3.4 T5.4 - Integration on Demonstration Cases and Validation 125
3.4.1 Definition of Certification Requirements Derived from Assessment Procedures

and Tools . 125

SPARTA D5.1 Public Page III

D5.1 – Assessment specifications and roadmap

3.4.2 Task Roadmap . 126
Chapter 4 Roadmap . 127

4.1 Goals and Objectives . 127
4.2 Responsibilities . 128
4.3 Timeline . 128

Chapter 5 Summary and Conclusion . 130

Chapter 6 List of Abbreviations . 131

Chapter 7 Bibliography . 133

Chapter 8 Appendix . 140

SPARTA D5.1 Public Page IV

D5.1 – Assessment specifications and roadmap

List of Figures

Figure 1: Process for construction of D5.1 . 2

Figure 2: Illustration of a platooning formation. 4
Figure 3: Veloxcar vehicle. 6
Figure 4: Veloxcar architecture. 7
Figure 5: Illustration of Fortiss rovers. 8
Figure 6: Illustration of the AutoFOCUS3 specification of the software embedded in the

fortiss rover. 9
Figure 7: IMT SCADA Testbed . 9
Figure 8: Lego EV3 Rover testbed results . 11
Figure 9: OMNeT++ results . 12
Figure 10: Man in the Middle attack to platooning increasing a follower’s speed. 14
Figure 11: HARA Analysis of Vertical 1 (Platooning). 17
Figure 12: HARA represented in a model using Goal Structured Notation (1/2). 18
Figure 13: HARA represented in a model using Goal Structured Notation (2/2). 19
Figure 14: TARA represented as an Attack Defense Tree (1/2). 22
Figure 15: TARA represented as an Attack Defense Tree (2/2). 23
Figure 16: Illustration of the Penetration Testing Approach 31
Figure 17: The Italian Electronic Identity Card (CIE). 32
Figure 18: Overview of the case study of Vertical 2. 33
Figure 19: Desktop Scenario. 35
Figure 20: Mobile Scenario. 36
Figure 21: Components in the scope of the demonstrations. 37

Figure 22: V-Model - Certification for safety and security . 43
Figure 23: V-Model vs CAPE tooling . 45
Figure 24: V Model - Security Engineering Process . 47
Figure 25: V Model - Safety Engineering Process . 48
Figure 26: V Model - certification process . 49
Figure 27: Common Criteria Assurance Classes mapping 50
Figure 28: Frama-C/Eva’s current architecture . 59
Figure 29: Frama-C/Eva’s architecture for CI builds . 59
Figure 30: Frama-C/Eva’s architecture for audits . 59
Figure 31: High-level architecture of Steady . 72
Figure 32: High-level architecture of Package Scanner . 74
Figure 33: Overview of TSOpen . 85
Figure 34: Various Modules of SafeCommits . 88
Figure 35: DevOps pipeline sample tooling . 93
Figure 36: DevSecOps pipeline sample tooling . 93
Figure 37: ISO 26262 HARA Process Flow. 98
Figure 38: ISO 26262-3:2018 Table1: Classes of severity. 98
Figure 39: ISO 26262-3:2018 Table2: Classes of probability of exposure. 99
Figure 40: ISO 26262-3:2018 Table3: Classes of controllability. 99
Figure 41: ISO 26262-3:2018 Table4: ASIL determination. 99
Figure 42: FTA Example. 100
Figure 44: Example of GSN-Model with Quantitative Information. Here the pair m/n attached

to goals specifies, respectively, the number of defeaters outruled and the total
number of identified defeaters. 101

Figure 43: GSN Hazard Pattern. 101
Figure 45: Attack Tree Example. 103

SPARTA D5.1 Public Page V

D5.1 – Assessment specifications and roadmap

Figure 46: Attack Defense Tree Example. 103
Figure 47: Methodology for translating safety models to Attack Trees 104
Figure 48: Overview of the SysML-Sec methodology . 109
Figure 49: Illustration of an application of formal methods for automated safety and security

analyses. 109
Figure 50: Simulation-based Fault Injection workflow. 112
Figure 51: Automotive domain standards. 114
Figure 52: Roadmap for Task 5.2 activities. 116
Figure 53: High-level development, build and distribution activities in software projects. . . . 119
Figure 54: Example Dependency Tree . 120
Figure 55: Attack Tree for Open Source Supply Chain Attacks 123
Figure 56: Evaluability process phases . 125

Figure 57: CAPE task roadmap planning . 129

Figure 58: NeSSoS Risk Assessment Architecture . 143
Figure 59: Approver architecture . 154

List of Tables

Table 1: Summary of Certification Requirements . 40

Table 2: CAPE Framework tools summary . 44
Table 3: Summary of the SPARTA framework tools relation with security V-Model phases 46
Table 4: Summary of the SPARTA framework tools relation with safety V-Model phases . . 46
Table 5: International cyber-security standards and frameworks overview 51
Table 6: National cyber-security standards and frameworks overview 53
Table 7: Frama-C - Use Cases . 56
Table 8: Frama-C - User Requirements . 57
Table 9: Frama-C - Software requirements . 58
Table 10: Frama-C - Use cases, realisations and architecture 59
Table 11: Frama-C - Demo scenarios and verification methods 60
Table 12: Foreshadow-VMM - Use Cases . 61
Table 13: Foreshadow-VMM - Certification requirements . 62
Table 14: Foreshadow-VMM - Software requirements . 62
Table 15: Foreshadow-VMM - Use cases, realisations and architecture 63
Table 16: Foreshadow-VMM - Demo scenarios and verification methods 63
Table 17: MRA - Use Cases . 67
Table 18: MRA - Software requirements . 67
Table 19: MRA - development roadmap . 68
Table 20: MRA - verification and validation plan . 68
Table 21: Steady - Use Cases . 70
Table 22: Steady - Software requirements . 71
Table 23: VA - Demo scenarios and verification methods 72
Table 24: Package Scanner - Use Cases . 73
Table 25: PS - Demo scenarios and verification methods 74
Table 26: OpenCert - Use Cases (1/2) . 77
Table 27: OpenCert - Use Cases (2/2) . 78
Table 28: Sabotage - Use Cases . 80
Table 29: VI - Use Cases . 81
Table 30: VI - Certification requirements . 82
Table 31: VI - Software requirements . 83

SPARTA D5.1 Public Page VI

D5.1 – Assessment specifications and roadmap

Table 32: VI - Use cases, realisations and architecture . 83
Table 33: VI - Demo scenarios and verification methods . 83
Table 34: TSOpen - Use Cases . 84
Table 35: TSOpen - Software requirements . 85
Table 36: TSOpen - Use cases, realisations and architecture 85
Table 37: TSOpen - Demo scenarios and verification methods 86
Table 38: SafeCommit - Use Cases . 87
Table 39: SafeCommit - Use cases, realisations and architecture 88
Table 40: SafeCommit - Demo scenarios and verification methods 88
Table 41: AutoFOCUS3 - Use Cases . 90
Table 42: AutoFOCUS3 - User Requirements . 90
Table 43: Overview of tools extended/developed in the context of T5.1 95
Table 44: List of Tools to be used by Task 5.2 and respective phase of the roadmap. 118
Table 45: Overview about tools extended/developed in the context of task 5.3 124

Table 46: NeSSoS - Use Cases . 140
Table 47: NeSSoS - Certification requirements . 141
Table 48: NeSSoS - Software requirements . 142
Table 49: NeSSoS - Use cases, realisations and architecture 143
Table 50: NeSSoS - Demo scenarios and verification methods 144
Table 51: Buildwatch - Use Cases . 144
Table 52: Buildwatch - Software requirements . 145
Table 53: Buildwatch Sandbox - Use cases, realisations and architecture 146
Table 54: Buildwatch Sandbox - Demo scenarios and verification methods 146
Table 55: IDS - Use Cases . 147
Table 56: IDS - User Requirements . 148
Table 57: IDS - Software requirements . 149
Table 58: IDS - Use cases, realisations and architecture . 150
Table 59: IDS - Demo scenarios and verification methods 151
Table 60: VaCSInE - Use Cases . 151
Table 61: VaCSInE - Certification requirements . 152
Table 62: Approver - Use Cases . 153
Table 63: Approver - Software requirements . 153
Table 64: Approver - Demo scenarios and verification methods 154

SPARTA D5.1 Public Page VII

D5.1 - Assessment specifications and roadmap

Chapter 1 Introduction

The CAPE program, listed in the description of action as workpackage 5 (WP5), is one of the four
scientific programmes of the SPARTA project selected during the project construction and being ex-
ecuted during the project lifetime, to demonstrate concretely how research governance activities are
handled within SPARTA.
CAPE stands for Continuous Assessment in Polymorphous Environments. It addresses the issue
of assessing cybersecurity performance of our environments. It targets two specific environments,
cybersecurity and safety convergence on one hand, complex systems of systems on the other hand.
Cybersecurity and safety convergence stems from the fact that industrial systems, typically cyber-
physical systems, are increasingly controlled by programs. For example, cars are probably one of the
most computerized objects available today, with over 100 onboard controllers and computers, and
more code inside than an airplane. While we have addressed safety of cyber-physical systems for
some time now, there is a need to provide methods and tools for including cybersecurity properties in
safety reasoning, and to jointly specify cybersecurity and safety goals, to ensure that one would not
disable the other.
Complex software systems are increasingly driven by the DevOps paradigm, where development and
runtime are intimately mixed to put in production advanced versions of software. This is reinforced by
the fact that software vendors rely on large numbers of libraries, which also need to be risk-assessed
and incorporated into the cybersecurity assessment process.
The CAPE program addresses these two aspects through tasks 5.2 and 5.3 respectively, each of
these tasks focusing also on a use case. Deliverable 5.1, Assessment specifications and roadmap, is
the first deliverable in the CAPE program. Its role is thus to set the scene of the program activities for
the duration of the project, leading to the definition, development and demonstration of assessment
tools linked to the two environments described before.
The assessment tools being developed or extended in the CAPE research program are presented in
the form of a cybersecurity assessment framework. The role of the framework is to describe in which
phase of the security engineering process each of the assessment tools can be used. The framework
also takes into account safety engineering and cybersecurity certification evaluation processes in
order to explain how each of the assessment tools could also be useful in these processes.
D5.1 is organized as follows. Chapter 2 describes these use cases, the connected vehicle and
platooning for cybersecurity and safety, e-government for complex systems of systems. Chapter 3
provides high-level assessment specifications, whose goal is to describe the assessment lifecycle
as we understand it, so that it fits the needs of the use cases. Chapter 3 also describes the tools
made available or developed by the partners in the context of CAPE. Chapter 4 concludes with our
development roadmap.

SPARTA D5.1 Public Page 1 of 154

D5.1 - Assessment specifications and roadmap

Figure 1: Process for construction of D5.1

SPARTA D5.1 Public Page 2 of 154

D5.1 - Assessment specifications and roadmap

Chapter 2 Assessment and Certification Re-
quirements for the Verticals

This section provides an overview of assessment and certification requirements for the two verticals
addressed by the CAPE program. For each vertical, the objectives of the case studies will be de-
scribed and their relevance to assessment and certification will be explained. Architectures for the
various case studies are then presented to demonstrate assessment methods, tools, standards and
certifications.

• the Connected and Cooperative Cars Vertical (section 2.1) aims at advancing the cyber-
security of connected vehicles in the context of a vehicle platooning scenario. The vertical will
produce 3 demonstrators that will show how continuous assessment can improve security and
safety 1 using tools and techniques built in the CAPE program: simulation-based fault injection,
Security/Safety by design 2 through formal verification, software verification & validation and
penetration testing.
• the e-Government Services vertical (section 2.2) has as goal to improve the cyber-security

of authentication solutions based on the Italian national identity card. Through 2 case studies
(desktop RF and mobile NFC), several assessment methods will be demonstrated: protocol
security verification, software verification methods, vulnerability and risk assessment.

Note that the vertical related to financial services will not be further pursued. Originally meant to
demonstrate assessment tools developed in the context of CAPE task 5.3, further investigation re-
vealed that those tools are largely independent of a given industry or vertical and their specific secu-
rity and certification requirements. At high-level, those tools aim at the detection and prevention of
known and unknown security vulnerabilities in own and third-party code (cf. Section 3.3.2.1) as well
as the detection of so-called supply chain attacks (cf. Section 3.3.2.2). Those objectives, however,
apply to virtually every industry and use-case. Moreover, it turned out that many tools developed by
CAPE partners target specific technologies, e.g., programming languages and devices. The majority
of those technologies are not present in the software application part of the financial services use-
case, thus, cannot be demoed in this context. For those reasons, it was decided to demonstrate tools
developed as part of CAPE task 5.3 at the example of the other use-cases, which will also allow to
focus CAPE partners’ efforts.

2.1 Vertical 1: Demonstration of converging tools for assessing Connected and
Cooperative Car Cybersecurity (CCCC) in the context of Euro NCAP

The past years have witnessed a technological revolution interconnecting systems and people. This
revolution is leading to new exciting services and business models. The automotive industry is also
profiting from this revolution, as in the near future, vehicles will reach high levels of autonomy, enabled
by many technologies and in particular, by the increased integration between vehicles and between
vehicle and the available infrastructure.
However, the increased interconnectivity and increased level of autonomy increase both the attack
surface of these systems and also the degree of damage that intruders can cause. Indeed, cyber-
attacks can exploit vulnerabilities in the available communication channels to cause catastrophic
events, i.e., great human and material loss. For example, it has been shown that safety mechanisms
can be deactivated remotely by intruders [5, 8], thus placing its passengers in danger.

1In this deliverable, concepts such as security, risk, safety, threats, ... are used according to the ENISA overview of cyber-
security and related terminology https://www.enisa.europa.eu/publications/enisa-position-papers-
and-opinions/enisa-overview-of-cybersecurity-and-related-terminology, they will be defined in
the following sections of the deliverable as needed

2Note that work on the related concepts ”Privacy by Design” and ”Privacy by Default” is achieved in the SPARTA work
package 2

SPARTA D5.1 Public Page 3 of 154

https://www.enisa.europa.eu/publications/enisa-position-papers-and-opinions/enisa-overview-of-cybersecurity-and-related-terminology
https://www.enisa.europa.eu/publications/enisa-position-papers-and-opinions/enisa-overview-of-cybersecurity-and-related-terminology

D5.1 - Assessment specifications and roadmap

This vertical has as goal to advance the cyber-security of connected vehicles. In the next sections,
we will discuss the specific case study we will investigate, namely platooning, the available infras-
tructure for demonstrating the effectiveness of our goal, and related assessment and certification
requirements.

2.1.1 Case Study Objectives, Description and Relevance

Vehicle Platooning is a vehicle mode where vehicles, normally trucks, travel in a sequence formation,
as illustrated by Figure 2. The platoon is led by a vehicle, called leader, and the following vehicles
are called followers.

Figure 2: Illustration of a platooning formation.

The vehicles try to keep a minimum gap between the vehicles to reduce fuel consumption by profiting
from the wind shadow generated by the following vehicle. To keep such a short gap and still be safe,
vehicles possess distance sensors and rely on communication channels between the vehicles. For
example, whenever a vehicle has to activate its emergency brakes, the whole platoon is informed,
thus decreasing the reaction time and avoiding accidents.
Besides the improved fuel consumption, platooning also improves the traffic safety, as the leader car
is connected to the infrastructure that informs the leader about, for example, possible hazards in the
road, so that the leader can react adequately maintaining the platoon in safety.
From a security perspective, one needs to answer the following question:

How can one continuously guarantee that cyber-attacks cannot exploit vulnerabilities in, for
example, the communication channels and cause accidents?

This research question can be broken down into the following two sub-objectives:

• Objective 1: To demonstrate in the platooning case study safety and security co-engineering,
including techniques for co-analysis, co-verification, and assessment.
• Objective 2: To demonstrate how safety and security standards relevant for connected cars

can be integrated and how they can impact the assessment process.

In order to achieve these objectives, we will develop and apply techniques from the following domains:

• Cyber-Physical Systems: Connected cars contain embedded software (cyber) that interacts
with the physical world. For example, the software embedded in the platoon vehicles takes
decision on accelerating or not depending on the information gathered by sensors and the
information sent by the other vehicles.
• Automotive: As the vertical involves vehicles, it is also subject to the existing certification and

assessment standards.
• Safety and Security: As described above, cyber-attacks can cause catastrophic events, e.g.,

vehicle accidents. This means that there is a clear impact of security in safety. Methods as
safe/secure by design will be deployed to carry out co-analysis between safety and security.

SPARTA D5.1 Public Page 4 of 154

D5.1 - Assessment specifications and roadmap

• Network Communication: The network communication between the vehicles has to have a
high level of trust and thus security, so that vehicles can base their decisions on the information
transmitted between the vehicles.
• Model-Based Engineering: The automotive industry widely applies Model-Based Engineering

approaches for the development of vehicles. Instead of using document-based development,
Model-Based Engineering approaches builds models that can be reasoned over, such as for
co-analysis of safety and security [71, 81].

The vehicles in the platoon have the following main functions:

• Platoon formation: A vehicle may join a platoon by using a vehicle merge maneuver, or a vehi-
cle that is already member of a platoon may leave its platoon by using a vehicle split maneuver.
A vehicle performing a merge maneuver may join the platoon at the back of the platoon, or can
also use a more complicated maneuver and join in the middle of the platoon, in which case,
the platoon vehicles form a larger gap so that the merging vehicle can join the platoon. These
functions require that the merging/splitting vehicle and the leader of the platoon coordinate by
sending data, such as their speed, location, and number of vehicles in the platoon.
• Lane Keeping: The vehicles when in a platoon (or in the platoon mode) keep within the road

lane in an automated fashion. This means that the vehicles can identify the lane in which they
are and they can follow the lane even when the road has curves.
• Sensing functions: Vehicles contain a number of sensors that provide information about the

vehicle and its environment. For example, LIDAR can inform the distance to the vehicle in front.
GPS signals inform the vehicle’s localization. Cameras can be used together with AI elements
to detect the types of objects in the road.
• Vehicle to Vehicle (V2V) communication: Vehicles can communicate within each other. This

is necessary, for example, to negotiate when a vehicle wants to join a platoon, and coordi-
nate among the vehicles so that an accepted vehicle joins the platoon, and to inform vehicles
whenever there is an emergency brake maneuver.
• Infra-structure to Vehicle (I2V) communication: Vehicles can also communicate with the

available infrastructure. For example, the infrastructure can inform vehicles whenever there is
a hazard ahead. Similarly, a vehicle can inform the infrastructure about the road conditions.
• Adaptive Cruise Control (ACC) or Cooperative Adaptive Cruise Control (CACC): To main-

tain the gap to the next vehicle, a vehicle has to control its speed in an automated fashion.
The gap has to be kept within a safe distance, even vehicles activate their emergency brake. It
may do so by relying in its sensors, e.g., distance sensors, without relying on the information
communicated by the other vehicles, called Adaptive Cruise Control, or they can use the infor-
mation sent by the other vehicles in the platoon, called Cooperative Awareness Basic Service.
Vehicles that use CACC can be informed, for example, whenever a vehicle ahead in the platoon
has activate the emergency brake and take preventing actions. However, this communication
can also, in principle, be exploited by intruders.

Vertical Scenario Conditions For the vertical, we are considering a scenario where the platoon(s)
are on the Highway in a dedicated lane for platoons only. Moreover, there are no intersections nor
joint points. Initially, we are going to assess the security of when the platoon is formed and uses
CACC so that vehicles maintain a safe distance between each other. Then we will also consider
more complicated maneouvers, such as when a new vehicle wants to merge with an existing platoon
or when a vehicle wants to split from the platoon that his part of.

2.1.2 Architecture and Technology of the Case Study

The CCCC vertical will have some demonstrators from different companies where several of the
tools and methodologies developed in the CAPE workpackage will be applied. Demonstrators will be
composed of a small-scale vehicle infrastructure simulating the behaviour of real vehicles.

SPARTA D5.1 Public Page 5 of 154

D5.1 - Assessment specifications and roadmap

2.1.2.1 Demo 1: Tecnalia Case Study

Tecnalia will provide an infrastructure of three Veloxcar vehicles as the one illustrated by Figure 3.
These Veloxcars will be part of the demonstration of safety and security co-engineering, including
techniques for co-analysis, co-verification, and assessment. The size of each vehicle is 1:8.

Figure 3: Veloxcar vehicle.

The Figure 4 shows an overview of the top-level system architecture of a Veloxcar vehicle. Each
Veloxcar has two Engine Control Unit (ECU)s. The first ECU, called Vehicle-ECU, contains the
software to operate the basic communication and motion-systems needed to run the vehicle actu-
ators, whereas the second ECU, called Advanced Driver-Assistance System (ADAS)-ECU, contains
the necessary software to operate all systems related to the autonomous-driving-functions, such as
Lane Keeping or Adaptive Cruise Control. This ECU has the Robot Operating System (ROS) as
Middleware running on a Linux-Distribution.

SPARTA D5.1 Public Page 6 of 154

D5.1 - Assessment specifications and roadmap

Figure 4: Veloxcar architecture.

Vehicle-ECU is a STM32F4 Discovery board that manages all motor control (longitudinal and lateral)
and contains vehicle model odometry calculation from the encoder sensor data.

• Incremental Encoder: The vehicle has two encoders installed in the back wheels to measure
the current wheel speed.
• Steering servomotor: Servomotor that performs the angle of the steering.
• DC Motor: Brushless Direct Current (DC) motor which deploys the speed on the vehicle.

ADAS-ECU is an Odroid XU4 board which can run various Linux distributions, in our case Ubuntu
Mate 16.04. By implementing the eMMC 5.0, USB 3.0 and Ethernet interfaces, the ODROID-XU4 has
a high data transfer speed, which is a feature that is increasingly required to support the processing of
the autonomous-driving-functions. To perform these functions, some inputs coming from the following
sensors are needed.

• Camera: A camera is installed in front of the vehicle to capture a lane on the road. The camera
is a DFM 22BUC03-ML USB 2.0 color board camera with 1/3 Micron CMOS Sensor, 0,4MP
(744x480) resolution and up to 76 fps.
• Ultrasonic sensor: The ultrasonic sensor installed in the front of the vehicule is a SRF02

sensor with a range of 20cm to 6m. a frecuency of 40KHz and both a i2c and serial interface.
This sensor emits an ultrasonic wave and receives the wave reflected back from any object
in the wave path. The ultrasonic sensor returns the distance from the vehicle to the object,
measuring the time between the emission and the reception.

The Veloxcar has several communication systems implemented. Firstly, to reach the communication
between the two ECUs, a RS232 serial communication channel is used. Secondly, to set parameters
and/or control the vehicle from a computer, Local Area Network (LAN) (Ethernet) or Wireless Local
Area Network (WLAN)(WiFi) are used. Finally, wireless communication between vehicles is achieved
via WiFi. All the communication between the vehicles is not encrypted.
In the CCCC vertical, the intelligence of the vehicles will be improved to be used in a Cooperative
Adaptive Cruise Control (CACC)/Platooning scenario, which is an improvement of the Adaptive
Cruise Control (ACC) advanced driver assistance system. In this scenario one of the vehicles will be
the leader, and using the data coming from the odometry, camera and ultrasonic sensors will be kept
circulating within a circuit that has been traced with white lines. The leader will send its speed via

SPARTA D5.1 Public Page 7 of 154

D5.1 - Assessment specifications and roadmap

WIFI to other two vehicles (CACC followers) to adopt it. The followers must also maintain a safety
distance between them.
Along the demostration, the leader will be modifying its velocity (accelerating or decelerating) along
the route and the followers will be adapting their velocity in order to maintain a safe gap to the vehicle
in the front.
Several hazardous situations can arise that affect the safety of the system (cf. Section 3.2.1.1.1).
Besides that, several threats on the communication channels could also affect that safety (cf. Sec-
tion 2.1.3.5). Both safety hazards and security threats could cause collisions between the platooning
members, affecting the safety of the vehicules and the passengers integrity. Therefore, some safety
and security mechanisms should be added to mitigate these risks (cf. Section 2.1.3.6).

2.1.2.2 Demo 2: Fortiss Case Study

Fortiss will make available its rovers to demonstrate safety and security co-engineering techniques,
developed in Task 5.2, and for the demonstration of the software security verification tools, developed
in Task 5.3. Figure 5 depicts the types of rovers available at Fortiss. As the rovers were mounted
within Fortiss, they can be customized with different set of sensors. For example, some rovers include
LIDAR sensors that have been used to implement automated parking functions.

Figure 5: Illustration of Fortiss rovers.

The basic architecture of the Fortiss rovers is composed by the following components:

• Raspberry PI, containing the embedded software with the logic of how the rovers shall behave.
• pi camera used as a sensor for detecting, for example, which vehicle is ahead. This functionality

is provided by using the open source OpenCV software https://opencv.org/.
• FOCBOX (VESC) motor controller together with its embedded proprietary software, that con-

trols the motor actuators.
• Tinkerforge Sensor system, containing a basic set of sensors.

The software embedded in the rovers is partly developed using a Model-Based Engineering develop-
ment process, using the tool AutoFOCUS3 [2], using a Model-Based Engineering approach.
Figure 6 depicts a screenshot of part of the AutoFOCUS3 model. AutoFOCUS3 generates C code
from the model, which is then embedded in the available Rasberry Pis. Moreover, some C libraries
have been implemented by Fortiss for integrating the code generated by AutoFOCUS3 and the re-
maining libraries embedded in the rover.
Currently, there has not been any emphasis on the security issues, but only on demonstrating that it
is possible to program Platoon solutions using Model-Based Engineering approaches. For example,
all the communication between vehicles is not encrypted.
Therefore, we strongly believe that the Fortiss demonstrator could profit from the assessment tooling
available/developed by CAPE.

SPARTA D5.1 Public Page 8 of 154

https://opencv.org/

D5.1 - Assessment specifications and roadmap

Figure 6: Illustration of the AutoFOCUS3 specification of the software embedded in the fortiss rover.
Contexte HMAC et MODBUS/TCP MODBUS Dégradé Conclusion

But du projet et maquette

La maquette LEGO EV3 (1/3)

FIGURE – La voiture Lego Mindstorm EV3

Nicolas PEIFFER, Malcolm BOURDON Soutenance PFE 24 janvier 2017 6 / 33

(a) EV3 Rover agent. (b) Generation of SCADA traffic.

(c) OMNeT++ co-simulation, using the generated SCADA traffic.

Figure 7: IMT SCADA Testbed (cf. http://j.mp/omnetcps and http://j.mp/legoscada for live demonstration
videocaptures and source code). (a,b) Generation of SCADA-driven CPS data (c) OMNeT++ co-simulation.

SPARTA D5.1 Public Page 9 of 154

http://j.mp/omnetcps
http://j.mp/legoscada

D5.1 - Assessment specifications and roadmap

2.1.2.3 Demo 3: IMT Case Study

The testbed consists of Lego Mindstorms EV3 Rover agents [98], complemented by Raspberry Pi [74]
units implementing the feedback controllers in charge of leading the sensors (e.g., distance sensors)
and actuators (e.g., dynamic speed accelerators) of the EV3 Rover agents. Some pictures of the
testbed are shown in Figures 7a and 7b. SCADA traffic is generated from the testbed (EV3 Rover
agents and controllers), based on standard Modbus command and control specifications [77]. The
testbed implements a kinematics scenario, in which two or more EV3 Rover agents perform a deter-
ministic (cyclic) motion (e.g., backward and forward motion over a bounded square area).
Figure 7c depicts the numeric co-simulation complementing the kinematics scenario, using the col-
lected SCADA traffic to train a cyber-physical programmable simulator using OMNeT++ [112, 118]
and some related TCP/IP and Modbus simulation libraries [97, 113]. Each EV3 Rover agent (cf. Fig-
ure 7a) have a distance sensor in the frontal part, to measure the relative distance to the boundaries
of a unit square area. The distance is transmitted to the feedback controllers, via SCADA commands.
The feedback controllers compute the relative velocity of each agent, and the Euclidean distance
between, e.g., two agents, in order to guarantee spatial collision-free motion. The goal of the testbed
is to experiment an adversarial use case, in which a rogue device perpetrates a cyber-physical attack
that affects the control processing of the EV3 Rover agents. If the attack is successful, the agents
move to undesirable states, resulting in the physical collision depicted by the dotted red lines in
Figure 7b. Figures 8(a–b) show the kinematics during the nominal case (i.e., absence of attacks, left-
side); and during the attack (i.e., the moment at which the adversary takes control over the system,
right-side). Time is normalized between 0.0 and 1.0, representing the temporal percentage of multiple
experimental runs. We can appreciate how the system moves to unstable states, disrupted by the
adversary. Some live demonstration videos showing the spatial collision that cause the disruption
represented in Figure 8 are available at http://j.mp/legoscada.
During the OMNeT++ co-simulation, we analyze the system behavior in the normal operation mode,
under attack and using the attack attenuation approach presented in [106]. In the testbed, the two
EV3 Rover agents follow a trajectory of up to two meters. The feedback controllers coordinate the
movement of the agents, by sending the relative velocity to the agents, and receiving back the dis-
tance of the agents to the spatial boundaries. The feedback controllers send a series of SCADA
commands, through a network of traffic programmable forwarders (e.g., software defined switches).
The physical process controlling the agents, i.e., their distance sensors and their dynamic speed ac-
celerators, are controlled by the differential equations and automata defined in [100]. The adversary
starts the cyber-physical attack by either tampering the controller with fake sensor readings or modi-
fying the control commands sent from the controller. With the OMNeT++ co-simulation, we evaluate
the attenuation of a bias injection attack [111], i.e., by forging tampered control commands from the
controller to the plant. The focus of the co-simulation is only the physical part of the cyber-physical
attack, using the network to damage the system. In other words, it assumes adversaries that already
found their way to hack and gain unauthorized remote access to the system, e.g., using cyberattacks
exploiting weaknesses associated to the cyber part of the system.
Each co-simulation evaluates multiple Monte Carlo different runs (i.e., hundred runs per evaluation
test). Simulations consider as well potential sensing errors (e.g., up to 1% distance sensing errors)
w.r.t. the real distance values. They also consider network delays, e.g., based on classical distribution
delays reported in [39]. Figure 9(a) shows the results obtained for the nominal case (i.e., absence
of attack), considering the aforementioned simulation assumptions. The plots depict the average
Euclidean distance, with 95% confidence intervals, between the agents, and in function of time. The
horizontal axis of the plots in Figures 9(a–d) provides a normalized time between 0.0 and 1.0, repre-
senting the temporal percentage prior concluding the simulation runs. The vertical axis of the plots
in Figures 9(a–d) provides the Euclidean distance between the two agents, from 0 to 1400 cm. Some
further evaluation details are discussed below.
During the perpetration of the attacks, adversaries performs a bias injection of cyber-physical
data [111]. Adversaries use the network to modify the exchanged packets between the feedback
controllers and the agents. We assume that the adversaries are constantly recording and learn-

SPARTA D5.1 Public Page 10 of 154

http://j.mp/legoscada

D5.1 - Assessment specifications and roadmap

(a) Temporal representation of the kinematics scenario, associated to two EV3 Rover agents
(left-side, nominal mode; right-side, kinematics during the attack).

-1

-0.5

0

0.5

1

Time(s)

V
al

ue
 o

f s
ta

te
s

0.1 0.2 0.3 0.4 0.5 0.6 Time

-1

-0.5

0

0.5

1

Time(s)

V
al

ue
 o

f s
ta

te
s

0.1 0.2 0.3 0.4 0.5 0.6 Time

(b) Winding graph of a complete kinematics cycle (left-side, nominal case; right-side, attack case.)

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Figure 8: Lego EV3 Rover testbed results (kinematics during nominal and attack modes).

ing the system kinematics by simply accessing the exchanged outputs associated to the commands
between sensor, controllers and actuators. Adversaries perform an initial learning phase, to eaves-
drop data and infer the system kinematics, i.e., the same ones used by the feedback controller to
guarantee the stability of the system, shown as nominal case in Figure 9(a).
Let uk be a feedback controller command sent to the actuator of one of the agents at time k. Let uactk

be the command received by the actuator at time k, where 0 ≤ k ≤ Ts and Ts be the full duration of
each simulation run. The attack interval Ta is limited to the simulation time Ts, as summarized next:

uactk =

uk if k /∈ Ta

u′k if k ∈ Ta

During the evaluation, we compare two type of adversaries according to the bias injected in the
payload of the packets, i.e, according to the difference between the value u′k injected by the attacker
and the real value uk sent by the controller. We define two adversary models: (1) noisy adversary and
(2) stealthy adversary. The noisy adversary injects in u′k a bigger difference with respect to the correct
command uk sent by the feedback controller compared to the stealthy adversary. In consequence,
a noisy adversary will make the system move faster from its nominal state. Figure 9(b) shows the
results obtained for the two adversary models. The feedback controller loses its control over the
system, while the adversary forces the spatial collision of the two EV3 Rover agents.

SPARTA D5.1 Public Page 11 of 154

D5.1 - Assessment specifications and roadmap

(a) Nominal Case

0 0.2 0.4 0.6 0.8 1

Time

0

200

400

600

800

1000

1200

1400

E
uc

lid
ea

n
di

st
an

ce

Nominal Case

(b) Attack Case

0 0.2 0.4 0.6 0.8 1

Time

0

200

400

600

800

1000

1200

1400

E
uc

lid
ea

n
di

st
an

ce

Aggressive Adversary
Non aggressive Advesary

(c) Attenuation model 1

0 0.2 0.4 0.6 0.8 1

Time

0

200

400

600

800

1000

1200

1400

E
uc

lid
ea

n
di

st
an

ce

Aggressive Adversary
Non aggressive Adversary

(d) Attenuation model 2

0 0.2 0.4 0.6 0.8 1

Time

0

200

400

600

800

1000

1200

1400

E
uc

lid
ea

n
di

st
an

ce

Aggressive Adversary
Non aggressive Adversary

(e) Winding graph of dynamics cycles (attenuation 1)

0

30

60

90

120

150

180

210

240

270

300

330

0

0.2

0.4

0.6

0.8

1

(f) Winding graph of dynamics cycles (attenuation 2)

0

30

60

90

120

150

180

210

240

270

300

330

0

0.2

0.4

0.6

0.8

1

Figure 9: OMNeT++ results. (a–b) Euclidean distance (with 95% confidence intervals), nominal and attack
simulations. (c–d) Euclidean distance, attenuation of two different remediation starting time models. (e–f)

Winding graphs, same attenuation models.

During the attenuation process, the system reacts using reflective programmable networking [106].
Some reflective controllers change the control policies of the system (e.g., conduct a given switch
w.r.t. to the programmable controller domains). This reflective change disrupts the adversary (its
knowledge about the system) and attenuates the attack. For each of the two defined adversaries, we
simulate distinct scenarios using different values for the time the solution starts working. This is a pa-
rameter of the simulation that depends mainly on the time required to activate the attack responses,
i.e., the time required to set up and coordinate all the components working in the attenuation ap-
proach. Figures 9(c)–(d) show how the approach guarantees the controllability property. The first
vertical dotted line shows the moment when the attack starts and the second vertical dotted line
shows the moment when the technique starts. It is possible to appreciate that the attacker introduces
a perturbation in the system. As a consequence, the Euclidean distance between the two EV3 Rover
agents starts oscillating out w.r.t. their expected behavior (i.e., w.r.t. Figure 9(a)).
When the attack is detected, new reflective agents will start re-configuring and moving the system
control, to attenuate and restore the nominal behavior of the system. Figures 9(e–f) show the winding
graph of the EV3 Rover agents under this new approach. The attacked device corresponds to the
vertically oriented ellipses. It is possible to observe some perturbations, due to the modifications
introduced by the reflective agents when thwarting the adversary actions and recover the stability
of the process. As a result, the spatial collision between the two agents is avoided and the system
keeps working. Notice that the technique takes control of the physical environment in order to conduct
the physical environment from an unstable behavior generated by the attack to a stable and safety
behavior, converging to the normal behavior of the physical environment. Figures 9(c–d) show that
approach neutralizes the effects of the attack right after a short period of instability. The approach
does not eliminate the adversary. However, it contains the effects and reorients the system to the
nominal case.

SPARTA D5.1 Public Page 12 of 154

D5.1 - Assessment specifications and roadmap

2.1.3 Assessment and Certification Requirements

Even if several safety and security engineering tools and methodologies share common concepts,
safety and security are different in nature. Safety stands for freedom from unacceptable risk of harm
and functional safety depends on a system or equipment operating correctly in response to its inputs.
On the contrary, security is concerned with the protection of assets from threats, where threats are
categorised as “the potential for abuse of protected assets”. Fail-safe behaviour is important from
a safety perspective while this feature confronts with the security requirement of availability. In the
way towards autonomous systems, fault tolerance and availability of functions will be relevant since
the solution of switching a system when a failure is detected will simply not be possible anymore.
The more fault-tolerant a system is, the more the attack surface increases. This means that whereas
redundancy can be good to achieve the required level of reliability, this does not apply to security.
There are many benefits on merging the computing and communication process of Cyber-physical
system (CPS)s with the physical process. But because of this, CPSs get a critical problem due
to security, caused by the difficulty on protecting the information. This is due to the nature of the
CPS architecture design where data, communication, processing and communication channels are
combined.
Security in CPSs like vehicles is relatively new and can be defined as the ability to secure the data and
operational capabilities of the system from unauthorized access. Confidentiality, integrity, availability
and authenticity are the basic properties of any system’s security:
• Confidentiality is satisfied if data or objects are not read by an unauthorized party;
• Integrity is satisfied if data or objects are not changed (written) or generated by an unauthorized

party;
• Availability is satisfied if data, objects or services are available;
• Authenticity is satisfied if an author of data or an object is who it claims to be.

On the automotive domain, security has become a pressing issue due to the fact that modern vehicles
can be attacked from a variety of interfaces, including direct or indirect physical access and, short- or
long-range wireless channels. A hacker could exploit vulnerabilities in the vehicle’s electronic systems
to generate incidents and even take control of them, which could affect the safety of their occupants,
other vehicles on the road or the transport infrastructure itself in the event of a collision. For instance,
a hacker could get access to some of the vehicle ECUs and take control of some critical components
like brakes or engines, that is why security and safety are closely joined.
All safety-critical systems are cybersecurity-critical since a cyberattack could lead to potential safety
losses. Safety is satisfied if an unwanted interference with the on-board vehicle system or commu-
nication system has not any impact on the safe operation of the vehicles. A vehicle will never be
100% secure, nevertheless, following a well-defined development process will reduce the likelihood
of a successful attack, which can also be related to a reduction of potential hazards.
For the CCCC vertical, where safety and security are closely joined, the connection of the cyber-
security process with the safety process must be applied, keeping both activities separate but per-
formed in conjunction. Therefore, to define the security requirements a Threat Analysis and Risk
Assessment (TARA) must be performed but also having into account the Hazard Analysis and Risk
Assessment (HARA). It is recommended to elaborate a short assessment of potential safety related
threats to determinate if there are any high potential hazards.
The methodology used for inferring security requirements is based on the EVITA project approach
[43], and involves the following stages:
• Description of the system under investigation and its environment.
• Description of relevant use cases.
• Identification of the assets to be protected within the described use cases.
• Analysis of the hazards that may affect the safety of the use cases.
• Analysis of the threats that can also affect the safety.

SPARTA D5.1 Public Page 13 of 154

D5.1 - Assessment specifications and roadmap

• Identification of the security functional requirements.

2.1.3.1 System under Investigation and its Environment

The system under investigation is an example of a collaborative safety-critical system: a Connected
and Cooperative car/Platooning system of several vehicles. The main purpose is to evaluate a joint
co-engineering process concerning functional safety and cybersecurity.
A complete description of the system and its architecture has been included in Section 2.1.1 and
Section 2.1.2, respectively.
Several hazards can arise that affect the safety of the system. For instance,
• the leader changes its speed and the followers do not adapt themselves to the new situation;
• the leader changes its speed and, due to a loss of communication, the followers are not aware

of the change;
• the leader changes its speed, but the value is corrupted during the communication to the fol-

lowers.
Besides that, several threats can also affect the safety of the system. For instance,
• a hacker, using a Man in the Middle (MiM) cyber-attack on the WiFi communication, could alter

the speed transmitted by the leader before being received by the followers as illustrated by
Figure 10,
• a hacker, using a Denial of Service (DoS) cyber-attack to the leader’s WiFi Access Point, could

prevent the leader from transmitting its speed to the followers.
All these safety hazards and security threats could cause collisions between the platooning members,
affecting the safety of the vehicules and the passengers integrity. Some possible safety mechanisms
to mitigate these risks would be, for instance, adding a proximity sensor to each vehicle which en-
sures a minimum safety distance between the platooning members, or comparing the current speed
received with the previous values in order to detect an abnormal input, for example, receiving a 80
kph speed when the previous one was 20 kph.

Figure 10: Man in the Middle attack to platooning increasing a follower’s speed.

2.1.3.2 Use Cases

The use cases described in this section are intended to identify a range of specific platooning func-
tions that could have possible security implications.

SPARTA D5.1 Public Page 14 of 154

D5.1 - Assessment specifications and roadmap

Identifier UC1
Name A follower does not adopt the leader’s speed due to some failure in the communication chan-

nel.
Description To maintain a safety distance to the next vehicle, each follower must control its speed

based on the distance to obstacles in the path in an automated fashion. A failure in the com-
munication channel between the leader and a follower would cause collisions between the
platooning members.

Actors
• leader
• follower n.1
• follower n.2

Basic flow The leader detects an obstacle and reduces its speed. The new speed should be trans-
mitted to the followers, but a WiFi communication failure (no message or corrupted message)
prevents the reception of the signal by the follower(s). A safety mechanism must be added in
the scenario to avoid the collision between the platooning members.

Identifier UC2
Name A follower does not adopt the leader’s speed due to an attack in the communication channel.
Description To maintain a safety distance to the next vehicle, each vehicle has to control its speed

in an automated fashion. A hacker’s attack in the communication between the leader and the
follower(s) would cause collisions between the platooning members. A safety mechanism must
be added in the scenario to avoid the collision between the platooning members.

Actors
• leader
• follower n.1
• follower n.2
• hacker

Basic flow The leader detects an obstacle and reduces its speed. The new speed should be trans-
mitted to the followers, but a hacker, using a cyber-attack on the WiFi communication, increases
the velocity value transmitted by the leader before being received by the followers, causing col-
lisions between the platooning members.

Identifier UC3
Name Checking the speed value that has been received from the leader.
Description To maintain a safety distance to the next follower, a follower must control the coherence

of the speed value received from the leader with respect to the previous one that has been
received.

Actors
• leader
• follower n.1
• follower n.2

Basic flow The leader communicates its current speed to the followers, which compare it with the
previous one received in order to detect big differences between them. In case of detecting an
abnormal value, the new speed will be ignored by the followers.

Identifier UC4

SPARTA D5.1 Public Page 15 of 154

D5.1 - Assessment specifications and roadmap

Name A Follower does not receive any speed value during a certain interval of time, for instance 3
seconds.

Description A hacker connects to the leader flooding the WiFi with superfluous requests in an at-
tempt to overload the system and to prevent sending a legitimate speed to the followers.

Actors
• leader
• follower n.1
• follower n.2
• hacker

Basic flow The leader is hacked and cannot transmit its speed for a long time. The followers should
stop.

2.1.3.3 System Assets

The main assets are the integrity of the vehicles and their passengers. To achieve them there are
several surfaces of attack on the CCCC vertical that may become target of attacks:

• Wireless communication: Providing access to 3rd parties to the vehicle data through the wire-
less communication system poses serious security and safety risks to the vehicle, passengers
and other road users. It is very important to protect against to corrupted or fake messages
attacks and to enable continuous availability, avoiding jamming.
• Safety critical and non-safety critical functions: Endangering safety-critical functions such as

braking could produce hazardous events. In addition, non-safety-critical functions like the radio
can be another safety risk in terms of driver distraction, drawing its attention away from the
road. These functions could also be affected by an unauthorized user having access to sensors,
actuators, inside communication systems or ECUs.

2.1.3.4 Hazard Identification

In the Connected & Cooperative Car Cybersecurity (CCCC) vertical, a safety violation can also be
caused by security problems, so a Hazard Analysis and Risk Assessment (HARA) analysis has been
developed in terms of security. The output of the HARA are the rated Hazards that will serve as
root events for safety analysis and the Safety Goals that will be refined into more detailed safety
requirements. The result of this HARA analysis for the CCCC vertical, that is illustrated in Figure 11,
contains valuable knowledge to use for threat modelling and therefore, also for penetration testing.
Detailed information on the development of the HARA analysis can be found in the section 3.2.1.1.1.
We also are using a Model-Based approach to carry out HARA analysis. In particular, we have
represented the HARA using the tool AutoFOCUS3 [2] as a Goal Structuring Notation (GSN) model.
The whole GSN tree for the CCCC vertical is depicted in Figure 12. Further information can be found
in the section 3.2.1.1.1.
There are some advantages of using this notation. It breaks down different analysis into branches.
Moreover, it is possible to extract TARA analysis from these trees as detailed in Section 3.2. The
TARA analysis is shown in the section 2.1.3.5.

SPARTA D5.1 Public Page 16 of 154

D5.1 - Assessment specifications and roadmap

Figure 11: HARA Analysis of Vertical 1 (Platooning).

SPARTA D5.1 Public Page 17 of 154

D5.1 - Assessment specifications and roadmap

Figure 12: HARA represented in a model using Goal Structured Notation (1/2).

SPARTA D5.1 Public Page 18 of 154

D5.1 - Assessment specifications and roadmap

Figure 13: HARA represented in a model using Goal Structured Notation (2/2).

We detail some branches of the GSN-model below. It starts by using a strategy where are all relevant
hazards are considered as shown below:

We considered until now five main hazards:
• Erroneous Communication

SPARTA D5.1 Public Page 19 of 154

D5.1 - Assessment specifications and roadmap

• Loss of Communication
• Loss of Braking System
• Unintended Acceleration
• Unintended Steering

The hazard on Erroneous Communication is further refined by using Fault Tree Analysis (FTA) as
shown by the figure below:

The FTA analysis further refines how the main hazard can occur. For example, the leader can send
a wrong speed, or the follower can compute an incorrect speed from the incomming messsage.
For each hazard, a solution, normally using a safety pattern, is deployed. For example, to control the
hazard related to ”Messages Corrupted by Communication Medium” is shown below:

This means that a safety requirement to the platooning system shall include CRC checks.

2.1.3.5 Threat Identification

To detect all the vulnerabilities and potential threats of the system, it is appropriate to use vulnerability
and threat analyses. Thus, some initial questions should be formulated.
• Will there be any sensitive data and/or personal identifiable information stored on or transmitted

by?

SPARTA D5.1 Public Page 20 of 154

D5.1 - Assessment specifications and roadmap

• Will the system have any safety critical function?
• Which connection and/or communication will the system have?

In the CCCC vertical a Threat Analysis and Risk Assessment (TARA) analysis has been elaborated
to identify threats and assess the risks. Identifying them, allows valuable resources to be applied to
the highest risk potential threats.
The risk assessment component of a TARA considers the severity of the possible outcomes on the
system and the likelihood that a potential attack can successfully be carried out, referred to as the
attack potential. Focusing on the highest risk potential threats, the TARA helps to assign the most
valuable cybersecurity controls during the application of more analysis techniques.
Using the tool AutoFOCUS3 [2] we have constructed the attack defense tree starting from the GSN
model above with the HARA (cf. Figure 12). The whole tree is depicted in Figure 14. ThIS attack
defense tree includes a number of attacks that can affect the safety-critical communication functions
that could lead to the hazard Unsafe Distance, that is, causing vehicles in a platoon to be too close
to each other.
The construction of attack defense trees using the safety analysis is a means to understand in a more
structured fashion how attacks can cause safety problems and how they can be avoided. Further
information on attack defence trees can be found in section 3.2.1.1.2.

SPARTA D5.1 Public Page 21 of 154

D5.1 - Assessment specifications and roadmap

Figure 14: TARA represented as an Attack Defense Tree (1/2).

SPARTA D5.1 Public Page 22 of 154

D5.1 - Assessment specifications and roadmap

Figure 15: TARA represented as an Attack Defense Tree (2/2).

SPARTA D5.1 Public Page 23 of 154

D5.1 - Assessment specifications and roadmap

We zoom into some of its branches below, specially those that are related to the safety analysis
described above. The root of the tree is shown below:

It considers a number of possible attacks to to the platooning scenario. However, we focus more on
the threat where the attacker triggers an unsafe gap, which is safety-related.
The branch on attack causing unsafe gap is further refined as shown by the following image:

Notice that the attack triggering an erroneous communication of loss of communication are extracted
from the safety analysis. The node “Attacker trig. Erroneous Communications” is refined by two
nodes. One where the attack triggers this error by triggering an event that causes this event, as
specified by the FTA analysis in the safety analysis. These are depicted in the figure below:

SPARTA D5.1 Public Page 24 of 154

D5.1 - Assessment specifications and roadmap

Alternatively, the attacker can attack directly safety control-mechanisms, such as voters (called
MooN), or CRC checks:

Notice that these patterns are directly extracted from the safety analysis. To depict the specification
of counter-measures, we expand the node “Attack CRC check trig. Erroneous Comm.”. A possible
attack is to “forge correct message”. A way to counter-measure this is to ensure the integrity of mes-
sage transmitted between the vehicles. As shown below, there are two cases for integrity depending
on the type of communication channels available. Either the channel is public or private (such as in a
VPN connection):

The refinement for the case when the channel is public is shown below:

SPARTA D5.1 Public Page 25 of 154

D5.1 - Assessment specifications and roadmap

One can guarantee message integrity in a public channel by using message signing, having a trusted
key infrastructure, and adequate mechanisms to establish message freshness.
Moreover, message signing can be done by software or by hardware, as shown below:

Moreover, the trusted key infrastructed can be attacked and a possible counter-measure is to use
Secure Memory. As shown below:

HARA and TARA are established methods enabling co-analysis. Furthermore, combined co-analysis
techniques such as Failure Modes, Vulnerabilities and Effects Analysis (FMVEA) or extended Fault
Trees (combination be-tween an attack and fault tree) are necessary in order to identify which attacks
lead to safety failure modes or hazards.

2.1.3.6 Requirements Identification

The security requirements of the Connected & Cooperative Car Cybersecurity (CCCC) vertical are
needed to satisfy the following high-level security objectives:
• maintenance of the intended operational performance of all vehicles in the platooning functions;
• ensurance of the functional safety of the vehicles;
• protection of the drivers and system assets.

The use cases defined in the section 2.1.3.2, the HARA defined in section 2.1.3.4 and the TARA de-
fined in section 2.1.3.5 have been used as inputs to identify high-level requirements. These require-
ments have been grouped based on the four basic properties of any system’s security: confidentiality,
integrity, availability and authenticity.
The current list of requirements will be further extended once the safety and security analyses have
been completed by February 20203. Later on, safety and security co-analyses techniques, such as
trade-off and security/safety by design techniques will be applied to refine the requirements, being
the final set of requirements be completed by April 2020 using the Protection Profile document used
as part of the certification according to the Common Criteria standard [26].

Safety Requirements (RSF)

3see section 3.2.2 for the roadmap of T5.2

SPARTA D5.1 Public Page 26 of 154

D5.1 - Assessment specifications and roadmap

Safety requirements are specifications for the risk reduction of the physical integrity of humans. The
following requirements are relevant to guarantee the safety in the platooning scenario.

Identifier RSF 1
Description A collision shall be avoided due to a full braking or lack of braking.
Use case references UC1, UC2, UC3, UC4

Identifier RSF 2
Description A collision shall be avoided due to an acceleration of one or more of the followers.
Use case references UC1, UC2, UC3, UC4

Identifier RSF 3
Description A collision shall be avoided due to an unwanted steering of any vehicle.
Use case references UC1, UC2, UC3, UC4

Identifier RSF 4
Description A collision shall be avoided due to a loss of V2V information.
Use case references UC1, UC2, UC3, UC4

Identifier RSF 5
Description A collision shall be avoided due to tampering of V2V information.
Use case references UC1, UC2, UC3, UC4

Confidentiality requirements (RSC-CFD)
Confidentiality is satisfied if data or objects are not read by an unauthorized party. The following
requirements are relevant to guarantee the confidentiality in the platooning scenario.

Identifier RSC-CFD 1
Description Provide end-to-end protection in the communication between the leader and the follow-

ers.
Use case references UC1, UC2, UC3, UC4

Integrity requirements (RSC-ITG)
Integrity is satisfied if data or objects are not changed (written) or generated by an unauthorized
party. The following requirements are relevant to guarantee the integrity in the platooning scenario.

Identifier RSC-ITG 1
Description Unauthorized modification of data shall be prevented or at least detected. Whenever a

message is received from the leader to the followers, the integrity of all information along the
functional path must be ensured to prevent Man-In-The-Middle attacks using a secure channel.

Use case references UC2, UC3

Identifier RSC-ITG 2
Description Fressness of messages coming from the leader should be ensured, in particular to

prevent replaying these data may trigger some undesirable behaviour.
Use case references UC2, UC3

SPARTA D5.1 Public Page 27 of 154

D5.1 - Assessment specifications and roadmap

Identifier RSC-ITG 3
Description The value of the speed coming from the leader should be compared with the previous

one, in particular to detect abnormal values reception.
Use case references UC2, UC3

Identifier RSC-ITG 4
Description To guarantee the integrity of the message in a public channel Hardware or Software

signing should be used.
Use case references UC2, UC3

Identifier RSC-ITG 5
Description To ensure that the key infrastructure is secure from attackers some counter-measures,

such as employing a secure memory, shall be implemented.
Use case references UC2, UC3

Availability requirements (RSC-AVL)
Availability is satisfied if data, objects or services are available. The following re-
quirements are relevant to guarantee the availability in the platooning scenario.

Identifier RSC-AVL 1
Description The availability of the WiFi communication between the leader and the followers should

be ensured.
Use case references UC4

Authenticity requirements (RSC-AUT)
Authenticity is satisfied if an author of data or an object is who it claims to be. The
following requirements are relevant to guarantee the authenticity in the platooning scenario.

Identifier RSC-AUT 1
Description When a reduction or increment of speed is performed by the leader, the message sent

from the leader to the followers shall be authentic in terms of origin, content and time.
Use case references UC2, UC3

Identifier RSC-AUT 2
Description The system should control the access to the leader’s WiFi access point, so that only

the followers can connect to it.
Use case references UC4

Other Non Functional Requirements (RNF)

Identifier RNF 1
Description Long distances between the leader and followers shall be avoided.
Use case references UC1, UC2, UC3, UC4

Identifier RNF 2

SPARTA D5.1 Public Page 28 of 154

D5.1 - Assessment specifications and roadmap

Description Maneuvers of merging and splitting a platoon shall be done in adequate time not affect-
ing the platoon performance, such as its speed.

Use case references UC1, UC2, UC3, UC4

Identifier RNF 3
Description Vehicles shall obey traffic laws, such as not travel in an illegal direction.
Use case references UC1, UC2, UC3, UC4

2.1.3.6.1 Protection Profile
In the development of the CCCC vertical and in particular for the “Vehicle Platooning”, in order to show
the evaluability of the proposed solution, WP5 partners are working on the definition of a protection
profile for a particular category of security requirements related to ”Secure communication between
vehicles”.
This Protection Profile must include the minimum set of requirements, to be used in a secure auto-
motive system, that the various technical solutions proposed by a generic product supplier, will have
to implement in order to guarantee security in communication between vehicles.
From an analysis of the existing literature, the attention of the working group fell on a Protection
Profile in particular [9] which was taken as a reference point and example for the definition of the
document to be produced to be adopted as input for the phase of validation of the evaluability of
automotive vertical, topic of Task 5.4 into WP5.
Naturally many of the elements dealt with by referenced PP are outside the contents of the vertical
in question, and therefore the contents will be partially adopted in the “PP in definition” starting from
the results of the risk analysis carried out by the tools identified in this deliverable and the security
features that the prototypes adopted in the vertical will be able to achieve.

2.1.4 Standards and Certifications

Nowadays different standardisation approaches w.r.t. safety and security concerns exist. Those
standards address the system development life-cycle not only from the perspective of safety concerns
but also from security. Especially, those aspects of security which impact on safety are tackled.
Besides, these recent standards promote safety and security co-engineering.
The following standards will be considered in the implementation of the Connected & Cooperative
Car Cybersecurity (CCCC) vertical:
• ISO 26262 ”Functional Safety Road Vehicles” [60] for functional safety
• SAE J3061 “Cybersecurity Guidebook for Cyber-Physical Vehicle System” [103] for cybersecu-

rity
• Common Criteria guidelines for Information Technology Security Evaluation [26]

Society of Automotive Engineering (SAE) J3061 and International Organization for Standardiza-
tion (ISO) 26262 are linked and require integrated communication to maintain consistency and com-
pleteness, in fact the SAE J3061 guide follows the process framework described in ISO 26262.
More details about the safety and security standards for the automotive domain are described in
Section 3.2.1.6.
The OpenCert tool (cf. section 3.1.11) will be applied helping the user in the hole assurance pro-
cess of the CCCC Vertical. OpenCert is a management tool to support the compliance assessment
and certification of Cyber-Physical Systems (CPS) spanning the safety and security. It will support
knowledge management about the above standards (e.g. ISO 26262 and SAE J3061), regulations
and interpretations, in a form that can be stored, retrieved, categorized, associated, searched and
browsed. Opencert will assist on the development of assurance cases, evidence management, assur-
ance process management, and global monitoring of the compliance with standards and regulations.

SPARTA D5.1 Public Page 29 of 154

D5.1 - Assessment specifications and roadmap

2.1.5 Assessment Methods and Tools

To achieve the goals and requirements of the CCCC vertical different tools and methods will be used.
At design phases, Formal verification will be used to ensure the safety and security on the system
design. On the left side of the V-model, for safety, some V&V methodologies such as Fault injection
will be implemented, besides, Security penetration testing will be applied.

2.1.5.1 Simulation-based Fault Injection

After the system design architecture has been modelled, traditional safety analysis techniques and
Fault Injection (FI) can be put together in order to perform a combined analysis of the system. Fault
Injection consists in the accomplishment of controlled experiments where the observation of the sys-
tem’s behaviour in presence of faults is induced by the injection of faults in the system. FI has
emerged as a way to perform an analysis at the same time that helps verifying and validating the
safety of a certain design.
In the CCCC vertical, the Simulation-based Fault Injection technique will be used to simulate how a
cyber attack can affect the vehicle motor, for example by changing the velocity to an abnormal value.
It will be applied using the Sabotage tool (cf. section 3.1.12).
Virtual prototypes will be created (mathematical description of both the design state and of the ve-
hicle properties). Faults will be injected into behavioural models, enabling an early Dependability
assessment of the system: Safety Evaluation (fault effects not known) and Early Safety Validation.
Thus, the observability and controllability on the target system will be enhanced.

2.1.5.2 Formal Verification (Security/Safety by design)

Formal methods have been successfully used for a wide range of applications to ensure that systems
are safe and secure by design. For example, in a recent paper [79], we demonstrate how to use
formal methods to determine which events that are trasmitted in Industry 4.0 applications have to be
encrypted to ensure that intruders cannot inject or tamper messages and cause catastrophic events.
As formal methods rely on precise mathematical models, one can define notions of soundness and
completeness based on precise assumptions, such as intruder models specifying intruders capabil-
ities. However, due to the complexity of systems, formal methods do not scale, suffering from state
space explosion problem to be used for the full verification of the final system, but works well on early
phase design by systematically discovering vulnerabilities that could be exploited by intruders.
We enumerate some uses of formal methods for the vertical on connected cars that we will deploy:

1. Safety and Security co-design: Vehicles in the platoon shall keep the minimum safe gap
to the vehicle in the front. Intruders can cause messages between vehicles to be delayed or
even dropped, thus affecting the functions resorting on CACC that enable a safe gap. Formal
methods can be used to understand which gap shall be maintained in the presence of such in-
truders. For example, in [52], we have demonstrated how UAV flight strategies can be impacted
by uncertainties. The same machinery can be applied for the vertical.

2. Protocol Security Verification: Formal methods have been suceessfully used for the verifica-
tion of security protocols, being used for the verification of large protocols [28], cyber-physical
protocols [80], and against denial of service attack [117]. Vehicles in the platoon scenarios
will establish properties, such as authentication or the exchange of confidential information, by
means of protocols. We will use formal methods to verify these protocols for logical attacks.

2.1.5.3 Software Verification Methods

Software verification and validation (V&V) aim at increasing the level of assurance of software, partic-
ularly that of safety-critical and mission-critical software, whereby validation commonly refers to en-

SPARTA D5.1 Public Page 30 of 154

D5.1 - Assessment specifications and roadmap

suring that the final software product meets initial user requirements, while verification is performed
throughout the different phases of the software development life cycle in order to identify flaws and
bugs as early as possible [25, 46, 122]. Thus, verification activities target artifacts of the respective
life cycle phase, e.g., requirements, software designs or actual code. Correspondingly, the activities
comprise technical reviews, testing or formal verification, all of them representing dedicated research
fields with considerable bodies of work. Moreover, one should distinguish verification techniques tar-
geting the actual software product, and others targeting the development process, e.g, the capability
maturity model (CMM) developed by the US Department of Defense Software Engineering Institute.
The verification techniques covered by the CAPE program focus on the actual software product. This
holds true for fault injection, formal verification and penetration tests, as well as all the techniques and
tools developed in task 5.3, which take modern software development trends into account, especially
the ever increasing use of open source software as well as agile development methodologies that
result in short release cycles. In more detail, the contributions of task 5.3 aim at avoiding the presence
of common security vulnerabilities in own code, the presence of known vulnerabilities in 3rd party
code and so-called supply chain attacks, the latter of which which leads to the injection of malicious
code into ones software product (cf. Section 3.3).

2.1.5.4 Penetration Testing

As part of the assessment and in order to validate the security goals and the security requirements
of the system (which can involve safety goals and safety requirements) a grey box penetration test
will be performed.
A holistic approach will be followed which involves ECU level, Internal communication level, Architec-
ture level and External communication level, as it can be seen in the Figure 16.

Figure 16: Illustration of the Penetration Testing Approach

This security penetration test will check the vulnerabilities of the system in terms of HW, SW, Com-
munication interfaces and System’s Architecture, taking into account all possible attack vectors and
not only focusing on safety but also privacy and other concerns.
Previously to perform this analysis, the security requirements are going to be checked in order to get
inputs and targets. On the other hand, some of the tools being developed in the project are going to
be used, such as the visualization tool developed by UKON which offers an overview of the known
SW vulnerabilities of each of the ECUs of the system. This kind of information helps the penetration

SPARTA D5.1 Public Page 31 of 154

D5.1 - Assessment specifications and roadmap

tester to perform more complex architecture attacks. Complementing the SW information of this tool
with the HW vulnerabilities of the system is another task which is going to be done in order to detect
complex attack vectors which can be tested.
The output of this assessment will feed again the system following the development cycle process
proposed in this project as part of continuous integration (cf. Figure 16). This fact means, that from
this analysis, some requirements may be added/changed as well as the Security concept (and also
the Safety Concept) may be re-designed.

2.2 Vertical 2: Demonstration of a Complex System Assessment Including Large
Software and Open Source Environments, Targeting e-Government Services
(CINI)

The vertical 2 leverages the collaboration in the context of a Joint Lab between Fondazione Bruno
Kessler (one of the institutions part of the SPARTA partner CINI) and Istituto Poligrafico e Zecca
dello Stato (IPZS). IPZS is the Italian State Mint and Polygraphic Institute. Among other relevant
activities, IPZS handles the production of the identity cards in Italy and the shipment of the CIE to
the Municipalities. The goal of the Lab is the design of innovative authentication solutions based
on the CIE, shown in Figure 17. CIE (version 3.0) is a personal identification document that is
replacing the paper-based identity card in Italy and is used for both online and offline identification.
The microprocessor of CIE is contactless and can be read using smartphone with a Near Field
Communication (NFC) interface.

Figure 17: The Italian Electronic Identity Card (CIE).

To give an idea of the dimensions of the considered software environment, and the impact on the
citizens, let us provide some numbers. The current number of CIE released to citizens is more than
13 millions. The number of downloads of the “companion app”—that performs the authentication
mechanism through the CIE—is around 10,000. Given that, in this preliminary phase, only a few
preparatory services are available, these numbers are going to rapidly increase, together with the
number of the provided services.
The innovative authentication solutions based on CIE—which are topics of vertical 2—include many
software components, most of them open source. Indeed, these components include:
• Security Assertion Markup Language (SAML) [86]: an open standard for exchanging authenti-

cation and authorization data between parties, in particular, between an identity provider and a
service provider;
• Shibboleth4: among the world’s most widely deployed federated identity solutions, connecting

4https://www.shibboleth.net/

SPARTA D5.1 Public Page 32 of 154

https://www.shibboleth.net/

D5.1 - Assessment specifications and roadmap

users to applications both within and between organizations. Every software component of the
Shibboleth system is free and open source.

Some of the innovative authentication solutions based on CIE had been included in the notification
process to the European Commission, according to the electronic IDentification Authentication and
Signature (eIDAS) regulation [90]. This notification process included some preliminary steps, a pre-
sentation in Brussels (given by IPZS in January 2019), and a peer review phase. The process had
been recently concluded and is currently in the notified status5 This means that these solutions are
recognized as authentication solutions by all the member states of EU. In order to avoid severe se-
curity issues, it is thus extremely important to ensure that the solutions guarantee the proper level of
security.
For this purpose, this vertical has as goal to advance the cyber-security of the innovative authentica-
tion solutions based on the usage of the Italian national electronic identity card. In the next sections,
we will discuss the specific case study we will investigate, namely identity management solutions
based on CIE, the available infrastructure for demonstrating the effectiveness of our goal, and related
assessment and certification requirements.

2.2.1 Case Study Objectives, Description and Relevance

Figure 18: Overview of the case study of Vertical 2.

An overview of the authentication solutions based on the usage of CIE is reported in Figure 18.
Authentication is initiated by the holder who is invited to enter the authentication PIN. Without this
PIN no information can be read from the Card and it is therefore not possible to read data or initiate
authentication transactions on the network without the knowledge of the holder. The CIE-based Italian
Identification Scheme for accessing services envisages two mutual authentication scenarios: a so-
called “desktop” scenario in which the user uses his/her CIE with a workstation equipped with a RF
Smart card reader and the so-called “Middleware CIE” and a “mobile” scenario in which the user uses
his/her CIE with an Android smartphone equipped with NFC interface alongside an authentication
App. Given that these scenarios leverage the (cryptographic capabilities of the) Card, the level of
Assurance (LoA) of the resulting authentication is rated high. The high assurance level refers to an
electronic identification means, in the context of an electronic identification system, which provides,
with regard to the claimed or declared identity of a person, a degree of protection from misuse or
alteration of the identity, implemented in accordance with relevant technical specifications, regulations
and procedures.

5https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Italy+-+eID

SPARTA D5.1 Public Page 33 of 154

https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Italy+-+eID

D5.1 - Assessment specifications and roadmap

From a security perspective, in [40], a security study of authentication schemes used in eID services
is presented. The security analysis shows that 7 out of the 15 European eID services were vulnerable
to XML-based attacks, enabling efficient DoS and Server Side Request Forgery attacks. On 5 out of
the 15 eID services, the authors were even able to exfiltrate locally stored files and send them to an
arbitrary domain. As pointed out in [40], this survey “reveals the complexity of current authentication
systems, which is a natural consequence of the complex technology stack in use. Peculiarities of
TLS, XML, SAML, and HTML/JavaScript/AJAX must be considered, and each of these technologies
must be strengthened against potential attacks. Additionally, interactions of the various layers and
potential security relevant consequences must be taken into account.” Of course, the insecurity of a
single component can bypass the security of the entire system.
Recently, a major vulnerability has been found in the eIDAS-Node Integration Package provided
by the European Commission [27]. This vulnerability allowed an attacker to bypass the signature
verification, allowing an attacker to send a manipulated SAML response to an eIDAS-Connector to
authenticate as anybody.
These are only a couple of examples showing the demand for tools which facilitate the (automatic)
security analyses of authentication solutions. The scenarios we considered in vertical 2, namely in-
novative authentication solutions based on the usage of CIE, is even more complex. Indeed, besides
the proper usage of the SAML protocol, it involves the CIE, mobile technologies, communication
channels based on NFC, customized versions of Shibboleth, just to mention a few.
One needs to answer the following question: How can one be reasonably sure that cyber-attacks
cannot exploit vulnerabilities in the solution (for example, the communication channels, mobile appli-
cation, middleware) and cause serious security issues?

2.2.2 Architecture and Technology of the Case Study

The authentication scenarios achievable by means of the CIE envisage, respectively, the use of a
service from a Desktop workstation equipped with an RF reader and through a smartphone with NFC
interface. The application protocol adopted is SAML v2.0 in the same mode implemented for the
SPID [87] authentication system:
• for authentication requests (based on the construct <AuthnRequest>) the binding HTTP Redi-

rect is used;
• for SAML responses (based on the construct <Response>) the binding HTTP POST is used.

The attributes are also set according to the mode envisaged for SPID.

2.2.2.1 Desktop Scenario

The desktop scenario envisages secure access to a service of a Public Administration using the
computer browser and through the CIE. For such an authentication scenario, on his/her workstation
the user configures a RF smart card reader and the “Middleware CIE”, a software library available for
Windows and Mac OSx operating systems, which allows the integration of the CIE within the guest
operating system as an external cryptographic token. The Middleware CIE, in particular, interacts
with the browser to carry out, completely securely and transparently for the user, the communication
between the smart card reader and the microprocessor of the CIE for the purposes of establishing
a secure and authenticated connection toward a server component for authentication provided by
the Ministry of the Interior. This component verifies the validity status of the digital certificate, with-
draws attributes linked to the holder of the CIE and propagates them, alongside the confirmation of
authentication, to the service that the user intends to use.
The user is only required to insert the PIN to unlock the use of the private authentication key and
complete the process.
The steps illustrated in the diagram in Figure 19 are described below:

SPARTA D5.1 Public Page 34 of 154

D5.1 - Assessment specifications and roadmap

Figure 19: Desktop Scenario.

1. Through a web browser the user requests access to a service provider by specifying the CIE
as an authentication mechanism;

2. The service provider sends an SAML authentication request (through the construct
<AuthnRequest>) for access to the service to the component CIE ID SERVER;

3. The CIE ID SERVER component requests the user to use his/her CIE to authenticate
him/herself;

4. By following the onscreen instructions, the user presents the CIE to the RF reader and enters
the PIN;

5. Having verified the correctness of the PIN a secure HTTPS/TLS channel is created with the
component CIE SERVER ID;

6. From the secure session the latter verifies the validity of the digital certificate associated with
the user by contacting the Authentication CA of the Ministry of the Interior and retrieves the
minimal attributes relative to the user from the certificate;

7. The user views the attributes that will be sent to the service provider on the browser;
8. The user authorises the transmission of the attributes displayed;
9. The component CIE ID SERVER redirects the user to the service provider by sending an as-

sertion of successful authentication, including attributes, to the latter;
10. The service provider grants access to the service.

2.2.2.2 Mobile Scenario

The “mobile” scenario, shown in the diagram in Figure 20, provides for the use of the CIE as an
authentication tool to gain access to a service provider. A necessary requirement for this scenario is
the availability to the user of a mobile terminal with NFC interface which allows the interfacing of the
CIE.
In detail, this identification scheme envisages that the user accesses a service provided by a ser-
vice provider through the browser of his/her smartphone and selects the mode of access via CIE.
When authenticating using the CIE, he/she is then redirected to a “companion app” that performs the
authentication mechanism through the CIE with the CIE SERVER ID component described above.
The detailed steps of the procedure shown in the diagram in Figure 20 are described below:

1. The service provider sends an SAML authentication request (through the construct
<AuthnRequest>) for access to the service to the component CIE ID SERVER;

SPARTA D5.1 Public Page 35 of 154

D5.1 - Assessment specifications and roadmap

Figure 20: Mobile Scenario.

2. The CIE ID SERVER component requests the user to use his/her CIE to authenticate
him/herself and sends a notification to the mobile terminal which triggers the launch of the
app “CIE ID APP”;

3. By following the instructions shown on the app, the user presents the CIE to the smartphone’s
NFC reader and enters his/her PIN;

4. Having verified the correctness of the PIN, a secure HTTPS/TLS channel is created between
the app CIE ID APP and the component CIE ID SERVER;

5. From the secure session the latter verifies the validity of the digital certificate associated with
the user by contacting the Authentication CA of the Ministry of the Interior and retrieves the
minimal attributes relative to the user from the certificate;

6. On the CIE ID APP the user views the attributes that will be sent to the service provider;
7. The user authorises the transmission of the attributes displayed;
8. The component CIE ID SERVER redirects the user to the service provider by sending an as-

sertion of successful authentication, including attributes, to the latter;
9. The service provider grants access to the service which takes place through the browser of the

mobile terminal used in step 1.

2.2.2.3 Integration of the CIE-based Identification Scheme with eIDAS

Integration of the CIE-based identification scheme with the eIDAS infrastructure is carried out through
the FICEP (First Italian Crossborder eIDAS Proxy) project. FICEP is the first “Italian cross-border
server”: its implementation allows Italian nationals in possession of the CIE to access the network
services of the Member States of the European Union using the CIE itself as a means of authenti-
cation. At the same time European citizens in possession of national electronic identification means
recognised under eIDAS will have access to the services of the Italian Public Administrations.
The application protocol adopted is SAML WEB Single Sign-On (SSO) with Post Redirect and setting
of the attributes in the same mode implemented for the SPID authentication system.

2.2.2.4 Scope of the Demonstrations

The vertical 2 includes several components, as depicted in Figure 21. Each of them must be carefully
implemented in order to avoid security issues. The components currently identified for the demon-
strations of vertical 2 are:

1. the CIE ID APP, and

SPARTA D5.1 Public Page 36 of 154

D5.1 - Assessment specifications and roadmap

Figure 21: Components in the scope of the demonstrations.

2. the SAML IdP on the CIE ID SERVER.
The current software development process involves four main environments:
• a development environment and a testing environment hosted by FBK (part of the SPARTA

partner CINI), and equipped with a version control system (Git-repository);
• a pre-production and production environments, hosted by the Italian Ministry of the Interior.

For each environment, it is available a copy of the CIE ID APP, capable of interacting with the IdP of
the considered environment. The official CIE ID APP points to the production environment, and it is
publicly available on the Google play store.
The preliminary versions of the components are developed in the development environment and
tested on the testing environment, where a security analysis is performed. Then, the components
are migrated on the Italian Ministry of the Interior servers, where the previous security analysis and
tests are repeated. Finally, the components are moved on the production environment.
Given that the described scenarios for vertical 2 are in production, a security assessment method-
ology is of course already in place (based on the usage of automatic tools and manual inspection).
Nevertheless, the current process will certainly benefit from the assessment framework developed in
the context of the SPARTA project. Indeed, it will offer cutting-edge security analysis tools and will
leverage novel paradigms (e.g., continuous integration), which will contribute to increase the overall
security of the system.

2.2.3 Assessment and Certification Requirements

2.2.3.1 Security Requirements

The overall goal of these solutions is to guarantee the authorization property, namely the service
provider must authenticate properly the user. To achieve that, the user directly authenticates to
the identity provider (i.e. the CIE ID SERVER) and generates a signed authentication assertion.
The service provider leverages this assertion to authenticate the user. Besides the authentication
property, other properties must be taken into account. The confidentiality and integrity of the user
data (and privacy related aspects) must be satisfied. In addition, the availability of the services must
be guaranteed.
The list of requirements relevant for vertical 2 could be further extended, once the requirement iden-
tification phase has been completed in the coming months. We have currently identified the following
two main requirements, which are relevant to guarantee the security in the proposed e-government
scenario:

Identifier RS 1

SPARTA D5.1 Public Page 37 of 154

D5.1 - Assessment specifications and roadmap

Description The CIE ID APP must ensure the proper level of security. Indeed, a security issue in this
mobile application could lead to severe security issues. For instance, a malicious user could
steal the user’s PIN or could authenticate on behalf of the victim.

Use case references Mobile Scenario

Identifier RS 2
Description The software implementing the service offered by the CIE ID SERVER must reach

a proper level of assurance, so to avoid security vulnerabilities, which could lead to severe
security issues.

Use case references Desktop Scenario, Mobile Scenario

2.2.3.2 Standards and Certifications

The presented scenarios must satisfy: (i) European (e.g., eIDAS) and (ii) national (e.g., SPID for Italy)
laws, regulations and guideline principles that are particularly relevant to digital identity and privacy.

2.2.3.2.1 eIDAS and SPID
A central theme in the European Union is the definition of a common regulation on digital identity
(e.g., eIDAS [90]) that guides both public and private sectors to define the security requirements
and mitigate the known attacks and vulnerabilities. Many EU member states have also defined new
national regulations (e.g., SPID [87] in Italy).
For instance, regarding privacy, in Article 5, paragraph 1, eIDAS states that the processing of personal
data shall be carried out in accordance with Directive 95/46/EC of the European Parliament and the
Council of 24 October 1995 on the protection of individuals with regard to the processing of personal
data and on the free movement of such data. Thus, all the principles related to the Data Protection
laws, such as minimal disclosure, purpose specification and consent, must be directly applied to the
eID scheme solutions.
The regulations pose interoperability requirements as well: the Italian eIDAS-Node is implemented
according to the eIDAS technical specifications. It is integrated into the eIDAS Interoperability Frame-
work [eIDAS IF] in accordance with the eIDAS Technical Specifications of the eIDAS Technical Sub-
group [eIDAS Arch], [eIDAS SAML], [eIDAS Attributes], [eIDAS Crypto].

2.2.3.2.2 SAML SSO
Security Assertion Markup Language 2.0 (2005 - hereafter SAML) [86] is among the most widespread
standards used to exchange authentication and authorization assertions (in XML formats). SAML re-
quires that User (called Principal) is registered with an Identity Provider (IdP), which after receiving a
request message from a Service Provider (SP) will respond with an authentication result (called as-
sertion). An assertion contains data used by SP to decide whether to grant or deny for that Principal
the access to a particular resource. A SAML assertion can contain three types of statement: authen-
tication statement that indicates if a user is authenticated; attribute statement that describes some of
the user attributes; and authorization decision statement that specifies whether a user is authorized
to do a specific action on a specific resource. SAML defines different protocols, bindings and profiles.
A protocol specifies which requests and responses are exchanged. A binding describes how SAML
requests and responses are mapped into the communication and transmission protocols (SOAP or
HTTP). A profile specifies a use-case scenario choosing a combination of assertions, protocols and
bindings. Among the profiles defined in the standard, the most used is the web browser SSO profile
[85]. A SSO protocol enables Users to login to an IdP only once and gain access to several SPs
without requiring to authenticate for each one of them.

SPARTA D5.1 Public Page 38 of 154

D5.1 - Assessment specifications and roadmap

2.2.3.3 Assessment Methods

The complex scenarios considered in this vertical involve many components and communication
channels. Each of them requires specific assessment methods, including formal verification, soft-
ware verification methods, vulnerability assessment, and security analysis of mobile applications.
Concerning the components in the scope of the demonstrations (cf. Section 2.2.2.4), and in order
to validate the security requirements reported in Section 2.2.3.1, we plan to perform the following
assessment methods. Notice that the list of the tools relevant for vertical 2 could be further extended,
together with the details of the assessment methods, once the requirement identification phase has
been completed in the coming months6.

2.2.3.3.1 Software Verification Methods and Vulnerability Assessment.
We plan to adopt software verification and validation techniques aiming at increasing the level of
assurance of the software. For this purpose, we will use the Steady tool (cf. Section 3.1.9), targeting
the SAML IdP, deployed using Shibboleth on the CIE ID SERVER (cf. Figure 21). Indeed, in the
context of vertical 2, the basic version provided by Shibboleth has been customized in order to support
the interaction between the IdP and the mobile application which communicates with the CIE.
On the one hand, it is of utmost importance to assess the presence of common security vulnerabili-
ties in the 3rd party code used. For instance, the known vulnerabilities affecting the specific version
of Shibboleth integrated in the scenario must be taken into account. On the other hand, some vul-
nerabilities can be due to the customization phase, which could have injected novel issues.
The Steady tool will be used to detect whether both the Shibboleth version integrated in the scenario
and the code implemented to customize the solution depend on open-source components with known
vulnerabilities, and to collect evidence regarding the execution of vulnerable code.

2.2.3.3.2 Vulnerability and Risk Assessment of Mobile Applications.
In the “mobile” scenario described in Section 2.2.2.2, the user uses his/her CIE with an Android
smartphone equipped with NFC interface alongside an authentication App (CIE ID APP). It is thus
extremely important to leverage methodologies and techniques for the automatic security analysis
and risk evaluation of Android mobile application CIE ID APP (cf. Figure 21). A security flaw in the
authentication App could lead to severe security issues, allowing a malicious user to authenticate on
behalf of the victim.
To this aim, we plan to use the tool Approver (cf. Section 3.1.4), for an in-depth, fully automatic secu-
rity analysis of the authentication App, and a precise report of the security concerns. Besides that, we
will possibly use other tools of the SPARTA assessment framework, like TSOpen (cf. Section 3.1.14)
to be sure that the libraries used by the App under-development do not contain any malicious code.
In addition, we plan to apply to this vertical (some of) the continuous integration techniques which
will be developed in the context of task 5.3 (cf. Section 3.3). In particular, we envisage the use of the
plugin for the integration of Approver for the automated submission of the application package during
the development phase (cf. Table 63), so to be able to identify vulnerabilities in the early stages of the
software lifecycle.

6The T5.3 roadmap (section 3.3.3) details how the assessment methods identified and detailed in T5.2 will be applied in
this vertical

SPARTA D5.1 Public Page 39 of 154

D5.1 - Assessment specifications and roadmap

2.3 Summary of Certification Requirements

The previous sections presented an overview of the assessment and certification requirements for
CAPE verticals: CCCC and e-government services.
The CCCC vertical provides a platooning use case where several vehicle travel in a sequence forma-
tion led by a platoon leader. The objectives of the research are to demonstrate the safety and security
co-engineering and how respective standards can be integrated and impact the assessment activities.
This vertical will be illustrated through three demonstrations using small-scale vehicle infrastructure
to simulate real life environments where safety and security strategies (and their connection) will be
studied.
The e-government vertical is based on authentication solutions in the context of the CIE. The use
case will focus on improving cyber-security aspects of those solutions through two scenarios (mobile
and desktop) where a user authenticates with a central CIE identification server to get access to a
service provider.

Vertical 1 - CCCC Vertical 2 - e-Government

Domains

Cyber-Physical Systems, au-
tomotive, safety and security,
network communication, model-
based engineering

e-government, authentication,
authorization

Description of applica-
tion Vehicle platooning Electronic identity card

Assessment require-
ments

ISO 26262, SAE J3061, Com-
mon Criteria

eIDAS, SPID

Assessment tools re-
quired

Simulation-based fault injection,
formal verification, software veri-
fication, penetration testing

security analysis, software verifi-
cation, penetration testing

Certification require-
ments

confidentiality, integrity, availabil-
ity, authenticity

authentication, confidentiality,
integrity, availability

Architecture Cloud, Edge, IoT Cloud, mobile, desktop

Technologies used C/C++, Java, Python, Ruby,
Cuckoo

SAML, SOAP, HTTP, NFC

Table 1: Summary of Certification Requirements

SPARTA D5.1 Public Page 40 of 154

D5.1 - Assessment specifications and roadmap

Chapter 3 SPARTA Assessment Specifications

This chapter describes assessment specifications for the SPARTA project as laid out in the CAPE
program tasks, and provides high level realization roadmaps for each task:

T5.1 - Assessment procedures and tools - Provide tools and methods for continuous assessment
and certification.

T5.2 - Convergence of security and safety - Study techniques and specifications for integration of
security and safety

T5.3 - Risk discovery, assessment and management for complex systems of systems - Ad-
dress security requirements on SoS using modern software engineering methods

T5.4 - Integration on demonstration cases and validation - Demonstrate the tools and tech-
niques described in T5.1, T5.2 and T5.3 in the CAPE verticals

The outcome of the WP5 tasks takes the form of a generic continuous assessment framework based
on the V-Model software development process. Task 5.1 focuses on the framework specification, de-
scribing how the various tools that compose the framework can contribute to the continuous assess-
ment process. Task 5.2 proposes techniques for integration of security and safety on the connected
car vertical such as safety-security co-analysis techniques, requirements engineering, modelling and
implementation, safety and security co-verification and validation techniques, ... Task 5.3 proposes
a set of tools that can be used by software development organizations for compliance activities, by
detecting the presence of known security vulnerabilities in 3rd party software and addressing supply
chain attacks. Task 5.4 will demonstrate the continuous assessment framework in the connected car
and e-government verticals by verifying the evaluability of the two verticals.

SPARTA D5.1 Public Page 41 of 154

D5.1 - Assessment specifications and roadmap

3.1 T5.1 - Assessment Procedures and Tools

This task addresses the aspects related to assessment automation, augmenting the assessment
toolbox to support pre-assessment by users, as well as incremental assessment and continuous
monitoring. It studies assessment for IoT devices, hardware, kernel, software, communication infras-
tructures. It delivers practical tools for developers. It supports T5.2 and T5.3. This task will rely on
an analysis of existing national cybersecurity certification initiatives such as the CyberEssential label,
the ANSSI certification label, the BSI recommendation, the VDS certification, or the Italian national
framework performed in WP11. The task will also consider systems where continuous monitoring
and assessment is necessary such as the case of adaptive security. Task performers will engage in
constructive competition based on a Program-Lead-approved benchmark defined at the start of the
task.

3.1.1 SPARTA Cybersecurity Assessment Tool Framework

3.1.1.1 Overview of the Assessment Tool Framework

This section provides an overview of the SPARTA cybersecurity assessment framework. The frame-
work is composed of:

• a list of assessment tools to that can be used during different phases of the security engineering
lifecycle.
• a security engineering process description, that indicates in which phases each assessment

tool can be used
• a safety engineering process description
• a common criteria process description

Figure 22 shows the SPARTA cybersecurity assessment framework. The process descriptions are
shown in parallel, in order to highlight the time dependencies between the steps of a process, and
between steps of different processes. The figure suggests that security and safety co-engineering
can be performed, in parallel with cybersecurity Common Criteria certification. For example ”security
requirements analysis” can be done in parallel with ”safety goals definition”, and finish with incre-
mental certification of the ”security target evaluation (ASE)” (more specifically ASE REQ security
requirements). The safety certification process is not considered in the SPARTA assessment frame-
work because it is beyond the scope of the SPARTA project. The security engineering process covers
both software and hardware development, however the focus is on software development. Each of
these processes will be described in a separate section below. The framework covers the following
phases of the software lifecycle:

• the design phase covering requirements, architecture, design, development, unit testing, inte-
gration testing, acceptance testing and deployment,
• the operation phase when a system is running in its target environment
• the end of life phase when the system is taken out of operation

The design life cycle is assumed to be iterative.

SPARTA D5.1 Public Page 42 of 154

D5.1 - Assessment specifications and roadmap

Figure 22: V-Model - Certification for safety and security

In this section we use the well known iterative V-Model development lifecycle to compare the differ-
ent steps of the security engineering, safety engineering and cybersecurity certification processes.
One of the main motivations in using the V-Model was to be able to compare security and safety
development processes. While software development models have evolved towards agile processes
that describe the iterative nature of software development, the hardware nature of safety engineering
processes is less adapted to an agile process model. Using the V-Model is a good compromise to
compare security engineering and safety engineering processes as was done in the AMASS ECSEL
H2020 project [10] led by TECNALIA. For the cybersecurity certification process the Common Crite-
ria is used. It is defined in ISO/IEC 15408 that defines the general model and evaluation criteria and
ISO/IEC 18045 that defines the methodology for IT security evaluation. The use of the V-Model for de-
scribing the SPARTA cybersecurity assessment framework will be revised. A continuous integration
approach is described later on in this chapter for integrating the different assessment tools. In light of
that experience the choice of the V-Model will be revised and other development lifecycle models will
be analysed such as a DevOps model that would be more in-line with continuous integration.
The assessment tools of the SPARTA assessment framework can be used during different phases
of the software lifecycle. The table below introduces the different tools of the SPARTA assessment
framework. Each tool will be described in more detail in a separate section below. The table shows
the tool acronym, its name and the partner SPARTA partner responsible for its development.

SPARTA D5.1 Public Page 43 of 154

D5.1 - Assessment specifications and roadmap

Tool acronym Description Partner

RA Risk assessment (NeSSoS) CNR

SB Sabotage TEC

VA Vulnerability assessment SAP

FC Frama-C CEA

PT Penetration testing EUT

OC OpenCert TEC

VI Visual investigation of security information UKON

AF Autofocus FORTISS

MRA
model risk assessment for cyberphysical intercon-
nected infrastructures

NCSRD

FS Foreshadow-VMM Assessment Tool CNIT

VCS VaCSInE CETIC

VA2 Vulnerability assessment UniLu

LBD Logic Bomb Detection UniLu

RAAs Risk Assessment of Android app CINI

IMT IDS and SIEM assessment tool (IDS) IMT

BW
“Buildwatch” - A sandbox to monitor development pro-
cesses

UBO

Table 2: CAPE Framework tools summary

Figure 23 and table 3 show in which phase of the security engineering process each of the as-
sessment tools may be used. Table 4 show tools that may be used in which phase of the safety
engineering process. The security and safety engineering processes and their phases will be de-
scribed in separate sections below. The figure shows the majority of the tools on the security process
phases. Four tools however can be used in the more general contexts:

• development process: AF and OC can be used during most of the phases of the lifecycle. AF is
an integrated development environment that covers many phases, i.e. requirements until devel-
opment including testing, simulation, and deployment of embedded system software. OC is an
open product and process assurance/certification management tool to support the compliance
assessment and certification of Cyber-Physical Systems (CPS). It can be used during many of
the lifecycle phases both by the product developers as well as by an auditor.
• VA and VI can be used at organisation level and for systems of systems.

SPARTA D5.1 Public Page 44 of 154

D5.1 - Assessment specifications and roadmap

Figure 23: V-Model vs CAPE tooling

SPARTA D5.1 Public Page 45 of 154

D5.1 - Assessment specifications and roadmap

To
ol

/
Li

fe
cy

cl
e

ph
as

e

R
eq

ui
re

m
en

ts
an

al
ys

is
A

rc
hi

te
ct

ur
e

D
es

ig
n

C
om

po
ne

nt
D

es
ig

n
D

ev
el

op
m

en
t

pr
oc

es
s

U
ni

t
te

st
in

g
In

te
gr

at
io

n
te

st
in

g
A

cc
ep

ta
nc

e
te

st
in

g
D

ep
lo

ym
en

t
O

pe
ra

tio
n

E
nd

of
lif

e

R
A

X
VA

X
X

X
FC

X
X

P
T

X
X

O
C

X
V

I
X

A
F

X
M

R
A

X
FS

X
V

C
S

X
VA

2
X

LB
D

X
R

A
A

X
ID

S
X

B
W

X
X

X
X

Ta
bl

e
3:

S
um

m
ar

y
of

th
e

S
PA

R
TA

fra
m

ew
or

k
to

ol
s

re
la

tio
n

w
ith

se
cu

rit
y

V-
M

od
el

ph
as

es

To
ol

/L
ife

cy
cl

e
ph

as
e

G
oa

ls
de

fin
iti

on
Fc

t/t
ec

h
de

si
gn

R
eq

s
de

fin
iti

on
R

eq
s

va
lid

at
io

n
G

oa
ls

va
lid

at
io

n
Fc

t/t
ec

h
va

lid
at

io
n

O
C

X
X

S
B

X
X

Ta
bl

e
4:

S
um

m
ar

y
of

th
e

S
PA

R
TA

fra
m

ew
or

k
to

ol
s

re
la

tio
n

w
ith

sa
fe

ty
V-

M
od

el
ph

as
es

SPARTA D5.1 Public Page 46 of 154

D5.1 - Assessment specifications and roadmap

3.1.1.2 Security Engineering Process

Figure 24: V Model - Security Engineering Process

Figure 24 shows the different steps of the iterative security engineering process. In the context of
SPARTA security engineering is focused on software development. The hardware dimension is also
considered in the process because the automotive vertical does involve both software and hardware
components in the security requirements. The overall process distinguishes three main phases: (1)
design and deployment, (2) operation and (3) end of life of the system.
The different steps of the security engineering design process are the following:

• Security requirements analysis: during the requirements analysis of the system the security
requirements analysis step consists in defining the security requirements of the system and the
assumptions made on the future operating environment.
• Security by design: during the architecture and system design step security by design consists

in defining the security architecture such that the security requirements are satisfied.
• Secure design: during software and hardware component design secure design consists in

designing the components of the security architecture such that architectural security require-
ments are met.
• Code security assessment: during software and hardware development cybersecurity assess-

ment can be done on the software and hardware.
• Unit testing security assessment: during unit testing an assessment on the results of the secu-

rity unit tests can be made with respect to security requirements on the security components.
• Integration testing security assessment: during integration testing an assessment on the results

of the security integration tests can be made with respect to architectural security requirements.
• Acceptance testing security assessment: during acceptance testing an assessment on the

results of the security acceptance tests can be made with respect to user security requirements.
• Secure deployment: during the deployment phase security monitoring of the operation phase

can be deployed.

SPARTA D5.1 Public Page 47 of 154

D5.1 - Assessment specifications and roadmap

In addition to the (1) design and deployment phase cybersecurity assessment can also be made
during the (2) operation and (3) end of life phases of a system.

3.1.1.3 Safety Engineering Process

In this case, to explain a safety engineering process, the automotive domain will be considered since
the Connected & Cooperative Car Cybersecurity (CCCC) vertical, where safety is in place, is related
to vehicle systems. The ISO 26262 standard process has some specific phases and subphases
of the safety lifecycle. The planning of the safety activities regarding development is depicted in
Figure 25.
Once the system concept is defined, a Hazard analysis and a Risk assessment is done where the
probability of exposure, the controlability and the severity of a hazardous event with regard to the
system is determined. With these parameters the Automotive Safety Integrity Level (ASIL) is defined
and subsequently the safety goals, i.e. the top-level safety requirements are obtained.
During the subsequent phases and subphases, some detailed safety requirements are derived from
the safety goals. The functional safety concept is developed by taking into account the prelimi-
nary architectural assumptions. This safety concept is developed by deriving the functional safety
requirements from the safety goals and allocating them to elements within the architecture and the
necessary interactions to achieve to safety goal.
Then, the product development requirements at system level are specified, including the design
of the system architecture, the development of the technical safety concept, and the allocation of
the technical safety requirements to the elements of the system. To finish with the definition of the
requirements, the lowest Hardware (HW) and Software (SW) requirements are established. At
this point the hardware and software are developed.
Henceforth, safety verification and validation activities are executed, which include the validation
of the functional safety concept aspects, the implementation of the safety goals and the validation of
the assumptions concerning the effectiveness and the performance of external measures.

Figure 25: V Model - Safety Engineering Process

SPARTA D5.1 Public Page 48 of 154

D5.1 - Assessment specifications and roadmap

3.1.1.4 Cybersecurity Certification Process

This section describes the phases that will make up the process of evaluability for the purpose of
certification of a generic target (product, system, process, etc.), it will be indicated which are the
expected elements (requirements) that the various procedures and the various tools must have in the
various phases of the activities that make up the process of evaluability.

Figure 26: V Model - certification process

Among the main objectives of WP5 there is the simplification, but at the same time the completeness
of the certification processes while trying to consider at the same time the needs that may arise in
dealing with the analysis of very different elements (products, systems, processes and services).
In this direction the starting idea is to generalize what are the phases of a hypothetical certification
process, which is by its nature adaptable to different elements (that we can define in general Target
of Evaluation - TOE), but which also covers their entire life cycle.
Therefore in the initial hypothesis we focused on the idea of Cyber security seen as a process that
accompanies a certain TOE throughout its life cycle as is perfectly outlined in Figure 3.19, naturally
regardless of the need for a security certification of the TOE.
If we then want to go within the scope of the certifications, we can immediately verify that the phases
of a generic process of evaluation/certification of the security of a TOE are going to map perfectly
with those of Cyber security process just mentioned.
Taking as an example Common Criteria (ISO / IEC 15408), a standard that has become established
and consolidated in recent decades, in the next scheme we can note how the various assurance
classes, that characterize the activities carried out during a process of evaluation/certification of a
TOE, go perfectly to map the needs defined in the various phases of the introduced Cyber security
process.

SPARTA D5.1 Public Page 49 of 154

D5.1 - Assessment specifications and roadmap

Figure 27: Common Criteria Assurance Classes mapping

For completeness, a rough description of these assurance classes and their correlation with the
Cybersecurity process phases is given:

• ASE (Security Target Evaluation): this class deals with the evaluation of the consistency of the
”Security Target” which also contains the definition of the security requirements of tho TOE,
therefore it is closely linked to the security requirements management phase.
• ADV (Development): this class deals with the evaluation of the six families of requirements

for structuring and representing the security functionality realized by the target of evaluation
(TOE) at various levels and varying forms of abstraction that the developer must produce during
the product development phase, naturally it is linked to the features of the Secure by design
processes adopted by the supplier.
• AGD (Guidance Documentation): this class takes care of the evaluation of the manuals that are

delivered to the customer. These manuals contain both the secure configuration process of the
TOE in its user environment and its safe use methods for each category of defined end-user.
• ALC (Life-cycle support): this is a very important class that evaluates all aspects of the man-

agement of the TOE during its life cycle: in the development phase in which it is under the
responsibility of the developer, during the transitional phase of transport in its final operating
environment and of course the management in the operating environment under the respon-
sibility of the customer and the developer, in the hypothesis of maintaining the certification
(security patch management).
• ATE (Tests): it is the class that takes into consideration all the tests that demonstrate that

security functionalities operate according to its design descriptions, both the functional ones
proposed by the developer and the independent ones proposed by the evaluators.
• AVA (Vulnerability Assessment): this class takes care of vulnerability assessment activity to

analyse vulnerabilities in the development and operation of the TOE. Development vulnerabili-
ties are those introduced during its development and these can be minimized with the adoption
by the developer of ”security by design” processes. Operational vulnerabilities are those that
could exploit the weaknesses of non-technical countermeasures to violate the TOE security
functionality. This analysis is carried out by the evaluators during TOE evaluation deliverables
analysis or from the classic vulnerability analysis performed also adopting automatic tools.

3.1.1.5 Cyber-security Certification Initiatives

This section provides an overview of national, international and European cybersecurity certifications
initiatives, based on the work achieved in work package 11 SPARTA D11.1 - Mapping of International

SPARTA D5.1 Public Page 50 of 154

D5.1 - Assessment specifications and roadmap

and national cybersecurity certification initiatives [107] and the ECSO State of the Art Syllabus -
Overview of existing Cybersecurity standards and certification schemes v2 [37]. Those initiatives can
be separated in several main categories:
standards that provide rules, guidelines or characteristics for activities or for their results, aimed at

achieving the optimum degree of order in a given context,
frameworks that provide voluntary guidance, based on existing standards, guidelines, and practices

for organizations to better manage and reduce cybersecurity risk,
certifications that provide assurances that a product, process or service is in conformity with certain

standards.

3.1.1.5.1 International cyber-security certification initiatives

Name Type Body Country / Re-
gion Industry Verticals

ISO27K Standard ISO/IEC International General
Service
providers and
organisations

Common Crite-
ria Standard

CCRA/SOG-
IS

International General
Products and
services

CIS Critical Se-
curity Controls

Set of
controls

SANS Insti-
tute

International General
service
providers and
organisations

Industrial Inter-
net of Things
Security Frame-
work

Framework
Industrial
Internet
Consortium

International
Industrial
IoT sys-
tems

IoT

Cloud security
Alliance Cloud
Controls Matrix

Set of
controls

SANS Insti-
tute

International
Cloud
service
providers

Cloud

ISO-SAE 21434
& SAE J3061 Standard ISO/IEC International Vehicles Road vehicles

ISO 27034 Standard ISO/IEC International General
Application se-
curity

IEC 62443 Standard ISA/IEC International Industry
Automation
controls

Table 5: International cyber-security standards and frameworks overview

ISO/IEC 27001 [62] provides requirements for an Information Security Management System (ISMS)
. ISO describes an ISMS as ‘a systematic approach to managing sensitive company informa-
tion so that it remains secure. It includes people, processes and IT systems by applying a
risk management process.’ The standard describes how an organisation must set its security
objectives and determine the risks that threaten these objectives to ensure its assets remain
secure.

Common Criteria [26] for Information Technology Security Evaluation is an international standard
(ISO/IEC 15408) for computer security certification. The standard is composed of catalogs of
functional and assurance requirements, instructions on how to build specifications (”Security

SPARTA D5.1 Public Page 51 of 154

D5.1 - Assessment specifications and roadmap

Targets” based on ”Protection Profiles”) and conduct independent security evaluations based
on these requirements that will provide evaluation ratings (”Evaluation Assurance Level (EAL)”).

CIS Critical Security Controls [23] is a prioritised list of 20 security controls that an organisation
could implement to thwart the most pervasive cybersecurity attacks. Every control consists of
a number of ‘sub-controls’, which are concrete actions an organisation can take.

Industrial Internet of Things Security Framework [55] identifies, explains and positions security-
related architectures, designs and technologies, as well as identify procedures relevant to trust-
worthy Industrial Internet of Things (IIoT) systems. It describes their security characteristics,
technologies and techniques that should be applied, methods for addressing security, and how
to gain assurance that the appropriate mix of issues have been addressed to meet stakeholders’
expectations.

Cloud security Alliance Cloud Controls Matrix [29] is a catalog of requirements for security assur-
ance in the cloud designed to provide fundamental security principles developed by the Cloud
Security Alliance (CSA) to guide cloud vendors and to assist prospective cloud customers in as-
sessing the overall security stance of a cloud provider. It covers fundamental security principles
across 16 domains (e.g. Datacentre Security Asset Management, Mobile Security and Anti Mal-
ware, and Security Incident Management, E-discovery Cloud forensics, and Incident Reporting)
to help cloud customers assess the overall security risk of a Cloud Service Providers.

ISO-SAE 21434 [58] aims at standardising the cybersecurity engineering process by specifying re-
quirements for cybersecurity risk management for road vehicles and systems across the whole
engineering lifecycle (design, production, operation, maintenance and decommissioning).

SAE J3061 [103] provides guidance on vehicle Cybersecurity by establishing a set of high-level guid-
ing principles for cyber-physical systems: tools and methods for design, verification and valida-
tion of vehicle CPS, basic cybersecurity principles for vehicle systems, ...

ISO 27034 [61] offers guidance on information security to ensure that computer applications deliver
the necessary level of security in support of the organisation’s ISMS. It consists of 6 parts, some
are still drafts: Overview and concepts (2011), Organisation normative framework (2015), Ap-
plication security management process (expected publication May 2017), Application security
validation (expected publication 2019), Protocols and application security control data structure
(expected publication May 2017) and Case studies (2016). ISO/IEC 27034 targets various roles
of the software development cycle: architects, analysts, programmers, testers, IT team, DBA’s,
Admins, but provides also guidance to auditors on e.g. how to evaluate the scope and process
of verification measurements for the corresponding Application Security Controls.

IEC 62443 [53] applies to industrial automation and control systems in the operational technology
domain. It provides guidance on policies, procedures, systems requirements, components
requirements. The ISA/IEC 62443 take into account Industrial Automation and Control Sys-
tems (IACS) specificity, notably with Health, Safety or Environment (HSE) implications where
the response should be integrated with other existing risk management practices addressing
these risks.

SPARTA D5.1 Public Page 52 of 154

D5.1 - Assessment specifications and roadmap

3.1.1.5.2 National cyber-security certification initiatives

Name Type Body Country / Re-
gion Industry Verticals

NIST CSF Framework NIST USA General
Critical infras-
tructures

IT Grundschutz Standard BSI Germany General
Service
providers

ISKE Standard RIHA Estonia
State and
govern-
ment

E-Government

Security Visa Certification ANSSI France General General

Cyber Essen-
tials Label CREST/GCHQ

United King-
dom

General General

National Cy-
ber Security
Framework

Framework CIS/CINI Italy General General

VDS 3473 Certification VDS Germany General SME

FINCSC Certification JYVSECTEC Finland General General

Cyber Funda-
mentals Certification State/Federal Belgium General SME

Table 6: National cyber-security standards and frameworks overview

US - NIST Cybersecurity Framework for Improving Critical Infrastructure Cybersecurity [82] orga-
nizes basic cybersecurity activities at their highest level (Identify, Protect, Detect, Respond,
Recovery) to manage cybersecurity risk by organizing information, enabling risk management
decisions, addressing threats, and learning from previous activities.

Germany - IT Grundschutz [63] covers technical, organisational, infrastructural and personnel as-
pects of information security, providing a systematic approach to information security that is
compatible with ISO/IEC 27001 through modules catalogs that contains a short description of
the applicable components, approaches, and IT systems, as well as an overview of the threat
scenario and the recommended safeguards.

Germany - VDS 3473 [119] [94] - ”Vertrauen durch Siecherhiet” (VdS) is major independent testing
institute with a focus on corporate security and safety. The VdS scheme is structured into
domains (e.g. organisation, technology, mobile devices, prevention, ...) and four certified levels
built on top of an online self-assessment: VdS quick audit, VdS 3473 Certificate, VdS ISO
27001 certificate and KRITIS for critical infrastructures.

Estonia - ISKE [57] is modelled on the IT-Grundschutz standard developed by the Federal Office for
Information Security of Germany (BSI). ISKE forms a complete ecosystem from regulation to
support tools and auditing practices. It spans all security domains from organisational security
and risk assessment to technical methods and measures. Compulsory for the public sector
since 2008, the ISKE standard employs a three-level assessment for an entity’s security re-
quirements (high, medium, low). The standard seeks to balance confidentiality, integrity and
availability of data.

France - ANSSI Security Visa [14] helps companies and government authorities to select security
solutions by qualifying and certifying those solutions in order to make sure they are compliant
with corresponding standards.

SPARTA D5.1 Public Page 53 of 154

D5.1 - Assessment specifications and roadmap

United Kingdom - Cyber Essentials [30] provides guidelines, technical security controls, (self-
)assessment and certification for protection against common cyber attacks, with a focus on
keeping UK businesses safe.

Italy - National Cyber Security Framework [56] is based on the NIST Framework for Improving
Critical Infrastructure Cybersecurity and is the result of a Public-Private-Partnership. It provides
cyber security guidelines and a framework for SMEs, large enterprises, critical infrastructures
and sector regulators.

Finland - FINCSC [45] - the Finnish Cyber Security Certificate is a certification mechanism that aims
as ensuring business continuity and data protection for companies of all sizes. It focuses on im-
proving understanding and providing a common criteria for cyber security and provides various
levels of certification.

Belgium - Cyber Fundamentals Initiative will support SMEs to ensure a minimum level of security
through a set of security requirements, basic technical controls and information on organiza-
tional and technical implementation of information security. The Cyber Fundamentals will help
to address different compliance requirements, such as the GDPR, but it will also help to reduce
the risk of becoming a victim of the most common cyber attacks.

3.1.1.5.3 European cyber-security certification initiatives
EU CyberSecurity Act [42] aims at addressing the fragmentation of European cybersecurity frame-

works and initiatives. It is still in the early stages of development and will create a body of
regulations by reviewing current frameworks and candidate schemes and establish a European
cybersecurity certification framework for ICT products, services and processes. The European
Union Cybersecurity Agency and the establishment of an EU cybersecurity certification frame-
work (ENISA EU cybersecurity agency [41]) are tasked with improving the EU’s reaction to
cyber-attacks, cyber resilience and trust in the Digital single market.

eIDAS [90](Electronic Identification, Authentication and Trust Services) is an EU regulation on elec-
tronic identification and trust services for electronic transactions in the European Single Market.
eIDAS provides standards for electronic signatures and electronic transactions used in online
business or public services transactions.

3.1.2 Tools Descriptions and Development Plans

The following sections describe the use cases that will guide the development of the tools composing
the CAPE Continuous Assessment Framework and the main user requirements derived from these
use cases. From these requirements, we extract a prioritized list of software requirements to be im-
plemented, and define the roadmap and the verification methods to address these software require-
ments. The tools are described in a short standardised way: identifier, name, owner, description,
corresponding main assessment phases, technologies required, url, documentation, example tool
usage and EU projects the tool has been built upon. When justified/applicable, the tools description
will also include the following sections:

• User, software and certification requirements
– Use cases: description of tool use cases in the relevant case studies (UC identifier, name,

description, actors, basic flow), e.g. ”Apply the security policy to the system”
– User requirements: description of the certifications requirements, and when possible re-

lated to a compliance standard e.g. ”Track and monitor all access to network resources
(PCI-DSS)”

– Software requirements: list of the software requirements of the tool (SR identifier, name,
description, actors, basic flow)

• Specifications
– Description of components: description of the components that the tool consists of

SPARTA D5.1 Public Page 54 of 154

D5.1 - Assessment specifications and roadmap

– Architecture: description of the tool architecture where components are presented, in order
to define a detailed tool roadmap

– Development roadmap: relates the use cases and the architecture, it also describes how
the proposed architecture will be realized

– Software verification and validation plan: list of methods for verifying the software require-
ments. These requirements are intended to be implemented in the different design and
development cycles and will be verified and demonstrated upon their completion as part
of WP5

For brevity purposes, some of the tools are only briefly described in the next sections, and further
details (requirements, specifications) are explained in the appendix chapter 8.

3.1.3 Frama-C (CEA)

Identifier FC

Name Frama-C

Owner CEA

Main functions Static analysis, code comprehension and audit, verification of safety
and security properties

Description A platform for sound analyses of C code, based on formal methods.

Assessment phases Development, Unit testing

Technologies required C source code must be available; Unix-like environment with OCaml

URL https://www.frama-c.com

Documentation

• User manual: https://frama-c.com/download/frama-c-
user-manual.pdf

• Tool paper: http://julien.signoles.free.fr/publis/
2015 fac.pdf

Example usage

• Exhaustive identification of runtime errors (e.g. buffer overflows),
mostly automatic

• Proof of functional properties via code annotations

• Code exploration, navigation and audit, augmented with a display
of all possible values at runtime

Continuing work from
projects

• U3CAT - Critical C code analysis (French Research
Agency) [116]

• STANCE - Source code analysis toolbox (FP7) [108]

• VESSEDIA - Software analysis tools for IoT (H2020) [120],

• DECODER - Unified knowledge base for software projects
(H2020) [32]

SPARTA D5.1 Public Page 55 of 154

https://www.frama-c.com
https://frama-c.com/download/frama-c-user-manual.pdf
https://frama-c.com/download/frama-c-user-manual.pdf
http://julien.signoles.free.fr/publis/2015_fac.pdf
http://julien.signoles.free.fr/publis/2015_fac.pdf

D5.1 - Assessment specifications and roadmap

3.1.3.1 User requirements description

UC1 Runtime errors and vulnerability identification via static analysis

Description

Apply an abstract interpretation-based static analysis to a test case to obtain
an exhaustive list of possible runtime errors and security vulnerabilities re-
lated to deviations from the standard, including buffer overflows, null pointer
dereferencing, uninitialized variable reads, division by zero. This use case
is mainly related to T5.3, as one of the analysis tools in the CI/CD pipeline.
This use case can eventually contribute to T5.2, for code-level properties
related to both security and safety (e.g. memory safety).

Actors Software developers & testers

Basic flow

Frama-C is configured to parse a whole program or a specific function to be
tested; the analysis is triggered manually or via an automated mechanism
(e.g. once per day). Results are presented in a standardized format (e.g.
Static Analysis Results Interchange Format (SARIF)), or via the Frama-C
graphical interface, for manual inspection.

UC2 Code audit accelerated by a value analysis

Description

Augment the inspection of a program (possibly performed by an external
user, who did not participate in its development) by providing an exhaustive
list of all possible variable values and code execution paths at each program
point, for each variable and expression in the program; equivalent to a ”static
debugger” which does not require running the code and which provides val-
ues for all possible program executions. This use case complements the
previous one and can be used for the same tasks (mainly T5.3, eventually
T5.2), but not at the same scale: while UC1 is oriented towards large-scale,
automated verification, UC2 is related to manual assessment, e.g. after a
potential vulnerability has been found.

Actors Code auditor

Basic flow

Either Frama-C is configured to parse the code to be audited, or the devel-
opers provide a saved state of the analysis. The auditor uses a graphical
interface to explore the code and understand all possible behaviors, e.g.
to explore whether a potential vulnerability can happen, and under which
conditions.

Table 7: Frama-C - Use Cases

SPARTA D5.1 Public Page 56 of 154

D5.1 - Assessment specifications and roadmap

UR1.1 Quasi-automatic analysis configuration

Description Initial configuration of the analysis on a code base with minimal effort and
required expertise

Actors Software developers & testers

UR1.2 Exchangeable analysis results

Description Analysis results must be exchangeable with other tools, for reuse and inte-
gration

Actors Software developers & testers

UR2 Audit-centered analysis exploration and report

Description

The tool must produce a specific report for auditors, based on information
provided by the developers and tailored for the purposes of reviewing an
analysis, including its parametrization, and environment details. This analy-
sis is complemented by a graphical interface focused on assessment needs.

Actors
• Software developer (environment description provider)

• Code auditor (environment description consumer)

Table 8: Frama-C - User Requirements

SPARTA D5.1 Public Page 57 of 154

D5.1 - Assessment specifications and roadmap

SR1.1 CI-based set of parametrization options + example use cases

Description
Definition of a CI-oriented set of parametrization options to minimize the
expertise necessary for an initial setup. A set of diverse code bases is
included to ensure the designed parametrization performs as expected.

Actors Software developers & testers

Basic flow

Identify and collect a set of representative, varied code bases for the anal-
ysis; define an automatic parametrization that ensures the best perfor-
mance/precision trade-off on such set, adding new metrics and options as
needed.

SR1.2 Standardized output format

Description Support of a standardized format for analysis results, such as the SARIF
standard.

Actors Software developers & testers

Basic flow Adapt the existing analysis result messages to conform to SARIF.

SR2 ”Audit” mode

Description

Two sets of specific configurations and analysis features which allow, on one
side, a developer to provide a complete description of the environment (op-
tions, external files, annotations, etc.); On the other side, a different set of
configurations and features aimed at a code auditor, which allows verifica-
tion of the previous artifacts and conformity of the environment. A graphical
interface and visualization features help with code navigation and compre-
hension.

Actors
• Software developers

• Code auditors

Basic flow
Produce a report of the analysis including environment information. This re-
port is sent to an auditor, along with the code, who can verify its conformity,
using a graphical interface as support.

Table 9: Frama-C - Software requirements

3.1.3.2 Technical specifications

Frama-C is a platform for C code analysis based on formal methods. It is comprised of several
modular parts, which include code transformations, safety and security analyses, and a graphical
interface to explore results and perform semi-interactive proofs.
In CAPE, CEA’s focus is to improve one of the main analyzers of the Frama-C platform, called Eva,
a value analysis based on abstract interpretation. It performs an automatic, whole-program static
analysis which outputs an extensive list of possible runtime errors. Eva also provides information
about each program variable at each statement, for all possible executions, easily accessible via a
graphical interface. The current architecture of Frama-C/Eva is presented in Figure 28.
Given the two use cases related to Frama-C/Eva, there are two main modes of usage of the analyzer:

CI mode (automatic) : Eva is used as a static analysis tool, similarly to a code sanitizer, during a
build process. A fast, automatic analysis is required, outputting data for a continuous integration
process.

SPARTA D5.1 Public Page 58 of 154

D5.1 - Assessment specifications and roadmap

Figure 28: Frama-C/Eva’s current architecture

Audit mode (interactive) : Eva is used to augment the auditor’s understanding of the code, comple-
menting but not replacing human expertise during an assessment. Frama-C’s graphical inter-
face provides the set of all possible variable values, plus code navigation possibilities, providing
points-to and aliasing information, and evaluation of arbitrary expressions.

Concerning the automatic use mode, Frama-C/Eva has been historically developed for in-depth anal-
yses of safety-critical code bases developed using a traditional process, with few revisions and a long
assessment period. In CAPE, the transition to a CI-based analysis with rapid assessments imposes
changes to its architecture, as illustrated in Figure 29.

Figure 29: Frama-C/Eva’s architecture for CI builds

For the audit mode, the goal is to complement automatic analysis and to support external assess-
ments taking into account the environment, subject to changes. Figure 30 highlights the differences
with respect to the existing architecture.

Figure 30: Frama-C/Eva’s architecture for audits

3.1.3.3 Development roadmap

Use Case Architecture compo-
nents Realisation Involved partners

UC1 Frama-C kernel
Simplify/automate parsing
and initial setup

CEA

UC1 Markdown-Report plug-in
Produce outputs in standard-
ized format (SARIF)

CEA

UC2 Frama-C kernel and GUI
Produce environment sum-
maries and check their confor-
mance

CEA

Table 10: Frama-C - Use cases, realisations and architecture

Both UC1 and UC2 will be implemented in D5.3, for the demonstrator prototypes. UC2 requires more
user interaction and feedback, so it is expected that it should evolve more significantly before the final
demonstrator.

SPARTA D5.1 Public Page 59 of 154

D5.1 - Assessment specifications and roadmap

3.1.3.4 Software verification and validation plan

SR id Description Verification method Demonstration scenario

SR1.1
CI-based configuration
and use cases

Check applicability and us-
ability on a set of existing
code bases

Set of open-source code
bases

SR1.2
Standardized output for-
mat (SARIF)

Feed output to other tools
compatible with SARIF

Integration in the CI pipeline
produced in T5.3

SR2
Audit-mode outputs and
validation as inputs

Modify outputs and re-feed
them as inputs to check con-
formance

Set of open-source code
bases

Table 11: Frama-C - Demo scenarios and verification methods

3.1.4 Approver (CINI)

Identifier RAA

Name Approver

Owner CINI

Main functions SAST and DAST of Android apps; Risk Assessment of Android apps

Description

Approver is an automatic toolkit for the in-depth, fully automatic se-
curity analysis of mobile applications. Approver automatically detects,
evaluates and provide comprehensive reports explaining the security
risks hidden in the mobile applications. The key features include, but
are not limited to:

• Advanced Application Analysis based on state-of-the art static
analysis techniques

• Automated Security Policy Verification, ensuring that mobile apps
comply with security requirements and regulations

• Risk Score and Reports. Detailed, per-app risk reports that sum-
marize the security concerns of the analyzed applications.

Assessment phases Development process

Technologies required
Approver is available as a SaaS tool; in case of on-premise solutions
it requires Docker (docker compose and docker swarm), VirtualBox,
MySQL, and MongoDB.

URL https://approver.talos-sec.com

Documentation Not publicly available

Example usage
Security evaluation and risk assessment of Android apps during devel-
opment; VA/PT of Android Apps; Risk assessment of Android apps in
corporate environment

SPARTA D5.1 Public Page 60 of 154

https://approver.talos-sec.com

D5.1 - Assessment specifications and roadmap

3.1.5 Foreshadow-VMM Assessment Tool (CNIT/University of Rome Tor Vergata)

Identifier FS

Name Foreshadow-VMM Assessment Tool

Owner CNIT / University of Rome Tor Vergata

Main functions Assess the presence of the Foreshadow-VMM Vulnerability and mea-
sure the troughput of the covert-channel

Description

The tool spawns two virtual machines (VMs), which will act as victim
and attacker VMs. It then repeatedly applies the Foreshadow-VMM
attack to determine if the CPU has the flaw and, if so, gets statistic of
the covert channel as throughput and false read rate.

Assessment phases Deployment

Technologies required Intel VT-x and Intel HyperThreading

URL https://gitlab.com/marcux 95/l1 tf/

Documentation https://www.researchgate.net/publication/
335340376 Exploiting Foreshadow-VMM

Example usage In a cloud environment, detect if a malicious VM can leak information
from other VMs running concurrently.

3.1.5.1 User requirements description

UC1 Assesment of L1-TF Vulnerability

Description The Cloud Infrastructure owner can tell if two virtual machines, managed by
two different verticals, can exfiltrate information from each other.

Actors

• Cloud Owner

• Cloud Infrastructure

• Victim VM

• Attacker VM

Basic flow

The Cloud Owner can instantiate on the cloud infrastructure, on top of the
Hypervisor, the two VMs. A requirement is that the two VMs must share the
same core, thus sharing the same L1-Data cache. The Victim VM is shipped
with a dummy program which instantiates a “secret” string in memory and
continuously access it, thus ensuring that the secret key is store in the L1-D
cache.
The attacker VM is shipped with the assessment tool, which tries to retrieve
the secret key by exploiting the Foreshadow-VMM vulnerability.

Table 12: Foreshadow-VMM - Use Cases

SPARTA D5.1 Public Page 61 of 154

https://gitlab.com/marcux_95/l1_tf/
https://www.researchgate.net/publication/335340376_Exploiting_Foreshadow-VMM
https://www.researchgate.net/publication/335340376_Exploiting_Foreshadow-VMM

D5.1 - Assessment specifications and roadmap

CR1 Assess the presence of the vulnerability

Description The Cloud owner assesses the presence of the vulnerability on its infras-
tructure.

Actors Cloud Owner

Table 13: Foreshadow-VMM - Certification requirements

SR1 Linux OS support

Description In the current state of the tool, it has been implemented only to support
Linux environments.

Table 14: Foreshadow-VMM - Software requirements

3.1.5.2 Technical specifications

The Foreshadow-VMM Assesment tool consists of the following components:
• Victim VM. Materializes in memory the secret key to be stolen by the attacker.
• Attacker VM. Exploits the Foreshadow-VMM vulnerability to retrieve the secret key.
• Host kernel patch. Responsible for providing the Extend Page Table Pointer of the victim VM.
• Host Kernel module. Responsible for the translation of the guest physical address into the host

physical address.
In order to be sure that the two machines are running on the same physical core, two VMs have been
instantiated using Kernel-Based Virtual Machine (KVM), setting CPU affinities to force KVM to run
the two VMs on the same core. We then provided an attacker VM with the following two tools:

• an Offending Kernel Module (OKM), triggering the terminal fault on the Probe.
• a Probe, a user space program devised to be offended by the OKM and to probe the cache for

active lines.

At first, Probe is started. The kernel associates with such process with a Process ID (PID) and
creates the relevant page table tree inside the kernel structure, namely the mm data structure. The
Probe instantiates a temporary variable called tmp, which has a certain virtual address, thus creating
a Page Table Entry for that variable.
The Probe will pass it’s PID to the OKM using a character device, passing also the virtual address
of the tmp variable in the u64 format, needed by the Offending Kernel Mo1dule (OKM) to actually
tamper the page table entry associated with the tmp variable.
At this point, the OKM can be loaded inside the attackers’ VM and recives the PID of the Probe and
the vaddr of the tmp variable. Starting from the PID, the OKM extracts the mm struct from the task
struct, which is process-specific. With such information, the OKM can start a page walk to arrive to
the leaf node of the tree, which contains the Page Table Entry (PTE) for the tmp variable of the Probe,
which contains the translation between the virtual address and the physical address of the variable,
aside with other control bits, such as the present bit of the PTE.
At this point, we are able to manipulate the page table entry, setting/clearing control bits and altering
the translation between virtual and physical address. In particular, clearing the present bit on the tmp
variable PTE will cause a terminal fault when the Probe will access again the tmp variable.
It is also possible now to tamper the translation, since the physical address is encoded inside the
PTE from bit 47 down to 12. In fact, substituting this address with a malicious one, allows us to read
any data residing in the L1D cache on the subsequent step.
When the Probe will access again the tmp variable, the kernel will perform a page walk, arriving on
the tampered PTE. It will find that the PTE is not valid, since the present bit has been cleared, rising

SPARTA D5.1 Public Page 62 of 154

D5.1 - Assessment specifications and roadmap

an exception which will abruptly terminates the Probe after a certain time window. In the meanwhile,
the access to the tmp variable has been passed to out-of-order execution with the tampered address,
making a side effect on the cache based on data contained in such a location, which may belong to
the Host OS or to the Victim VM. At this point, the Probe intercepts the exception and starts to read
speculatively the content of the L1-data cache. At this point the attack can be automatized to retrieve
any arbitrary string from the L1-D cache.

3.1.5.3 Development roadmap

Use Case Architecture components Realisation Involved partners

UC1
Victim VM, Attacker VM,
Host Kernel Patch, Host Ker-
nel Module

Use the tool to asses the pres-
ence of the L1-TF Vulnerabil-
ity

CNIT

Table 15: Foreshadow-VMM - Use cases, realisations and architecture

3.1.5.4 Software verification and validation plan

SR id Description Verification method Demonstration scenario

SR1
The tool compiles in the
current Kernel

Check if the Attacker VM is
able to retrieve the secret key

Use the tool on the current
infrastructure

Table 16: Foreshadow-VMM - Demo scenarios and verification methods

SPARTA D5.1 Public Page 63 of 154

D5.1 - Assessment specifications and roadmap

3.1.6 NeSSoS Risk Assessment Tool

Identifier RA

Name NeSSoS risk assessment tool

Owner CNR

Main functions The tool supports risk assessment of organisation’s IT system. The
tools is questionnaire-based and aims at providing quantitative results.

Description

This is an on-line tool that helps organisations to estimate their ex-
pected losses due to the possible cyber attacks of various kinds. The
tool asks for the core assets and potential impact, once the assets are
compromised. Next, the tool requests for the information about the
security countermeasures installed and practices applied in the organ-
isation. Then, it computes the expected losses for the organisation.
The tool is available in three modes : ”short” (with very small set of
questions) for a quick estimation, ”medium” for a more in depth analy-
sis, and ”complete” for in-depth assessment.

Assessment phases The tool provides high level assessment, so it is important for Risk
Management process at the global level.

Technologies required The analysis targets IT networks (with possible use of cloud, mobile
and teleworking)

URL https://www.cybersecurityosservatorio.it/en/
Services/survey.jsp

Documentation N/A

Example usage

A responsible person for security of a system initiates the risk assess-
ment process in order to ensure that all relevant threats are covered,
estimate possible risks due to cyber threats, and plan further actions for
treatment of residual risks. The process can be executed as by the se-
curity team of the owner, as well as by external auditors (as well as for
certification purposes, e.g., to identify the main risks, identify required
protection, and analyse the effectiveness of existing countermeasures
and practices).

The tool will be used in order to evaluate existing risks for the e-government system.
See section 8 of the appendix for further details (user requirements, technical specifications and
development roadmap) for this tool.

SPARTA D5.1 Public Page 64 of 154

https://www.cybersecurityosservatorio.it/en/Services/survey.jsp
https://www.cybersecurityosservatorio.it/en/Services/survey.jsp

D5.1 - Assessment specifications and roadmap

3.1.7 IDS and SIEM Assessment Tool (IMT)

Identifier IDS

Name IDS and SIEM assessment tool

Owner Télécom SudParis (IMT)

Main functions Network traffic stress testing

Description

The tool generates different kinds of traffic to fulfill different testing pur-
poses:

• synthetic legitimate traffic to provide a realistic testing environ-
ment without incurring privacy issues

• synthetic legitimate/malicious traffic bootstrapping from existing
traces with the ability to apply various transformations to the re-
sulting traffic in order to generate a wealth of different traffics and
increase the size of the dataset

• synthetic adversarial traffic which has the ability to evade a de-
tector

Adversarial learning can also feed back to the security tool to improve
its detection (IDS) and/or correlation ability (SIEM).

Assessment phases Operations

Technologies required Adversarial learning, Generative learning, Neural networks

URL N/A

Documentation N/A

Example usage

• Automatic noise generation for penetration testing

• Results analysis to characterize IDS/SIEM robustness

• Network traffic trace generation/amplification

• Attack traffic mutation

In CAPE, IMT aims at improving the parser to extract new features that will enable a more faithful
modelling of traffic traces. By reliably modelling real traffic traces, we believe that we will be able
to generate more realistic network traffic. The models learned from a single traffic trace allows the
generator to reproduce traffic for this particular trace. One particular challenge is the feasibility of
producing real traffic features from certain model features.
The traffic generator takes as input the model features learned from the parser and generates a
synthetic network traffic. A legacy and more heavy approach was to set up a number of agents sup-
porting the protocols identified in the input and to have them generate a traffic envelope that fulfills
the distribution of protocols and their respective amplitudes over time. While this work is interesting
to pursue particularly with respect to agent orchestration, in CAPE, we aim at developing novel ap-
proaches based on generative networks. In particular, a first attempt using autoencoders – a type of
neural networks that efficiently learn and reproduce inputs – has been studied. IMT will focus on im-
proving the realism of generated traffic, with respect to packet contents and flow behaviour. Indeed,
the autoencoder actually output a feature vector and not network traffic per se. IMT needs to develop

SPARTA D5.1 Public Page 65 of 154

D5.1 - Assessment specifications and roadmap

a function (translator) to generate life-like traffic from the outputted feature vector.
Secondly, in order to generate malicious vector able to challenge the systems under evaluation (IDS,
SIEM), IMT will develop a generative adversarial network-based (GAN) approach. Using a GAN, we
aim at improving concurrently two aspects of the generated traffic: its realism and its malice, so that
it becomes difficult for the system under evaluation to discriminate real, legitimate traffic from the
malicious, synthetic one.
Finally, a human interface module should summarize the results of the test and assist the tester in
identifying the weaknesses of the system under evaluation to make recommendations on how to
improve it.
See section 8 of the appendix for further details (user requirements, technical specifications and
development roadmap) for this tool.

3.1.8 Risk Assessment for Cyberphysical Interconnected Infrastructures (MRA)

Identifier MRA

Name Risk assessment for cyberphysical interconnected infrastructures
(MRA)

Owner NCSRD

Main functions

The main function of the MRA is the identification and modelling of
the cyber-physical interconnections of infrastructure assets. Firstly, a
user inserts a threat scenario, which is the initiating point for an impact
assessment accounting for cascading effects within and between inter-
connected infrastructures. MRA follows the ISO 27005 approach, and
its novelty lies on the decomposition of both the likelihood and conse-
quences elements of risk. The tool is customizable with respect to the
impacts and their importance to the network operation.

Assessment phases Requirement analysis

Technologies required Java or Python development

URL To be provided upon final assessment

Documentation To be provided upon final assessment

Example usage

The security/IT department of a facility should engage the MRA pro-
cess covering as many risks as possible to the infrastructure (or spe-
cific assets therein), and identify based on selected risk levels the most
appropriate mitigation plan. The MRA tool has been applied in the risk
assessment of a simple infrastructure comprising of interconnected as-
sets (smart lights of the NCSRD facility). The smart lighting infrastruc-
ture has been subject to different types of attacks and possible impacts
(both in the cyber and physical domains).

Continuing work from
projects

The framework behind the tool has been used within the ISF funded
project for CI Protection of national critical infrastructures, serving as a
common basis for comparing different types of threats under a common
approach.

3.1.8.1 User requirements description

This tool will quantify existing risks for vertical 1:

SPARTA D5.1 Public Page 66 of 154

D5.1 - Assessment specifications and roadmap

UC1 Cyber attack with cascade impacts

Description Evaluation of cascading effects from cyber attack

Actors
• Safety / security manager (Risk experts)

• IT (security) team

Basic flow
Once the characteristics, interconnections and processes of the infrastruc-
ture are defined, the user will identify cascading effects from a cyber attack
that will disrupt the operation of an asset.

UC2 Continuous risk quantification

Description Identification of attractive assets of infrastructure

Actors
• Safety / security manager (Risk experts)

• IT (security) team

Table 17: MRA - Use Cases

SR1 MRA stand alone tool

Description The tool is to be available as a stand alone service

Actors
• Developers (NCSRD)

• Users (as above)

Basic flow Make the tool available to the community

Table 18: MRA - Software requirements

3.1.8.2 Technical specifications

The MRA tool is build on the following components:
• A user interface that allows user to input information about the infrastructure, its assets and

interconnections, their properties and potential vulnerabilities and other needed ancillary input.
• A modeling component that performs a cascade analysis of the assets and estimates risk
• A display element that transfer outputs to users
• A database storing all required / processed / produced information.

In brief, the tool work as described in the following lines. Users input enters the required inputs
(infrastructure assets, properties, interconnections, safeguards, potential impacts), which are stored
in the database. The software passes the data to the modeling component and identifies: a) Potential
threats, b) Attractive assets, c) Interconnections and potential cascade effects, d) Impacts (in the
cyber and physical domains), e) risk.
This information is fed back to the user through the display element. If the tool can be extended for
continuous risk assessment, the interfaces need to be customized to allow inputs from a machine-
readable format

SPARTA D5.1 Public Page 67 of 154

D5.1 - Assessment specifications and roadmap

3.1.8.3 Development roadmap

Use Case Architecture compo-
nents Realisation Involved partners

UC1
Interface, database, mod-
eling component, display

Use the tool to define risks in
cyberphysical systems

NCSRD

UC2 Risk modeling component
Use the tool and define attrac-
tive assets as targets

NCSRD

Table 19: MRA - development roadmap

3.1.8.4 Software verification and validation plan

SR id Description Verification method Demonstration scenario

SR1 Stand-alone tool

Check if the tool is available
online and provides the risk
levels. Use the tool through
the web interface

Table 20: MRA - verification and validation plan

SPARTA D5.1 Public Page 68 of 154

D5.1 - Assessment specifications and roadmap

3.1.9 Steady (SAP)

Identifier VA

Name Eclipse Steady (incubator project)

Owner SAP

Main functions Discover, assess and mitigate open source components with known
vulnerabilities in Java and Python projects.

Description

The open-source vulnerability assessment tool supports software de-
velopment organizations in regards to the secure use of open-source
components during the development of Java and Python applications.
As such, it addresses the OWASP Top 10 security risk [89] “Using
Components with Known Vulnerabilities”, which is often the root cause
of data breaches.

Assessment phases Application development

Technologies required

Java or Python development project with source code and open
source dependencies (either declared according to common depen-
dency managers of the respective prg. language, or available in file
system)

URL

• https://github.com/SAP/vulnerability-
assessment-tool

• https://projects.eclipse.org/projects/
technology.steady

Documentation

• User manual: https://sap.github.io/vulnerability-
assessment-tool/

• Tool paper: https://arxiv.org/abs/1806.05893

Example usage

• Detect whether a Java or Python application depends on open-
source components with known vulnerabilities

• Collect evidence regarding the execution of vulnerable code in a
given application context (through the combination of static and
dynamic analysis techniques)

• Understand and choose the best non-vulnerable version of a de-
pendency affected by a vulnerability

3.1.9.1 User requirements description

The main high-level functionality of Steady is to support the detection of open source dependencies
with known vulnerabilities. The two use cases below differ in regards to the actor performing the
analysis and the targeted component. Those use cases are largely independent of a given industry
or vertical and their specific security and certification requirements.

SPARTA D5.1 Public Page 69 of 154

https://github.com/SAP/vulnerability-assessment-tool
https://github.com/SAP/vulnerability-assessment-tool
https://projects.eclipse.org/projects/technology.steady
https://projects.eclipse.org/projects/technology.steady
https://sap.github.io/vulnerability-assessment-tool/
https://sap.github.io/vulnerability-assessment-tool/
https://arxiv.org/abs/1806.05893

D5.1 - Assessment specifications and roadmap

UC1 Detect, assess and mitigate dependencies with known vulnerabilities
in application projects

Description

The developer of a given application uses Steady to scan all application
dependencies, either manually or as part of automated build processes.
Typically, this is done using one of the available plugins for different build
tools such as Maven 1. Then, he uses the Web frontend to understand and
assess findings and find the best mitigation option.

Actors Developer (in the context of a given application)

Basic flow

The analysis of application dependencies is triggered either manually, or in
some automated fashion, e.g., through a periodic or commit-trigger build
job. Analysis results are made available through Steady’s Web front-end
or by producing a report accessible to developers on the respective build
system. Additionally, it is possible to break build jobs in order to signal
developers that vulnerable dependencies have been found.

UC2 Detect dependencies with known vulnerabilities in open source
projects and suggest mitigations

Description

An organization uses Steady to scan open source projects that are of par-
ticular importance to the entire organization, e.g., because many of the or-
ganization’s applications depend on them. Findings (and fix suggestions)
are communicated to the respective open source project maintainers.

Actors Developer (outside the context of a given application)

Basic flow See UC1

Table 21: Steady - Use Cases

SPARTA D5.1 Public Page 70 of 154

D5.1 - Assessment specifications and roadmap

SR1 Comparison of Java source code and bytecode with intermediate rep-
resentation

Description

Steady follows a code-based approach to identify whether given packages
contain programming constructs that are subject to known vulnerabilities. In
case of Java, for instance, it checks whether the signature of a vulnerable
Java method is contained in the dependencies of an application. In a next
step, it has to determine whether the method body equals (or is closer to) the
vulnerable version or the fixed version of the respective method, according
to versioning information gathered from the open source project’s VCS. So
far, Steady uses different techniques and heuristics, each one having cer-
tain limitations. The requirement SR1 is to develop a new approach based
on abstract code representations that can be built from Java source and
bytecode, e.g., Jimple 2.

SR2 Implementation of a light-weight scan client

Description

The current architecture of Steady requires users to operate a server-side
backend (cf. Figure 31). While this is acceptable for large software devel-
opment organizations, it hinders adoption by individuals. This requirement
SR2 is to develop a light-weight scan client that consumes information from
a shared vulnerability database.

SR3 Shared vulnerability database

Description

The current architecture of Steady requires users to download commit infor-
mation for open source components from a Git repository in order to popu-
late a server-side vulnerability database. Today, this process is partly man-
ual, which represents an obstacle to continuous and automated exchange
and synchronization of vulnerability information. This requirement SR3 is
to develop a new structure and tooling to improve the maintenance and ex-
change of vulnerability information in a shared Git repository, in conjunction
with the light-weight scan client mentioned in SR2.

Table 22: Steady - Software requirements

3.1.9.2 Technical specifications

At high-level, cf. Figure 31, Steady comprises a number of client-side scan tools that analyze
a given application, either manually or as part of automated build processes (plugin-maven,
plugin-gradle, cli-scanner). Analysis results are uploaded to (and persisted by) a REST-
ful component called rest-backend, which is one out of several components that run server-side,
e.g., in private or public clouds. The components frontend-apps and frontend-bugs are Html5
applications rendered by a browser, and used by end-users to consume the analysis results. The
remaining components, patch-analyzer and rest-lib-utils are related to the analysis and
processing of commit information (of open source projects) and packages available on public or pri-
vate package repositories.

SPARTA D5.1 Public Page 71 of 154

D5.1 - Assessment specifications and roadmap

Figure 31: High-level architecture of Steady

3.1.9.3 Development roadmap

The high-level development roadmap is to implement the software requirements SR1-SR3 within
2020-21 such that it can be demonstrated at project end as explained in Table 23.

3.1.9.4 Software verification and validation plan

SR id Description Verification method Demonstration scenario

UC1
Scan app(s) related to e-
government vertical

Check if scans succeed and
findings are correct

e-government

UC2
Scan open source
projects

Check if scans succeed and
findings are correct

Not applicable

Table 23: VA - Demo scenarios and verification methods

SPARTA D5.1 Public Page 72 of 154

D5.1 - Assessment specifications and roadmap

3.1.10 Package Scanner (SAP)

Identifier PS

Name Package Scanner

Owner SAP

Main functions Detect whether a package, as downloaded from package repositories
such as PyPI, contains malicious code

Description

This tool aims to detect malicious code in software packages that are
distributed by package repositories such as PyPI for Python. It miti-
gates a number of attack vectors that aim at injecting malicious code
during the build process or in the package repository itself (cf. attack
tree in Section 3.3.2.2).

Assessment phases Application development

Technologies required Python

URL Not yet available

Documentation Not yet available

Example usage

• Detect whether any of the dependencies of a given Python appli-
cation contains malicious code.

• Scan entire package repositories.

3.1.10.1 User requirements description

UC1 Scan a given open source package

Description
The tool takes as input a Python package of given open source project and
checks whether it contains malicious code that is not present in the respec-
tive VCS

Actors Developer

Basic flow

The developer uses the command line interface of the tool in order to trigger
the scan of a package, e.g., one residing in the file system or downloadable
from a given URL such as the PyPI package repository. Analysis results are
written into a report.

Table 24: Package Scanner - Use Cases

3.1.10.2 Technical specifications

Figure 32 visualizes the communication of the Package Scanner with the user and other system
components, esp. the package repository from which the distributed package is obtained.

SPARTA D5.1 Public Page 73 of 154

D5.1 - Assessment specifications and roadmap

Figure 32: High-level architecture of Package Scanner

3.1.10.3 Development roadmap

The high-level development roadmap is to implement the Package Scanner within 2020 such that it
can be demonstrated at project end as explained in Table 25.

3.1.10.4 Software verification and validation plan

SR id Description Verification method Demonstration scenario

UC1
Scan Python packages
(known malicious and un-
known)

Check if known malicious are
found, manual review of find-
ings for unknown packages

Not applicable

Table 25: PS - Demo scenarios and verification methods

SPARTA D5.1 Public Page 74 of 154

D5.1 - Assessment specifications and roadmap

3.1.11 OpenCert (TEC)

Identifier OC

Name OpenCert

Owner TEC

Main functions

OpenCert is an open product and process assurance/certification manage-
ment tool to support the compliance assessment and certification of Cyber-
Physical Systems (CPS) spanning the largest safety and security-critical in-
dustrial markets, such as aerospace, space, railway, manufacturing, energy
and health.

Description

OpenCert supports a number of features, including the cross/intra-domain
reuse of assurance assets and the semi-automated construction of assur-
ance cases.

• Standards & Regulations Information Management: This activ-
ity group supports knowledge management about standards (e.g.
DO178C, ISO26262, EN 50128/50126/50129, etc.), regulations and
interpretations, in a form that can be stored, retrieved, categorized,
associated, searched and browsed.

• Assurance “Project” Management: This is the core set of functional-
ities concerned with the development of assurance cases, evidence
management, assurance process management, and global monitor-
ing of the compliance with standards and regulations. The most rel-
evant services of the OpenCert tool are to provide functionality that
supports guidance and re-use of assurance artefacts. In addition,
these services offer an evolutionary and transparent product and pro-
cess assurance and certification with the ability to automate the most
labour-intensive activities (e.g., traceability, compliance checking, as-
surance process planning, and metrics management, among others),
as well as providing facilities to integrate the engineering activities with
the certification activities from early stages.

• Compliance Management: The OpenCert tool helps “engineers” to
assess where they are with respect to their duties to conform to safety
practices and standards, and still to motivate them to see the effective
progress of the work and level of compliance.

• Modular and Incremental Certification: OpenCert supports a modular
safety assurance and certification approach to enable cost-effective
reuse of pre-qualified building blocks in different contexts (e.g., sys-
tems, configurations, upgrades).

Assessment
phases

Within the V-Model for the Safety Engineering process (Figure 25), the
OpenCert tool supports the phases of ”Safety Goals definition” and ”Safety
Goals validation”.

Technologies
required JDK 1.8, PostgreSQL9.3, Windows 64 bits

SPARTA D5.1 Public Page 75 of 154

D5.1 - Assessment specifications and roadmap

URL Polarsys Repository: https://www.polarsys.org/projects/
polarsys.opencert

Documentation

The OpenCert tool is one of the outputs of the AMASS ECSEL project [13]

• Website: https://www.polarsys.org/opencert/

• AMASS Platform User Manual [12]

• AMASS Platform Developers’ Guide [11]

Example usage

• Automotive domain: The OpenCert tool has been used in the frame-
work the OPENCOSS [88], AMASS [13] and AQUAS [16] projects,
to manage assurance and certification management of systems with
standards such as J3061 and ISO 26262.

• Industrial automation domain: Managing compliance with IEC 61508,
IEC 62443 and IEC 62351 standards.

SPARTA D5.1 Public Page 76 of 154

https://www.polarsys.org/projects/polarsys.opencert
https://www.polarsys.org/projects/polarsys.opencert
https://www.polarsys.org/opencert/

D5.1 - Assessment specifications and roadmap

3.1.11.1 User requirements description

UC1 Support the Safety and Security compliance assessment and certifi-
cation of the platooning scenario

Description

Standards, regulations, certification advisory circulars and so on are man-
aged by OpenCert as Reference Frameworks. A Reference Framework
includes project-independent information that can be (re)used by various
projects, e.g. models of standards or generic processes. Threfore, the first
activity to be executed in UC1 is to digitalize each standard that the platoon-
ing has to be compliant with (ISO 26262 and SAE J3061). The Process
Engineer role in charge of this activity should be an expert in the standards,
compliance and certification processes. This responsibility could also be
assigned to a Safety Manager who creates the Reference Framework and
models the knowledge coming from a the functional safety standard ISO
26262 and a Security Manager models the SAE J3061.
The Reference Framework(s) contains:
• Reference Standards’ requirements to fulfil

• Reference Activities to execute, and

• Reference Artefacts to manage.
The next step to achieve is the Assurance Project creation. The Assurance
Manager or Process Engineer can maintain the lifecycle of projects by cre-
ating Assurance Projects, they should have knowledge of the standards as
well as a safety and/or security background. For the platonning scenario, at
least one Assurance project will be created.
During the Assurance Project creation fase, the Compliance Baseline is also
defined. The Baselines are subsets of Standards to be applied in a specific
Assurance Project. Baseline Models are created by tailoring of Reference
Frameworks, i.e. by importing a Reference Framework model and selecting
elements for the current project. Thus, a Baseline defines the elements
of a Reference Framework model that have to be applied to the current
Assurance Project. For the platonning scenario two Baselines should be
necessary, one based in the ISO 26262 and other in the SAE J3061.
The following is the Evidence Management, that includes the collection and
handling of the assurance evidences of an Assurance Project, done by the
Assurance Manager, Assurance Engineer and Process Engineer actors.
When managing Assurance Evidences, the first step is usually to deter-
mine what evidences must be provided. Afterwards, the Evidence Artefacts
must be collected and might also have to be evaluated and traced to other
Artefacts.
Finally, the Assurance Manager, Process Engineer, Assurance Engineer
and Systems Engineer actors are responsible to argue the safety/security
of the platooning in an Assurance Case to resolve the safety/security trade-
off.

Table 26: OpenCert - Use Cases (1/2)

SPARTA D5.1 Public Page 77 of 154

D5.1 - Assessment specifications and roadmap

Actors

• Assurance Manager(Safety Manager, Security Manager)
• Process Engineer
• Assurance Engineer (Safety Engineer, Security Engineer, V&V Engi-

neer)
• Systems Engineer

Basic flow

• Digitalize the applicable Safety standards in the OpenCert module
• Digitalize the applicable Security standards in the OpenCert module
• Create the Assurance Project that will allow to manage the

Safety/Security certification
• Evidence Management
• Create Argumentation (Safety Case)⇒ Co-assessment

Table 27: OpenCert - Use Cases (2/2)

UC1 will be specified in the D5.2 Demonstrators specifications deliverable and implemented in the
D5.3 Demonstrator prototypes deliverable.

3.1.11.2 Development roadmap

OpenCert will be used in its current version and with its current functionalities in Vertical 1, i.e. it is
not necessary to tackle new developments in order to comply with the use case UC1 described in
table 26.

SPARTA D5.1 Public Page 78 of 154

D5.1 - Assessment specifications and roadmap

3.1.12 Sabotage (TEC)

Identifier SB

Name Sabotage

Owner TEC

Main functions

Sabotage is model-driven and simulation-based fault injection tool to ac-
complish an early evaluation dependability evaluation of safety-critical sys-
tems. It can be used in different areas such as automotive or robotics and it
has been built upon the FARM [17] model.

Description

The Sabotage tool can be used in an early assessment of safety-critical
systems. It is a tool based on the Simulation fault injection technique which
involves the construction of a simulation model (Simulink) of the system
under analysis. Thanks to this simulated system the verification and vali-
dation is achieved during its early development phases. Model-driven and
simulation-based fault injection tool allow to accomplish an early evaluation
dependability evaluation of safety-critical systems. The framework sets up,
configures, executes and analyses the simulation results. It includes a fault
model library and it is possible to connect to virtual environments such as
a virtual vehicle or a robot. The Sabotage tool is based on Eclipse com-
bined with Matlab/Simulink. It includes a Fault Model library constituted
as C templates and which are integrated in Matlab/Simulink as S-function
blocks. The safety engineer starts configuring the fault injection experiments
by creating the fault injection policy or fault list (Where should the faults be
injected? What is the most appropriate fault model representing the func-
tional failure modes? How should the faults be triggered within the system?
Where should the fault effect be observed?). Then the faulty model is cre-
ated, and the fault free simulation compared to the faulty ones. This means
running, storing, visualizing and computing the obtained simulation traces,
while comparing the results versus a pre-established safety requirement or
pass/fail criterion.

Assessment
phases

Within the V-Model for the Safety Engineering process (Figure 25), the Sab-
otage tool supports the phases of ”Functional and Technical safety concept
design” and ”Functional and Technical safety concept verification”.

Technologies
required

• Java SE 1.8

• MATLAB/Simulink from 2017b version.

SPARTA D5.1 Public Page 79 of 154

D5.1 - Assessment specifications and roadmap

URL N/A

Documentation

• Sabotage: A Simulation-Based Fault Injection Tool Framework [102]

• AMASS D3.3 deliverable, pages 57-62 [10]

Example usage

• Automotive domain: The feasibility of the fault injection approach has
been demonstrated in the AMASS project [13] by applying it to a Lat-
eral Control system, an ACC (Adapted Cruise Control) and a DC (Di-
rect Current) Motor controller.

• Robotics domain: The feasibility of the fault injection approach and
model-based techniques for safety analysis have been applied in
terms of a robotic arm manipulator in the eITUS project [38]. Fault
injection has been combined with the Gazebo simulator in order to
perform an early safety validation or robustness simulation.

Continuing work
from projects

The tool has been developed as part of the AMASS (Architecture-driven,
Multi-concern and Seamless Assurance and Certification of Cyber-Physical
Systems) (https://www.amass-ecsel.eu/) and eITUS (https://robmosys.eu/e-
itus/) (RobMoSys ITP) projects”

3.1.12.1 User requirements description

UC1 Fault-injection and analysis of faulty scenarios with simulation

Description

Sabotage will be used to simulate how a cyber-attack can affect the vehicle
motor by changing the velocity to an abnormal value, so faults will be in-
jected in the behavioural model (Simulink model) of the longitudinal control
function.

Actors Safety Engineer

Basic flow

The following steps would be followed:

1. Model the system architecture

2. Perform Simulation-based Fault Injection

3. Perform Model-based Safety Analysis

4. Define the safety concept/safety mechanisms

5. Perform Simulation-based Fault Injection

6. Check if the safety mechanisms are correctly implemented and a suf-
ficient level of safety has been achieved.If not go to step 4.

Table 28: Sabotage - Use Cases

UC1 will be specified in the D5.2 Demonstrators specifications deliverable and implemented in the
D5.3 Demonstrator prototypes deliverable.
Sabotage will be used in its current version and with its current functionalities in Vertical 1, i.e. it is
not necessary to tackle new developments in order to comply with the use case UC1.

SPARTA D5.1 Public Page 80 of 154

D5.1 - Assessment specifications and roadmap

3.1.13 Visual Investigation of Security Information for Larger Software Development
Organizations (UKON)

Identifier VI

Name Visual investigation of security information for larger software development
organizations (WP5 (2-3))

Owner University of Konstanz (UKON)

Main functions

The main goal is to enable the visual investigation of the security status of
individual software components and the assessment of the associated risk
posed by own and third-party components through the following functionali-
ties: (1) Getting an overview of the current system and status using visually
salable visualizations (hierarchies). (2) Security information has multiple
sources and levels (file, component, organization). (3) Data collection and
presentation of the security status of modules and properties. (4) Enable to
explore vulnerability results. (5) Assessment of risk on a software compo-
nent level, esp. for third party dependencies. (6) Show structural dependen-
cies of projects and divisions on own and third-party software components.

Description

Visually investigate the security status of software projects. Explore the
security status of own packages, whereby status reflects the use of tools,
the number, and severity of findings as well as assessments. Understand
organization-wide dependency on components, used as input to harmonize
component and version used, and to decide whether important components
deserve support.

Assessment
phases Optimize resources to reduce exposure and risk management

Technologies
required

The tool will be developed as a web tool and will work with technologies
such as Java, Python, and JavaScript.

3.1.13.1 User requirements description

UC1 Visual Investigation of Large Software Organizations

Description The automatically detected known vulnerabilities in large software organi-
zations such as the Eclipse Foundation are presented and explored.

Actors
• Software Developers

• Project Managers

Basic flow

A software developer or project owner provides a project; the tool then de-
picts automatically show detected known vulnerabilities in the component,
in the dependencies to internally developed packages, as well as external
third-party libraries.

Table 29: VI - Use Cases

SPARTA D5.1 Public Page 81 of 154

D5.1 - Assessment specifications and roadmap

CR1 Increase confidence in analyzed systems

Description

The system should increase the confidence in the security of software sys-
tems by (a) enabling the presentation and exploration of vulnerability results
(b) showing exposure to other projects including internal and external (up-
stream and down-stream) dependencies.

Actors

• Software Developer

• Project owners

• Managers

CR2 Multi-source levels of analysis

Description
The tool should be able to support multiple source levels of analysis, i.e.,
component, project organization level to show the impact of vulnerabilities
on different levels in the software organization.

Actors

• Software Developer

• Project owners

• Managers

CR3 Information representation

Description The shown information should be encoded in simple visual metaphors (i.e.,
histograms or treemaps).

Actors

• Software Developer

• Project owners

• Managers

CR4 Vulnerability prioritization

Description The system should support the prioritization of vulnerabilities, to ensure that
most urgent issues are addressed first.

Actors

• Software Developer

• Project owners

• Managers

CR5 Interdependence analysis

Description The tool should allow for the analysis of interdependence in horizontally (i.e.,
collaborating organizations) and vertically (i.e., projects using components).

Actors

• Software Developer

• Project owners

• Managers

Table 30: VI - Certification requirements

SPARTA D5.1 Public Page 82 of 154

D5.1 - Assessment specifications and roadmap

SR1 Web Application Prototype

Description The developed prototype should be a web prototype and enable the visual
investigation and exploration of vulnerabilities.

Actors
• Software developers

• Project owners

Basic flow Investigate vulnerabilities in developed internal and external components
(packages)

Table 31: VI - Software requirements

3.1.13.2 Technical specifications

The developed prototype will build upon the Eclipse Steady project and use other web technologies
(e.g., JavaScript). The tool will have a backend developed in Python.

3.1.13.3 Development roadmap

Use Case Architecture components Realisation Involved partners

UC1
Interactive visualization pro-
totype and Eclipse Steady

Build the prototype to get
the vulnerabilities information
from Eclipse Steady

SAP, Fortiss

Table 32: VI - Use cases, realisations and architecture

3.1.13.4 Software verification and validation plan

SR id Description Verification method Demonstration scenario

SR1
Web Application Proto-
type

Display projects developed in
software organizations (e.g.,
Eclipse Foundation)

Visually investigate the
Eclipse Foundation projects

Table 33: VI - Demo scenarios and verification methods

SPARTA D5.1 Public Page 83 of 154

D5.1 - Assessment specifications and roadmap

3.1.14 Logic Bomb Detection in Android Apps (UniLu)

Identifier LBD

Name TSOpen (LBD)

Owner UniLu

Main functions Detection of logic bombs in Android apps by leveraging static analysis meth-
ods.

Description

Logic bombs are mechanisms used by malicious apps to evade detection
techniques. Typically, an attacker uses logic bomb to trigger the malicious
code only under certain chosen circumstances (e.g. only at a given date) to
avoid being detected by the analysis. The goal of TSOpen is to detect such
logic bombs. The approach used to perform the detection is fully static and
combine multiple techniques such as symbolic execution, path predicate
reconstruction, path predicate minimization, and inter-procedural control-
dependency analysis. In a first version, TSOpen will focus on detecting
triggers related to time, location and SMS.

Assessment
phases

Development Process (to check that a library used by the app under-
development does not contain logic bomb). Operation (to check that a given
app does not contain any logic bomb that could hide the presence of mali-
cious behavior).

Technologies
required

Android app Analysis (the source code is not required). The analysis is
directly performed on the apk file of the application.

URL TBD

Documentation TBD

Example usage Malware detection

3.1.14.1 User requirements description

UC1 Detecting hidden malicious code.

Description Malware tends to use logic bombs in order to bypass dynamic analyses.

Actors Antivirus company

Basic flow
In order to detect malicious applications, antivirus companies use multiple
techniques and filters. TSOpen could be used as a filter layer to rule out
applications hiding malicious behavior.

Table 34: TSOpen - Use Cases

SPARTA D5.1 Public Page 84 of 154

D5.1 - Assessment specifications and roadmap

SR1 A standalone command line tool.

Description The tool is available as a command line tool.

Actors Software analyst

Basic flow Execution of the tool. Analysis of the results.

SR2 Trigger database

Description This requirement is to develop a database of applications known to contain
logic bombs as well as benign applications containing similar behavior.

Actors Software analyst

Basic flow Connect to the database. Query the database.

Table 35: TSOpen - Software requirements

3.1.14.2 Technical specifications

Figure 33: Overview of TSOpen

TSOpen is developed over Flowdroid which provides a useful model of the Android Framework on
which one can easily apply algorithms. Figure 33 provides an overview of the tool. First, an inter-
procedural control flow graph from Flowdroid is retrieved on which TSOpen applies a symbolic execu-
tion in order to retrieve the semantic of objects of interest. Then simple predicates are retrieved during
the block predicate recovery to annotate the ICFG. The annotated ICFG is then used to retrieve the
full path predicate of every instructions. A predicate minimization algorithm is then applied in order
to rule out false dependencies. Afterwards, a first decision is taken during the predicate classification
step to get suspicious predicates. Finally, a control dependency step is applied in order to take the
decision regarding the suspiciousness of the potential logic bomb under study. The TSOpen tool
consists of a standalone executable Java archive file (jar). It has to be executed with the command
line or in scripts.

3.1.14.3 Development roadmap

Use Case Architecture compo-
nents Realisation Involved partners

UC1
Detection of hidden mali-
cious code

Build the prototype to detect
logic bombs

N/A

Table 36: TSOpen - Use cases, realisations and architecture

SPARTA D5.1 Public Page 85 of 154

D5.1 - Assessment specifications and roadmap

3.1.14.4 Software verification and validation plan

SR id Description Verification method Demonstration scenario

SR1
Standalone command
line tool

Check if the tool works prop-
erly with right dependencies

Use the tool with the com-
mand line

SR2 Trigger database
Check if the database con-
tains correct triggers

Connect to the database

Table 37: TSOpen - Demo scenarios and verification methods

3.1.15 Vulnerability Detection Tool For DevOps Communities (UniLu)

Identifier VA2

Name SafeCommit (not definitive yet)

Owner UniLu

Main functions

Detect security relevant commits (also referred as patches for sake of sim-
plification) in Continuous Integration Ecosystem. in particular:

• Detection of commits introducing vulnerabilities

• Detection of commits fixing vulnerabilities

Description

The goal of this tool is twofold:

• First, detection of patches which fix software vulnerabilities. To that
end, both code and textual features will be engineered and assessed.
These features will be then used by machine learning algorithms de-
signed and selected to cope with unbalanced datasets.

• Second, detection of patches which introduce software vulnerabilities.
Like mentioned previously, code and textual features will be investi-
gated, but it is highly probable that the features are different.

The proposed tool aims at being integrated into real-world software main-
tenance and usage workflows. The objective is to carry out a live study in
order to collect practitioner feedback for iteratively improving the tuning of
the research output, towards an effective technology transfer.

Assessment
phases Software Development

Technologies
required

Repository mining, Machine Learning. This tool will work on C and Java
code.

URL TBD

Documentation TBD

Example usage Just before committing their code in a version control repository, developers
can check their code to ensure they are not introducing a vulnerability.

SPARTA D5.1 Public Page 86 of 154

D5.1 - Assessment specifications and roadmap

3.1.15.1 User requirements description

UC1 Vulnerability Introducing Commit/Patch

Description In this use case, SafeCommit is used to detect commits/patches that intro-
duce vulnerabilities into a code base.

Actors Software Developers

Basic flow

Just before committing their modifications (i.e. a commit) into a code base
(i.e., a version control repository such as GIT), developers can check if their
modifications introduce a vulnerability. In this way, SafeCommit allows to
avoid the introduction of vulnerabilities at the very early stage of software
development.

UC2 Vulnerability Fixing Commit/Patch

Description In this use case, SafeCommit is used to detect commits/patches that fix
vulnerabilities into a code base.

Actors Software Developers/Maintainers

Basic flow

In a typical scenario of vulnerability correction, a developer proposes
changes bundled as a software patch by pushing a commit (i.e., patch + de-
scription of changes) which is analyzed by the project maintainer, or a chain
of maintainers, who eventually reject or apply the changes to the master
branch. When the patch is accepted and released, all users of the relevant
code must apply it to limit their exposure to attacks. The reality, however, is
that, for most organizations, there is a lag between a patch release and its
application. While in the cases of critical systems, maintainers are hesitant
to deploy updates that will hinder operations with downtime, in many other
cases, the lag is due to the fact that the proposed change has not been
properly advertised as security-relevant, and is not thus viewed as critical.
With SafeCommit, maintainers will be immediately inform that a security
relevant commit has been performed. As a result, SafeCommit will incite
maintainers to quickly propagate or reject the relevant changes; and also
to notify end users and third-party developers so that they can update their
outdated releases.

Table 38: SafeCommit - Use Cases

3.1.15.2 Technical specifications

Note that SafeCommit will be developed in the course of the Sparta project.
SafeCommit will use a machine-learning based approach. In particular, SafeCommit will address a
binary classification problem of distinguishing security patches3 from other patches. As any clas-
sification problem, well-labeled datasets are more than welcome. To develop SafeCommit, the first
main step will consist in building such datasets (module 1 in Figure 34). Then, we will investigate
the possibility to consider a combination of text analysis of commit logs and code analysis of com-
mit changes diff to catch security patches. To that end, the idea is to proceed to the extraction of
“facts” from both text and code, and then perform a feature engineering by assessing the efficiency
of the proposed features for discriminating security patches from other patches. Then, we will build
prediction models using machine learning classification techniques. One model to identify vulner-
ability inducing patches (Module 2), and one model to detect vulnerability fixing patches (Module

3Either patches fixing vulnerabilities or patches introducing vulnerabilities.

SPARTA D5.1 Public Page 87 of 154

D5.1 - Assessment specifications and roadmap

3). In particular, we will investigate a specific learning approach named Co-Training, which has
shown convincing results in situation where the training datasets are un-balanced. Finally, one major
success criteria of SafeCommit is its ability of supporting the work of developers/maintainers in dis-
tributed software development. Once prediction models are learnt, we will assess their efficiency by
performing extensive empirical studies in real development environment.

Module 1: Ground Truth Dataset Construction

Module 2: Detecting Vulnerability
Fixing Commits

Module 3: Identifying Vulnerability
Inducing Commits

Module 4: Live Demonstration and Tool Assessment

Figure 34: Various Modules of SafeCommits

3.1.15.3 Development roadmap

Use Case Architecture compo-
nents Realisation Involved partners

UC1 Modules 1 & 2

Build a ground truth dataset,
propose features from code
and text, build the prediction
models

UniLu

UC2 Modules 1 & 3

Build a ground truth dataset,
propose features from code
and text, build the prediction
models

UniLu

Table 39: SafeCommit - Use cases, realisations and architecture

3.1.15.4 Software verification and validation plan

SR id Description Verification method Demonstration scenario

SR1
Compute performance
scores by leveraging the
ground truth

Check if the performance
scores are high enough

Deploy SafeCommit and
Run on the ground truth

SR2
Assess SafeCommit in a
practical settings

Check if SafeCommit is able
to detect vulnerabilities in
open source libraries used in
Vertical 1

Deploy SafeCommit and
Run on a git repository of
open-source libraries of
Vertical 1

Table 40: SafeCommit - Demo scenarios and verification methods

SPARTA D5.1 Public Page 88 of 154

D5.1 - Assessment specifications and roadmap

3.1.16 AutoFOCUS3 (FTS)

Identifier AF3

Name AutoFOCUS3

Owner FTS

Main functions Requirement Engineering, Safety Analysis, Security Analysis, Modelling
Tools, Code Generation, Verification

Description A Model-Based Engineering Tool.

Assessment
phases Development Process

Technologies
required

AutoFOCUS can be downloaded as a stand-alone application. It is part of
Eclipse Foundation.

URL https://af3.fortiss.org/

Documentation https://af3.fortiss.org/docs/

Example usage

• Glossary;
• Safety Analysis using Goal Structure Notation Models;
• Security Analysis using Attack Defense Tree Models;
• Textual and Structured Requirements Engineering;
• Architecture modeling using hierarchical component structure;
• Design Exploration Methods;
• Requirements traceability;
• Executable semantics;
• Automatic Code Generation;
• Hardware Deployment Mapping;
• Code deployment.

SPARTA D5.1 Public Page 89 of 154

https://af3.fortiss.org/
https://af3.fortiss.org/docs/

D5.1 - Assessment specifications and roadmap

3.1.16.1 User requirements description

UC1 Support the Safety and Security compliance assessment and certifi-
cation of the platooning scenario

Description

Safety and Security analysis can be specified in AutoFOCUS in the form of
GSN and Attack Defense Models.
These analyses can be quantified in AutoFOCUS and help understand
which counter-measures shall be deployed.

Actors Safety and Security Engineers

UC2 Architecture Modeling for Vertical 1

Description

The architecture of rovers used by the FTS lab considered for Vertical 1
has already been described in AutoFOCUS. However, no security counter-
measures have been modeled. The AutoFOCUS model can be used for
further security analyses of Vertical 1.

Actors
• Architect Engineer
• Security Engineer

Table 41: AutoFOCUS3 - Use Cases

UR1
Certifications, such as those used by the automotive industry, e.g.,
ISO 26262, have been taken into account in several projects involving
AutoFOCUS.

Description The V-model described above can be accommodated in AutoFOCUS.

Table 42: AutoFOCUS3 - User Requirements

AutoFOCUS is a stand-alone tool. Most of the features work without the need to install additional
tools. For more details of the machine requirements we refer the reader to the AutoFOCUS site
https://af3.fortiss.org/docs/.

3.1.16.2 Technical specifications

AutoFOCUS is organized into several Java Plug-ins (more than 20). Each plug-in is responsible for
some particular AutoFOCUS feature. For the project, we are developing the AutoFOCUS security
plug-in. It contains features, such as threat analyses using Attack Defense Trees, and algorithms for
extracting security relevant information from safety analysis.

3.1.16.3 Development roadmap

We will develop the following functionalities:

• Algorithms for the automated construction of Attack Defense Trees from GSN Models;
• Algorithms for safety and security trade-off analyses;
• Algorithms for the quantitative evaluation of combined safety and security assessments.

SPARTA D5.1 Public Page 90 of 154

https://af3.fortiss.org/docs/

D5.1 - Assessment specifications and roadmap

3.1.16.4 Software verification and validation plan

We are going to validate AutoFOCUS using the use-cases developed in Vertical 1.

• Modeling HARA and TARA of the platooning scenarios using, respectively, Attack Trees and
GSN models;
• Complement existing Attack Trees by using the developed algorithms for extracting security

relevant information from GSN Models;
• Carry out trade-off analyses involving the proposed counter-measures and control-measures;
• Infer the confidence on the combined safety and security assessments based on the trade-off

analyses.

3.1.17 Buildwatch (UBO)

Identifier BW

Name Buildwatch

Owner UBO

Main functions Monitor the build, test, or install process on an operation system call level.

Description

During the build, test, and install processes within application development,
changes are made to the state of the host. While malicious code is of-
ten heavily obfuscated, the changes to the host system are of more limited
variability and therefore, are easier to comprehend. Buildwatch provides a
sandbox to monitor these changes.

Assessment
phases Application development

Technologies
required

A process to monitor (e.g. build script, test suite, installation) that is built on
top of GNU/Linux.

URL N/A

Documentation N/A

Example usage

• Infer host state changes during development processes (i.e. build,
test, install).

• Infer differences in form of host state changes for specific code
changes contained by a commit or a version of the project, e.g. when
updating a dependency.

In order to use the Buildwatch Sandbox in a continuous integration pipeline supported development
process,additional required interfaces have to be added.
See section 8 of the appendix for further details (user requirements, technical specifications and
development roadmap) for this tool.

SPARTA D5.1 Public Page 91 of 154

D5.1 - Assessment specifications and roadmap

3.1.18 VaCSInE (CETIC)

Identifier VCS

Name VaCSInE

Owner CETIC

Main functions Adaptive continuous security orchestration in polymorphous environments

Description
Ensure security of systems based on policies, continuous monitoring, and
assessing security (certification) requirements in Cloud-Edge-IoT network
environments

Assessment
phases Operations

Technologies
required

streaming log analysis, Kubernetes, K3S, KubeEdge, Network Function Vir-
tualisation (NFV)/Service Function Chaining (SFC) tooling, TOSCA, ARMv8

URL https://github.com/cetic/vacsine

Documentation https://github.com/cetic/vacsine

Example usage

Intrusion detection triggers remediation (e.g. firewall re-configuration), re-
mediation is checked against the system’s security policy (derived from cer-
tification criteria) and applied to the edge infrastructure (industrial systems,
5g, connected cars, ...).

Continuing work
from projects BEACON - Enabling Federated Cloud Networking - Horizon 2020 [20]

In CAPE, VaCSInE will demonstrate how to ensure continuous assessment of edge systems by
developing adaptative security mechanisms based on security policies derived from certification re-
quirements.
See section 8 of the appendix for further details (user requirements, technical specifications and
development roadmap) for this tool.

3.1.19 Continuous Integration of Assessment Tools

In the recent years, the need to improve software delivery in terms of speed and quality has given
rise to a set of practices that combine continuous build, testing, integration, delivery, ... The DevOps
approach, closely related to Agile software development method, combines software development
(”Dev”) and operations (”Ops”) processes to ensure that new features are added to a software solution
in the shortest time possible, and with a high level of quality. Various services will be needed to
support the DevOps aspects of the CAPE framework:

• a version control system (VCS) for the framework tools if they do not have one already or as a
mirror of the original tool source code repository
• artifact repositories to store the various tools artifacts (binaries)
• Continuous Integration and Continuous Delivery (CI/CD) orchestrator to coordinate the various

deployment and integration operations of the demonstrations scenarios
• environments for integration and testing of the framework: this can take the form of virtualised

infrastructure or actual physical testbeds such as model connected cars or electronic ID card
reader
• reporting tools to ensure observability of the framework: dashboards, alerts, logging, ...

SPARTA D5.1 Public Page 92 of 154

https://github.com/cetic/vacsine
https://github.com/cetic/vacsine

D5.1 - Assessment specifications and roadmap

Figure 35 provides example tooling alternatives for a typical self-hosted DevOps pipeline. Gitlab 4

for instance provide other services than only SCM: CI/CD with Gitlab-CI. Other tools like Jenkins 5

is focused on CI/CD, Gatling6 on load testing, Jest7 on UI testing, Jfrog Artifactory8 provides artifact
repository service, private infrastructure as a service solutions such as Kubernetes9 have built-in inte-
gration with DevOps tooling, and finally observability can be implemented with the help of monitoring
platforms such as Zabbix10.

Figure 35: DevOps pipeline sample tooling

The DevOps approach itself can be complemented with security procedures to ensure continuous
security assessment, this is sometimes called DevSecOps. Figure 36 provide example tooling al-
ternatives for a typical DevSecOps pipeline 11. In this example, Sonarqube provides static code
analysis 12, Splunk13 and OpenSCAP14 cover the orchestration of continuous security assessment
activities, OpenVAS15 can scan for vulnerabilities, Kube-Bench16 checks if Kubernetes deployments
meet the CIS (Center for Internet Security) security benchmarks. The Elastic SIEM17 offering for
security analytics by Elasticsearch

Figure 36: DevSecOps pipeline sample tooling

4https://gitlab.com
5https://jenkins.io
6https://gatling.io/
7https://jestjs.io/
8https://jfrog.com/artifactory/
9https://kubernetes.io

10https://www.zabbix.com/
11The ECSO Cybersecurity Market Radar http://www.ecs-org.eu/documents/uploads/the-ecso-

cybersecurity-market-radar-high-resolution.pdf provides positioning of cybersecurity tools aligned
with the categories identified in the NIST framework.

12https://www.sonarqube.org/
13https://splunk.com
14https://www.open-scap.org/
15http://www.openvas.org/
16https://github.com/aquasecurity/kube-bench
17https://www.elastic.co/products/siem

SPARTA D5.1 Public Page 93 of 154

https://gitlab.com
https://jenkins.io
https://gatling.io/
https://jestjs.io/
https://jfrog.com/artifactory/
https://kubernetes.io
https://www.zabbix.com/
http://www.ecs-org.eu/documents/uploads/the-ecso-cybersecurity-market-radar-high-resolution.pdf
http://www.ecs-org.eu/documents/uploads/the-ecso-cybersecurity-market-radar-high-resolution.pdf
https://www.sonarqube.org/
https://splunk.com
https://www.open-scap.org/
http://www.openvas.org/
https://github.com/aquasecurity/kube-bench
https://www.elastic.co/products/siem

D5.1 - Assessment specifications and roadmap

To ensure continuous integration of the assessment tools, the CAPE framework will rely on both
DevOps and DevSecOps methodologies and tooling to facilitate its development processes on one
hand and the continuous assessment process on the other.

3.1.20 Task Roadmap

The goal of Task 5.1 is to improve the automation of the (self-)assessment process by providing tools
and procedures to the assessment activities developed in T5.2 and T5.3. in the context of both WP5
verticals: connected cars (Section 2.1) and e-government (Section 2.2).
The objectives of Task 5.1 are to propose a framework for automated cybersecurity assessment.
The framework is based on the V-Model lifecycle for software/hardware development, safety and
security and aligns certification activities to the various steps of the model. The various tool use
cases identified in this chapter will be implemented and integrated to form a coherent continuous
self-assessment framework. The framework will then be applied on both WP5 verticals through
prototypes in a first iteration (D5.2, D5.3) and then demonstrated in D5.4. The tools that can not
be demonstrated in the verticals context will be demonstrated independently of the verticals. When
possible, tools that are covering opposite levels in the branches of the V-Model will be benchmarked
against each others.
A high level development roadmap considering the deadlines of WP5 deliverables D5.2, D5.3 and
D5.4 is as follows:
• January 2021 (M23): Early prototypes are available in D5.3. For each tool, a demo specification

exists and can be included in D5.2 (cf. Table 43).
• January 2022 (M35): Final prototypes have been evaluated in the respective demonstration

scenarios, its summary is ready to be included in D5.4.
Development of the ”early prototypes” will typically follow the following timeline:

• M12-M15: detailed design of the changes and additions to the various tools based on the uses
cases identified in this chapter
• M14-M18: implementation of a first prototype version of the use cases identified in this chapter
• M14-M23: verification and validation that the framework tools software requirements are sat-

isfied by the implementation. This step can include unit, integration, system and/or acceptance
testing steps. Note that this step will start with the implementation when possible.
• M16-M23: integration of the various tools to obtain a first prototype version.

The timeline for the final prototypes of the tools will be guided by the demonstration scenarios spec-
ified in D5.2 on the verticals and will follow a similar methodology as for the early prototypes, with a
focus on integration in the verticals demonstrations:

• M25-M26: refined design of the tools in order to reach the final version of the prototypes
• M27-M28: implementation of the final prototype version of the tools
• M25-M35: verification and validation of the updated prototypes
• M29-M35: integration and evaluation of the framework tools on the various demonstration

scenarios

Table 43 provides and overview of use cases supported by tools identified in task 5.1 that will be
specified and prototyped in D5.2 and D5.3 and then evaluated in D5.4 :

SPARTA D5.1 Public Page 94 of 154

D5.1 - Assessment specifications and roadmap

To
ol

R
ef

U
se

-c
as

e
P

ar
tn

er

Fr
am

a-
C

(F
C

)
3.

1.
3

U
C

1
-R

un
tim

e
er

ro
rs

an
d

vu
ln

er
ab

ili
ty

id
en

tifi
ca

tio
n

vi
a

st
at

ic
an

al
ys

is

U
C

2
-C

od
e

au
di

ta
cc

el
er

at
ed

by
a

va
lu

e
an

al
ys

is
C

E
A

Va
C

S
In

E
(V

C
S

)
3.

1.
18

U
C

1
-E

nf
or

ce
se

cu
rit

y
po

lic
y

on
an

ed
ge

in
fra

st
ru

ct
ur

e
ba

se
d

on
ce

rt
ifi

ca
tio

n
cr

ite
ria

U
C

2
-C

on
tin

uo
us

se
lf-

as
se

ss
m

en
tf

or
ad

ap
ta

tiv
e

se
cu

rit
y

w
ith

se
rv

ic
e

fu
nc

tio
n

ch
ai

ni
ng

C
E

TI
C

A
pp

ro
ve

r(
R

A
A

)
3.

1.
4

In
te

gr
at

io
n

in
au

to
m

at
ed

pi
pe

lin
es

C
IN

I

Fo
re

sh
ad

ow
-V

M
M

(F
S

)
3.

1.
5

U
C

1
-A

ss
es

m
en

to
fL

1-
TF

Vu
ln

er
ab

ili
ty

C
N

IT

N
eS

S
oS

(R
A

)
3.

1.
6

U
C

1
-E

va
lu

at
io

n
of

e-
go

ve
rn

m
en

tr
is

ks
C

N
R

A
ut

oF
O

C
U

S
3

(A
F3

)
3.

1.
16

U
C

1
-S

up
po

rt
th

e
S

af
et

y
an

d
S

ec
ur

ity
co

m
pl

ia
nc

e
as

se
ss

m
en

ta
nd

ce
rt

ifi
ca

tio
n

(p
la

to
on

in
g)

U
C

2
-A

rc
hi

te
ct

ur
e

M
od

el
in

g
fo

rV
er

tic
al

1
FT

S

ID
S

/S
IE

M
a.

t.
(ID

S
)

3.
1.

7
U

C
1

-S
yn

th
et

ic
tra

ffi
c

ge
ne

ra
tio

n
fro

m
ex

is
tin

g
tra

ce
s

U
C

2
-A

tta
ck

tra
ffi

c
m

ut
at

io
n

IM
T

P
ac

ka
ge

S
ca

nn
er

(P
S

)
3.

1.
10

U
C

1
-S

ca
n

a
gi

ve
n

op
en

so
ur

ce
pa

ck
ag

e
S

A
P

S
te

ad
y

(V
A

)
3.

1.
9

U
C

1
-D

et
ec

t,
as

se
ss

&
m

iti
ga

te
de

pe
nd

en
ci

es
w

ith
kn

ow
n

vu
ln

er
ab

ili
tie

s
in

ap
pl

ic
at

io
n

pr
oj

ec
ts

U
C

2
-D

et
ec

td
ep

en
de

nc
ie

s
w

ith
kn

ow
n

vu
ln

er
ab

ili
tie

s
in

op
en

so
ur

ce
pr

oj
ec

ts
&

su
gg

es
tm

iti
ga

tio
ns

S
A

P

O
pe

nC
er

t(
O

C
)

3.
1.

11
U

C
1

-S
up

po
rt

th
e

S
af

et
y

an
d

S
ec

ur
ity

co
m

pl
ia

nc
e

as
se

ss
m

en
ta

nd
ce

rt
ifi

ca
tio

n
(p

la
to

on
in

g)
TE

C

S
ab

ot
ag

e
(S

B
)

3.
1.

12
U

C
1

-F
au

lt-
in

je
ct

io
n

an
d

an
al

ys
is

of
fa

ul
ty

sc
en

ar
io

s
w

ith
si

m
ul

at
io

n
TE

C

B
ui

ld
w

at
ch

(B
W

)
3.

1.
17

U
C

1
-B

ui
ld

H
os

tS
ta

te
In

tro
sp

ec
tio

n
U

B
O

V
is

ua
li

nv
es

tig
at

io
n

(V
I)

3.
1.

13
U

C
1

-V
is

ua
lI

nv
es

tig
at

io
n

of
La

rg
e

S
of

tw
ar

e
O

rg
an

iz
at

io
ns

U
KO

N

Lo
gi

c
B

om
b

D
et

ec
tio

n
(L

B
D

)
3.

1.
14

U
C

1
-D

et
ec

tin
g

hi
dd

en
m

al
ic

io
us

co
de

U
N

IL
U

S
af

eC
om

m
it

(V
A

2)
3.

1.
15

U
C

1
-V

ul
ne

ra
bi

lit
y

In
tro

du
ci

ng
C

om
m

it/
P

at
ch

U
C

2
-V

ul
ne

ra
bi

lit
y

Fi
xi

ng
C

om
m

it/
P

at
ch

U
N

IL
U

Ta
bl

e
43

:O
ve

rv
ie

w
of

to
ol

s
ex

te
nd

ed
/d

ev
el

op
ed

in
th

e
co

nt
ex

to
fT

5.
1

SPARTA D5.1 Public Page 95 of 154

D5.1 - Assessment specifications and roadmap

3.2 T5.2 - Convergence of Security and Safety

In this section, first we discuss the techniques and specifications that we are developing/considering
in the Task T5.2, and then discuss the Roadmap of the Task, elaborating on how these techniques
and specifications are going to be put together.

3.2.1 Specifications

We classify the types of techniques and specifications that we are working in the following categories:
• Safety-security co-analysis techniques is concerned with techniques supporting analyses

that take both safety and security into account. Examples of these techniques include tech-
niques that can extract security relevant information from safety analysis and trade-off analyses.
• Requirements Engineering discusses methods for representing safety and security require-

ments. We discuss, in particular, protection profiles as per the Common Criteria as a means for
requirements engineering.
• Modelling and Implementation discusses Model-Based System/Software Engineering

methodology, in particular, the tooling we use to support this modelling and implementation
methodology.
• Safety and Security Co-Verification and Validation Techniques discusses techniques, such

as Formal Methods, Penetration Testing, and Visualization techniques, that can be deployed for
verifiying and validating the safety and security of systems/software.
• Updates discusses techniques that enable safe and secure update of systems and softwares.
• Assessments discusses some of the assessments/standards that take into account both safety

and security.
Remark: The task description in the proposal had a narrower scope than the one described above.
The proposal focused only on the co-analyses techniques. In order to better support the verticals,
in particular, the Connected Car vertical, we included as well Modelling and Implementation, Co-
Verification and Validation and Updates. This follows closely the V development model.

3.2.1.1 Safety-security Co-analysis Techniques

Besides improving the safety and the security of systems, the integration of safety and security can
lead to a number of benefits. We highlight some possible benefits:

• Early-On Integration of Safety and Security: Safety and security assessments can be carried
out while the requirements of system features are established. Safety assessments provide
concrete hazards which should be treated by security assessments, thus helping security
engineers to set priorities. For example, a safety hazard shall be given a higher priority
compared to other security attacks which do not cause catastrophic events.
• Verification and Validation: While safety has many well-established methods for verification,

security verification relies mostly on penetration testing techniques, which are system depen-
dent and therefore, resource intensive. The integration of Safety and Security can facilitate se-
curity verification. Much of knowledge gathering can be retrieved from safety assessment,
thus saving resources. For example, FTAs describe the events leading to some hazardous
event, while FMEAs describe single-points of failures. This information can be used by security
engineers to plan penetration tests, e.g., exploit single-point of failures described in FMEAs,
thus leading to increased synergies and less development efforts.
• Safety and Security Mechanisms Trade-Off Analysis: By integrating safety and security

analysis, it is possible to analyze trade-offs between control and counter-measures proposed to
support safety and security arguments. On the one hand, safety and security measures may
support each other, making one of them superfluous. For example [49, 84], there is not

SPARTA D5.1 Public Page 96 of 154

D5.1 - Assessment specifications and roadmap

need to use Cyclic Redundancy Check (CRC) mechanisms for safety, if messages are being
signed with MAC (Message Authentication Codes) as the latter already achieves the goal of
checking for message corruption. On the other hand, safety and security mechanisms may
conflict with each other. For example, emergency doors increase safety by allowing one to
exit a building in case of fire, but it may decrease security by allowing unauthorized persons
to enter the building. Such trade-off analysis can help solve conflicts as well as identify and
remove redundancies reducing product and development costs.

Below, we describe some of the main techniques for establishing safety, security and review some
techniques proposed for Safety and Security co-analyses.

3.2.1.1.1 Safety techniques
We review some safety techniques used by engineers to evaluate and increase the safety of a system,
namely, Hazard Analysis and Risk Assessment (HARA), Fault Tree Analysis (FTA), Failure Modes and
Effect Analysis (FMEA), Goal Structured Notation, and Safety mechanisms.

Hazard Analysis and Risk Assessment (HARA)
After the system has been defined, the first actually safety-specific process step is to identify the
hazards of the item in terms of accident risks that the system can cause to humans. This activity, in
the automotive ISO 26262 standard, is named Hazard Analysis and Risk Assessment (HARA).
HARA is a method to identify and categorize hazardous events of items and to specify safety goals
and ASILs related to the prevention or mitigation of the associated hazards in order to avoid unrea-
sonable risk. The hazard identification determines as outputs:
• The hazards, which are the ultimate failure effects and can therefore serve as top-level events

in a Fault Tree Analysis or other type of safety analysis.
• The safety goals, which are the top-level requirements, with the meaning that a given hazard

shall be prevented even in presence of failures, and therefore are the starting point for refine-
ment into safety requirements that add to the normal functional requirements for the system.
• The hazard risk levels or safety integrity levels (ASIL in the ISO 26262), which determine

the subsequent effort to be spent on (semi)formal specification, implementation according to
certain rules and guidelines, and verification, such as depth of testing or application of formal
verification techniques for higher hazard risk levels. They are also an important input parameter
for setting up the safety plan (selection of methods to be applied, in particular) and the safety
case.

The process of an ISO 26262 HARA is illustrated in Figure 37 (the explanations below refer to the
number labels in the diagram). An Item, by definition, is a system or an array of systems that are
required to implement a function at the vehicle level (platooning).

SPARTA D5.1 Public Page 97 of 154

D5.1 - Assessment specifications and roadmap

Figure 37: ISO 26262 HARA Process Flow.

Input (1) involves the System Description from Item Definition Phase, showing the outer interfaces
and main functions of the system. From these, in step (2) the malfunctions are derived. To judge the
potentially resulting accidents, it is necessary to discuss the malfunctions in different environmental
contexts or usage scenarios, e.g. driving in city traffic with vulnerable road users nearby, manually
driving on a highway at high speed, automatically driving on a highway as part of a platoon at moder-
ate speed, waiting at a red signal with pedestrians crossing in front of the vehicle, etc. This requires
the presence of a catalogue of situations (3) as an auxiliary input.
In the next step (4), the effects of the malfunctions are determined for certain environmental and
usage scenarios, which finally leads to the definition of the hazard (4c). Associated with step (4) is
the rating of the hazard in terms of ASIL. The ASIL is calculated out of three factors:
• E for Exposure (3a), which depends only on the usage scenario and can therefore be provided

along with the situation catalogue (cf. Figure 39).
• S for Severity (4a), which depends on the type of injuries that can be expected to any humans

– inside or outside of the car – when the described type of accidents happen. These must be
manually ranked by experts from S0 – no injuries – to S3 – severe injuries, survival not probable
(cf. Figure 38).
• C for Controllability (4b), which rates the probability that the driver or other affected people (e.g.

pedestrians, that could in some cases jump aside) can prevent the accident, ranking from C0
– normal control operations that every driver does all the time, like slightly adjusting the speed
to C3 – almost uncontrollable. Note that for automated driving functions that allow the driver to
perform side tasks, or that run vehicles in close distance to each other in a platoon, C3 must be
assumed in most cases (cf. Figure 40).

Figure 38: ISO 26262-3:2018 Table1: Classes of severity.

SPARTA D5.1 Public Page 98 of 154

D5.1 - Assessment specifications and roadmap

Figure 39: ISO 26262-3:2018 Table2: Classes of probability of exposure.

Figure 40: ISO 26262-3:2018 Table3: Classes of controllability.

From these factors, the ASIL can be automatically calculated (4d) according to the Figure 41.

Figure 41: ISO 26262-3:2018 Table4: ASIL determination.

The remaining steps are (5a) the naming of a corresponding safety goal (i.e. top-level safety require-
ment), normally by just adding “avoid” to the hazard name and (5b) the specification of additional
parameters, e.g.Safe state, Fault Tolerant Time Interval, Defining parameters. The output of the
HARA are the rated hazards that will serve as root events for safety analysis and the rated safety
goals that will be refined into more detailed safety requirements.

Fault Tree Analysis (FTA)
Fault Tree Analysis (FTA) is a top-down approach used in order to understand which events may lead
to undesired events. It is one of the most important techniques used in safety engineering. An FTA
is a tree with the root labeled with the top undesired event. The tree contains “and” and “or” nodes
specifying the combination of events that can lead to the undesired event.
Consider, for example, the FTA depicted in Figure 42. The undesired event is Y placed at the root of
the tree. A safety engineer is interested on the cut sets of an FTA, that is, the collections of events,
normally component faults, that lead to the undesired event. For this FTA example, the cut sets are:

{A,D}, {B,C}, {A}, {E,F}

as any of these combinations lead to the event Y. If both A and D happen at the same time, the
left-most and branch is satisfied leading to the event Y.

SPARTA D5.1 Public Page 99 of 154

D5.1 - Assessment specifications and roadmap

Y

or

and and andA

A D B C E F

Figure 42: FTA Example.

From a FTA, one can compute the minimum cut sets, that is, the minimum set of cut sets that encom-
passes all possible combinations of triggering an undesired event. The minimum cut set for the given
example is

{B,C}, {A}, {E,F}

Notice that the event A already triggers the event Y. Therefore, there is no need to consider the cut
set {A,D}as it is subsumed by the cut set {A}.
Given the minimum cut sets, a safety engineer can, for example, show compliance with respect to
the safety requirements. This may require placing control measures to reduce the probability of the
corresponding undesired event.

Failure Modes and Effect Analysis (FMEA)
FMEA is a bottom-up approach (inductive method) used to systematically identify potential failures
and their potential effects and causes. Thus FMEA complements FTA by instead of reasoning from
top-level undesired events as in FTA, adopting a bottom-up approach by starting from faults/failures
of sub-components to establish top level failures.
FMEAs are, normally, organized in a table containing the columns: Function, Failure Mode, Effect,
Cause, Severity, Occurrence, Detection and the RPN value.
Failure modes are established for each function. Examples of failure modes include [3]:
• Loss of Function, that is, when the function is completely lost;
• Erroneous, that is, when the function does not behave as expected due to, for example, an

implementation bug;
• Unintended Action, that is, the function takes the action which was not intended;
• Partial Loss of Function, that is, when the function does not operate at full operation, e.g.,

some of the redundant components of the function are not operational.
Effect and cause are descriptions of, respectively, the impact of the failure mode of the function
to safety and what could be a cause for such failure be, e.g., failures of sub-components. Severity,
Occurrence and Detection are numbers, ranging normally from 1-10. The higher the value for severity
the higher the impact of the failure. The higher the value for occurrence the higher is the likelihood of
the failure. The higher the value of detection the less likely it is to observe (and consequently activate
control mechanisms) the failure.
Finally, the value RPN is computed by multiplying the values for severity, occurrence and detection.
It provides a quantitative way of classifying the importance of failure modes. The higher the value of
RPN of a failure the higher its importance.

Goal Structured Notation (GSN)
Safety assessments are complex, breaking an item safety goal into safety sub-goals, e.g., consid-
ering different hazards, and often applying different methods, e.g., FTA, FMEA, Safety Mechanisms.
GSN [4] is a formalism introduced to present safety assessments in a semi-formal fashion.

SPARTA D5.1 Public Page 100 of 154

D5.1 - Assessment specifications and roadmap

Item Safety

All hazards are
suficiently controlled

Goal

Strategy
All hazards are

identified

Assumption

Hazard 1
Goal

Hazard 2
Goal

· · ·

10/20 15/40

· · ·

25/60
Belief = 0.4
Disbelief = 0.56
Uncertainty = 0.03

Figure 44: Example of GSN-Model with Quantitative Information. Here the pair m/n attached to goals
specifies, respectively, the number of defeaters outruled and the total number of identified defeaters.

Item Safety

All hazards are
suficiently controlled

Goal

Strategy
All hazards are

identified

Assumption

Hazard 1
Goal

Hazard 2
Goal

Hazard n
Goal

· · ·

· · · · · · · · ·

GSNs

Solutions

Figure 43: GSN Hazard Pattern.

Since its introduction, different safety arguments have been mapped to GSN patterns. Consider,
for example, the GSN pattern depicted in Figure 43. It specifies the argument by analysing all the
possible/known hazards to an item’s safety. It is assumed that all the hazards are known. For each
hazard a safety argument, also represented by a GSN-Model, is specified. At the leaves of the GSN-
Model, one describes the solutions that have been taken, e.g., carry out FTA, FMEA, safety designs,
etc.
Clearly, such safety arguments can provide important information for security. For example, it con-
tains the key safety hazards of an item. It also contains what type of solutions and analysis have
been carried out. However, a problem of GSN-Models is the lack of more precise semantics. The
semantics is basically the text contained in the GSN-Models, which may be enough for a human to
understand, but it does not provide enough structure for extracting automatically security-relevant
information. We extend GSN-Models and show how to construct security models, namely, Attack
Trees, from a GSN-Model.
Finally, recent works [34, 123] have proposed mechanisms for associating GSN-Models with quantita-
tive values denoting its confidence level. These values are inspired by Dempster-Shafer Theories [33]
containing three values for, respectively, the Belief, Disbelief, and Uncertainty on the safety assess-
ment. These values may be assigned by safety experts [123] or be computed from the total number
of identified defeaters18 and the number of defeaters one was able to outrule [34].
We illustrate the approach proposed by Duan et al. [34]. Consider the GSN-Model depicted in Fig-
ure 44. It contains a main goal which is broken down into two sub-goals. GSN goals are annotated
with the number of defeaters outruled and the total number of defeaters. Intuitively, the greater the

18A defeater is a belief that may invalidate an argument.

SPARTA D5.1 Public Page 101 of 154

D5.1 - Assessment specifications and roadmap

total number of defeaters, the lower is the uncertainty. Moreover, the greater the number of outruled
defeaters the greater the belief on the GSN-Model and the lower the disbelief. In Figure 44, a total of
60 = 20 + 40 defeaters have been identified and only 25 = 10 + 15 have been outruled. These values
yield a Belief of 0.4, Disbelief of 0.56 and Uncertainty of 0.03.19 If further 20 defeaters are outruled,
then the Belief is increased to 0.73, the Disbelief reduces to 0.24 and the Uncertainty remains the
same value 0.03.
Intuitively, only arguments that have high belief, thus low uncertainty and low disbelief, shall be ac-
cepted. Such a quantitative information can be used to incorporate the results of security assess-
ments in safety assessments. For example, if no security assessment has been carried out for a
particular item, then the associated uncertainty shall increase. On the other hand, if a security has
been carried out establishing that the item is secure, then the belief on the safety of the item shall
increase. Otherwise, if an attack is found that could compromise the safety of the item, then the
disbelief shall increase.

Safety Mechanisms
Safety mechanisms, such as voters, watchdogs, are often deployed in order to increase the safety of
a system. For example, consider the hazard unintended airbag deployment. Instead of relying on a
single signal, e.g., crashing sensor, to deploy an airbag, a voter can be used to decide to deploy an
airbag taking into account multiple (independent) signals, e.g., crashing sensor and gyroscope, thus
reducing the chances for this hazard.
However, as pointed out by Preschern et al. [96], safety mechanisms themselves can be subject to
attacks. For example, an attacker may tamper the voter leading to a hazard. If security engineers
are aware of the deployment of such mechanisms, they can assess how likely it is to attack them to
trigger a hazard.

3.2.1.1.2 Security techniques
We review some security techniques used by engineers to evaluate and increase the security of a
system, namely, Attack Trees (ATs) and Attack Defense Trees (ADTs).

Attack Trees (ATs)
First proposed by Schneier [105], attack trees and its extensions [21, 72] are among the main security
methods for carrying out threat analysis. An attack tree specifies how an attacker could pose a threat
to a system. It is analogous to GSN-Models but, instead of arguing for the safety of a system, an
attack tree breaks down the possibilities of how an attack could be carried out.
Consider, for example, the Attack Tree depicted in Figure 45. It describes how an intruder can
successfully steal a server. He needs to have access to the server’s room and be able to exit the
building without being noticed. Moreover, In order to access to the server’s room, he can break the
door or obtain the keys.

Attack Defense Trees (ADTs)
Attack defense trees [72] extend attack trees by allowing to include counter-measures to attack trees.
Consider the attack defense tree depicted in Figure 46 which extends the attack tree depicted in
Figure 45. It specifies counter-measures, represented by the dotted edges, to the possible attacks.
For example, “breaking the door” can be mitigated by installing a security door which is harder to
break into. Similarly, installing a security camera or hiring a security guard can mitigate that the
attacker leaves the building undetected. Attack defense trees also allow to model how attackers
could attack mitigation mechanisms. For example, a cyber-attack on the security camera causing it
to record the same image reduces the camera’s effectiveness.

19We refer to the work of Jøsang [66] on how exactly these values are computed.

SPARTA D5.1 Public Page 102 of 154

D5.1 - Assessment specifications and roadmap

Steal the Server

and

Access to
Server’s Room

Exit
Unobserved

or

Break the Door Have Keys

Figure 45: Attack Tree Example.

Install Security Door

or

Security
Guard

Install
CameraInstall Security Lock

Steal the Server

and

Access to
Server’s Room

Exit
Unobserved

or

Break the Door Have Keys

Figure 46: Attack Defense Tree Example.

3.2.1.1.3 Safety and Security co-analysis techniques
We review some safety and security co-analysis techniques used by engineers to evaluate and in-
crease the safety and security of a system.

General Models for Both Safety and Security
A number of works [50, 76, 83] have proposed using general models encompassing both safety and
security concerns. For example, GSN extensions with security features, so that in a single framework,
one can express both security and safety [76].
Although it is an appealing approach, it does not take into account the different mind-sets between
safety and security, which poses serious doubts on the practicality of such approach. On the one
hand, security engineers do use GSNs for threat modeling and it is hard to expect them to combine
security threats with solutions such as FTA, FMEA, etc. On the other hand, safety engineers are not
security experts, so it is hard to expect that they would develop deep security analysis.

Safety Assessments used for Security Analysis
Instead of building a general model for both safety and security, some approaches [35, 101, 110]
propose the development of safety assessments and then “passing the ball” to security engineers to
carry out security analysis based on the safety assessments.
An example of this approach is the use of standard (natural) language, such as Guide Words [35],
with information in safety assessments relevant for carrying out security assessments. For example,
HAZOP uses guide words to systematically describe the hazards, such as under which condition it
may occur. This information can provide hints for carrying out security analysis.

Automated Integration of Safety into Security Recently [71], we proposed a methodology for ex-
tracting security relevant information from safety analyses, such as the ones described above.

The overall methodology is depicted in Figure 47 and consists of the steps described below. Following

SPARTA D5.1 Public Page 103 of 154

D5.1 - Assessment specifications and roadmap

AT NodeHazard
Step (1)

FTA

Lightweight
Semantics

Safety
Patterns

⊕ Step (4)

Attack
Types

Step (3)

AT

⊕ AT AT

Step (2)

Step (5)

Figure 47: Methodology for translating safety models to Attack Trees

this methodology, one is able to use computer aided methods for extracting security analysis in the
form of ATs from safety analysis.

1. Hazard to Attack Tree – For each hazard identified in the Hazard analysis, we generate the
root node of the attack tree. This follows the guidelines discussed above. The idea is that each
attack tree will be expanded using the information collected in the safety analysis.

2. Lightweight Semantics – In order to automate the extraction of information from safety analy-
sis, however, we associate to each safety model, e.g., events in FTA, a lightweight semantics.
Inspired by the work of [35], this semantics consists of simple annotations, normally already
used by safety engineers, e.g., Guide Words, that specify the nature of events involved in the
safety analysis and of the types of safety patterns deployed.

3. Relating Guide Words to Attacks – We associated with each guide word used in the
lightweight semantics the possible attacks that could lead to it. Attacks can be expressed by
using the STRIDE notation, for example.

4. FTA to Attack Tree – Based on the lightweight semantics associated to the events, an FTA
analysis for triggering a hazards is translated to an AT, by reasoning over its minimal cut sets.
The AT obtained from the hazards is then expanded using this AT.

5. Safety Patterns to Attack Trees – We then further expand the trees by reasoning over the
safety patterns, i.e., architectural patterns recommended in security requirements. In particular,
new sub-attack trees are constructed enumerating ways for which attackers can trigger a hazard
by attacking a safety pattern.

We applied this methodology in a use case involving an Industry 4.0 element.

3.2.1.2 Requirements Engineering

As described in paragraph 3.1.1.1, the model that was identified for the ”Certification for safety and
security” process is the V-Model represented by the diagram shown in figure 22. Diagram includes
and compares three parallel processes:

SPARTA D5.1 Public Page 104 of 154

D5.1 - Assessment specifications and roadmap

1. Security Engineering Process
2. Safety Engineering Process
3. Cybersecurity Certification Process

In this model the phase in which the definition/analysis of the requirements takes place is that iden-
tified by the first line on the right of the diagram. In particular the elements of the three parallel
processes that characterize them are (keeping the order of the previous bulleted list):

1. Requirement analysis
2. Safety Goals definition
3. ASE (Security Target Evaluation)

In particular, for the certification process, considering the current cyber security certification schemes
at a national and international level, Common Criteria (ISO / IEC 15408) [26] has been taken as the
starting point, a standard that has evolved and consolidated over the last decade. In this project will
take inspiration to undertake the path of improvement of these processes.
Although one of the objectives of WP5 is to simplify the certification processes to make them faster
and leaner, while at the same time it is necessary to consider the needs that may arise in dealing
with the analysis of very different elements between them.
It is exactly in this direction that moves the proposition made in this project for the definition phase of
the requirements in the definition of the ”Requirement Engineering”.
Point 3 of the previous bulleted list contains the phase of the assessment on the Security Target
which is the main document of an evaluation conducted according to the Common Criteria standard.
Among the contents of this document there is the precise definition of the security requirements that
the ”TOE” (Target of Evaluation - the object that is intended to certify, generally an ICT product, but
can also be addressed to systems, processes and services) must satisfy. Therefore, this document
has a very limited validity (only to TOE) and is not very reusable as security needs change.
So every time the supplier of a particular TOE intends to proceed to its certification it will have to start
from scratch producing such document with a remarkable working effort.
In order to simplify this phase in a possible certification process, the idea is to adopt one of the
solutions considered by the Common Criteria standard, the introduction of “Protection Profiles” (PP)
for the categorization of Cybersecurity requirements.

3.2.1.2.1 Protection Profile scope
The purpose of a Protection Profile is to describe, with a well-defined scheme, a security problem for
a given set of TOE and to specify security requirements to address that problem, without consider
how these requirements will be implemented. For this reason it is possible to consider a PP as a
security description ”independent of implementation”.
Such a document, due to its flexibility, can satisfy different needs as follows:

• A user community seeking to come to a consensus on the requirements for a given TOE type.
• A developer of a TOE, or a group of developers of similar TOEs wishing to establish a minimum

baseline for that type of TOE.
• A government or large corporation specifying its requirements as part of its acquisition process.

3.2.1.2.2 Protection Profile content
The content of a Protection Profile can be summarized in the following points:

• an overview of the PP and a description of the TOE that identify, in adequate terms for users,
the security problem to be addressed;

SPARTA D5.1 Public Page 105 of 154

D5.1 - Assessment specifications and roadmap

• a description of the security environment of the TOE, which specifies the expected conditions of
use, identifying the threats to be countered and the security policies of an organization (OSP)
which must be met in the light of specific assumptions;
• the security objectives concerning the evaluation of the TOE, that is, how and to what extent

the safety aspects must be considered;
• the functional and guarantee requirements adopted to meet the declared safety objectives;
• the reasons that demonstrate that the declared safety objectives are attributable to all the as-

pects (hypotheses, threats, OSP) identified in the security environment of the TOE and are
suitable to treat them.

In the following paragraphs, you get into more detail about the contents of the various sections of a
generic Protection Profile.

a) Descriptive part
This section contains the following elements:

• Identification: sufficient information to identify and uniquely characterize the PP.
• Description: summary of the PP in discursive form, to be used also as an isolated document (to

be adopted in catalogs, etc.). Among the elements to be considered in this area are the type of
TOE, the functionalities in general and the boundaries of the TOE.

b) Security environment
This section contains the definition of the environment in which the TOE will be used and the way in
which it will be used through the following elements:

• Hypotheses made regarding the security environment of the TOE (eg, aspects of connectivity,
physical protection, personnel safety, etc.).
• The assets that must be protected and the threats that concern them (deriving from a risk

analysis).
• Any organizational policies and security rules that the TOE must satisfy (eg: control rules on

data flow, rules for identifying access control, etc.).

c) Security objectives
This section contains the identification and specification of the security objectives of a PP which
provide the answer to the elements constituting the security problem defined above. These objectives
are divided into:

• Security objectives for the generic TOE, met by technical countermeasures (IT) implemented
by the TOE itself.
• Safety objectives for the environment, met by technical measures implemented by the IT envi-

ronment or by non-IT measures (eg: procedures).

d) Security Requirements
This chapter provides a guide to defining IT security requirements that can be divided into the follow-
ing categories:

• Security functional requirements (SFR) for generic TOE. These identify the requirements for
the security functions that must be provided by the TOE to ensure that the security objectives
for the TOE are achieved (these must be written, when possible, using the catalog of functional
components defined in [6]).
• Security assurance requirements (SAR) for the generic TOE, which identify the levels of assur-

ance required in the implementation of the security functional requirements (SFR) (these must
be written, when possible, using the catalog of warranty components defined in [7]).

SPARTA D5.1 Public Page 106 of 154

D5.1 - Assessment specifications and roadmap

• Security requirements for the IT environment. These define the functional or guarantee require-
ments that must be met by the IT environment (ie from the hardware, firmware and / or external
software to the TOE), in order to ensure that the TOE security objectives are achieved.

e) PP rationale
The purpose of the rationale for a PP is to demonstrate that a TOE, which is PP conformant, provides
an effective set of IT security countermeasures within the TOE security environment. In particular,
rational shows that the security requirements are suitable to meet the security objectives, which in
turn are suitable for dealing with all aspects of the TOE security environment (which defines security
requirements).

3.2.1.3 Modelling and Implementation

Model-Based System/Software Engineering (MBSE) suggests to rely on models all along the de-
velopment cycles of (embedded) systems. This usually includes capturing requirements, selecting
the “best” HW/SW system partitioning, designing software (and sometimes hardware), generating
code and handling the maintenance of the system. Verifications and testing are assumed to be
performed from models whenever possible.
Important aspects to be dealt with during the development cycles of embedded systems are the
handling of potentially conflicting requirements during all other methodological stages. Requirements
can be defined in the three following categories: safety, security and performance. Conflicts can
concern opposite needs or goals in the same category, or antagonic goals in two different categories.
For instance, adding security requirements usually results in degraded performance. MBSE intends
to solve these issues by using different kinds of models, views and viewpoints, that help sharing
models between different system experts and allow verifications to be performed.
This section now reviews several MBSE environments, with a focus on DSE and safety/security
aspects, including two important candidates in our reseach projects: AutoFocus and TTool/SysML-
Sec.
The authors of [104] introduce an abstract design space exploration (DSE) framework, and its integra-
tion into design space exploration solvers. Their tool Generic Design Space Exploration, is intended
to support DSE for any domain, and allows the use of different solvers for DSE. They allow the user
to specify different metrics and constraints to find an optimal solution.
MAESTRO [99] targets the design of embedded firmware, with support for automatic design space
exploration and code generation. It also supports evaluation of power consumption, timing, tem-
perature, etc. The Koski design flow models multiprocessor system-on-chips in a UML profile with
automated design space exploration [67]. The entire process includes requirement description, ap-
plication and architectural modeling, architecture exploration, verification by simulation, and code
generation.
Capella [93] relies on Arcadia, a comprehensive model-based engineering method. It is intended to
check the feasibility of customer requirements, called needs, for very large systems. Capella provides
architecture diagrams allocating functions to components, and advanced mechanisms to model bit-
precise data structures. Capella is however more business focused, and lacks formal verification
capabilities.
MARTE [121] models communications, applications, and architecture. However, it intrinsically lacks
a separation between control and message exchange. However, even if the UML profile for MARTE
adds capabilities to model Real Time and Embedded Systems, it does not specifically support ar-
chitectural exploration. Other works based on UML/MARTE, such as Gaspard2 [48], are dedicated
to both hardware and software synthesis, relying on a refinement process based on user interaction
to progressively lower the level of abstraction of input models. However, such a refinement does not
completely separate the application (software synthesis) or architecture (hardware synthesis) models
from communication.

SPARTA D5.1 Public Page 107 of 154

D5.1 - Assessment specifications and roadmap

Other toolkits are specialized for automotive systems, such as Medini, which supports safety analysis
and design based on ISO 26262. It supports simulation and probabilistic analysis of faults, but not
security analysis [15].
[44] relies on Architecture Analysis and Design Language (AADL) models to consider architectural
mapping during security verification. The authors note that a system must be secure on multiple
levels: software applications must exchange data in a secure manner, and also execute on a secure
memory space and communicate over a secure channel.
[51] enhances Design Space Exploration with the ability to map security tasks in a real time multicore
system with the algorithm HYDRA. Their work assumes an attacker who can intercept communica-
tions, forge messages, and prevent the availability of services. To impede the attack, security tasks
must be performed periodically. Security tasks are abstracted to consider only that they must exe-
cute within a set deadline to maintain the security of the system, and not the exact mechanisms for
security.
[65] also considered how to secure communications in embedded systems, with encryption per-
formed in software or on FPGA. They considered how to ensure only the confidentiality of their
internal messages, with a single encryption algorithm AES. They consider all possible mappings with
static and re-configurable FPGA, and determine if the system meets timing constraints. Their work is
focused on scheduling and constraint satisfaction.
Likewise, the Simple Modeling Language for Embedded Systems (SMOLES) [109] was enhanced
with a Security Analysis Language [36]. SMOLES models systems as a set of components with
input and output ports, and tasks are mapped onto the hardware platform. Models can be verified for
schedulability, timing, including latencies, and safety properties with UPPAAL. The addition of security
algorithms can secure communications across partitions, and also models the attacker capabilities in
terms of the size of keys that can be cracked. Their analysis tool can then analyze the fulfillment of
integrity and secrecy requirements.
AutoFocus3 [2] addresses requirement capture, software and hardware architectures, with a focus
on safety and performance aspects. AutoFocus3 relies on models, views and viewpoints. Analysis
techniques help designers investigating e.g. requirements inconsistencies and understanding system
behaviour thanks to the simulation of automata. Design Space explorations, based on the Z3 SMT
solver, helps deciding of a mapping of software tasks onto HW target platforms. Finally, software
code can be automatically generated.
SysML-Sec [1] is an environment to design safe and secure embedded systems with an extended
version of the SysML language. SysML-Sec targets both the software and hardware components of
these systems. SysML-Sec is fully supported by the free and open-source toolkit: TTool. SysML-Sec
has been developed in the scope of the EVITA FP7 European Project [43] and is now used in the
scope of the AQUAS H2020 project [16]. Many projects and case studies have already been modeled
with SysML-Sec ranging from automotive systems, drone systems, industrial systems, information
systems (e.g., the analysis of malware targetting banking systems) and industrial systems (Analysis
of SCADA malware), and more generally, security protocols.
The SysML-Sec method is as follows:
• The analysis stage intends to elaborate on system requirements, faults and threats.
• The HW/SW partitioning stage helps finding a good compromise between main system con-

straints (cost, safety, security and performance). Safety and security countermeasures can be
evaluated using simulation and formal verification techniques. Models are performed at a high
level of abstraction, e.g. processors are highly abstract and are customized thanks to a few
parameters (e.g. cache miss, wrong branching prediction rate, bus data size, etc.)
• Finally, the software design stage supports the design of software components related to func-

tions mapped to processors in previous stage. Software components can be formally verified
against safety and security requirements, before executable code is generated.

SPARTA D5.1 Public Page 108 of 154

D5.1 - Assessment specifications and roadmap

Analysis

Requirements

SecuritySafety Functional
Attack Trees

HW/SW Partitioning

Application Architecture

Mapping

Software Design

Verification

Safety SecurityPerformance

Code
Generation

Legend
Modeling
Verification

User-defined
Automatic
Reconsideration

Safety
Countermeasures Security Countermeasures

Safety Countermeasures Security Countermeasures

Verification

Safety SecurityPerformance

Firewall, Data Security, ...Redundancy, ...

Failsafe Mode, Plausibility Check, ...
Security Algorithms, ...

Attacker
Scenarios

Fault Trees

Security
Safety

Figure 48: Overview of the SysML-Sec methodology

3.2.1.4 Safety-security Co-verification and Validation Techniques

3.2.1.4.1 Formal methods
The use of mathematical models are useful, especially, during early phase designs of development.
Figure 49 illustrates with an example a methodology, that we recently developed [79], using formal
methods for carrying out safety and security co-verification.

Figure 49: Illustration of an application of formal methods for automated safety and security analyses.

SPARTA D5.1 Public Page 109 of 154

D5.1 - Assessment specifications and roadmap

The methodology takes as input:
• a number of function blocks FB1, . . . , FBn specifying the high-level behaviour of the system;
• a number of bad states (or configurations) specifying, for example, catastrophic events;
• a formal specification of an intruder model. It specifies, for example, the capabilities of the

intruders, such as capability of injecting or tampering with messages.
The intruder uses symbolic messages. This means that one does not need to inform before-hand,
for example, which messages the intruder can inject. The symbols are resolved during verification in
a lazy fashion.
These inputs are provided to a model-checker. For this example, we implemented a model-checker
in the rewriting tool Maude [24]. The model-checker traverses all possible states and identifies which
critical events that an intruder can inject or tamper with, so that it makes the system reach a critical
state, i.e., lead to a catastrophic event. In the example shown in Figure 49, four critical events have
been identified.
Given these critical events, a designer can propose counter-measures, such as the used of signed
messages to ensure the integrity of messages.

3.2.1.4.2 Visualization Techniques
The assessment of safety and security is a primary challenge in the SPARTA project. Vulnerabilities
in software influence both the safety and security of systems, e.g., in the context of self-driving cars,
an exploitable vulnerability can lead to catastrophic events.
The detection of known vulnerabilities (e.g., CVE’s) in software is a primarily automatic process, while
the assessment of the potential impact of vulnerabilities on large software projects or organizational
structures depends on the expertise of software developers and managers. A meaningful visual
representation of such software vulnerabilities and their dependencies can help to identify, explore,
interpret such critical safety as well as security risks.
Interactive visualizations support the assessment of such vulnerabilities as they enable us to present
the data in a human-readable format, generate hypotheses, and explore the complex relationships
between vulnerabilities. More precisely, the goal of such visualizations is to convey the associated risk
on modules, components, projects, and organizational structures while also allowing for a detailed
analysis of individual vulnerabilities, such that the associated risks can be addressed.
Visual Analytics (VA) is an interdisciplinary approach towards complex data analysis scenarios based
on this combination of man and machine. Visual Analytics “combines automated analysis techniques
with interactive visualizations for an effective understanding, reasoning, and decision making on the
basis of very large and complex datasets”, a definition given by Keim et al. as summary of the Vis-
Master EU research project [68].
Besides direct knowledge generation, following Visual Analytics principles also fosters a user’s con-
structive reflection and correction of conducted analyses, resulting in improvements for processes
and models, and ultimately, of decisions taken and knowledge generated by the users.
VA combines multiple research areas and subjects, including data management and analysis, spatio-
temporal data processing, statistics, human-computer interaction, and visualization [69]. It is intended
to allow us to derive insights from large, in-homogeneous, and ambiguous datasets and enables both
to confirm expected results as well as finding unexpected coherence. Users can quickly come to
comprehensible, correct results, and can communicate their findings and derived consequences for
action efficiently.
Applied to the SPARTA project, the VA process will be used to improve the decision-making process
of analysts in complex use cases that require to simultaneously oversee vulnerabilities in own and
third-party project, organizational structures, and their inter-dependencies.
The visual analytics prototype, therefore, will improve the communication of the impending conse-
quences of collaboratively made decisions and their effect on affected organizational units. The
knowledge generated by decision-making results and reviews can be used to develop long-term

SPARTA D5.1 Public Page 110 of 154

D5.1 - Assessment specifications and roadmap

strategies in software organizations. The knowledge and findings resulting from the visual analysis
of vulnerabilities can be additionally used as input for penetration tests refsec:PT.

3.2.1.4.3 Simulation-based Fault Injection
In order to better understand the role of FI on safety assessment, a theoretical background on this
field is essential. The FI technique either evaluates or validates the dependability of systems. De-
pendability of a computer-based system is the ability to avoid service failures that are more frequent
and more severe than acceptable. By exploiting such a testing technique, controlled experiments are
conducted by the deliberate injection of faults into the system and the reaction is observed. Its main
objectives are to:
• Understand the systems behaviour under the effects of real faults
• Evaluate the system fault tolerance
• Forecast the faulty behaviour of the target system
• Identify weak links on the design
• Estimate the coverage and latency of Fault Tolerance Mechanisms (FTM). Actually, as they are

not triggered under normal conditions, FI is used to activate those exceptional conditions and
to remove FTM design faults.

A detailed description of the different FI techniques and tools is presented in [124]. One of the
techniques with more relevant benefits is the so-called Simulation-based Fault Injection which
allows full observability and controllability. To get meaningful and accurate FI experiment results, a
representative fault model is required. Different types of faults can appear depending on its nature
during the system design process or during its operational life.
It is beneficial to use simulation technologies before the construction of physical models, as the
build-up of virtual model concepts need fewer resources than the preparation of a physical prototype.
These techniques also highly recommended across the verification and validation phases of the V-
Cycle development process.
As illustrated by Figure 50, the user starts by modelling the system architecture with its corresponding
components in a system design tool. After doing so, traditional safety analysis techniques and fault
injection are put together in order to perform a combined analysis of the system. The next step
is defining the safety concept/safety mechanisms. Then, fault Injection techniques are performed
by including saboteurs at component inputs and monitors at component outputs. Finally, the user
checks if the safety mechanisms are correctly implemented and a sufficient level of safety has been
achieved.

SPARTA D5.1 Public Page 111 of 154

D5.1 - Assessment specifications and roadmap

Figure 50: Simulation-based Fault Injection workflow.

3.2.1.4.4 Penetration Testing
Once the system is designed using all the above mentioned methods and techniques it has to be
evaluated in terms of security. To do this we will use common methodologies of Ethical Hacking. The
ultimate goal of this process is to obtain an objective assessment of the resilience of the system to
cyber-attacks. With this cybersecurity assessment, the necessary corrective measures, firmware and
software updates, detection mechanisms, prevention, mitigation and recovery of the tested system
will be defined.
To achieve this objective, we must analyze each ECU searching for any vulnerability, trying to exploit
the vulnerability in order to determine whether unauthorized access or other malicious activity that
may compromise ECU security and occupants’ safety are possible.Penetration Testing is defined as
the live test process of the effectiveness of security defenses through mimicking the actions per-
formed by an Ethical Hacker. For the execution of a penetration testing the ethical hacker simulates
a criminal attack under controlled conditions:

• Definition of entry points. The first step is to determine which are the connectivity devices
that may be attacked.
• Ability to perform an attack. Once entry points are identified, these will be tried to compromise

using several cyber-attacks, obtaining the possible security breaches.
• Define the breach level. If any of the performed attacks succeeds, the next step is to deter-

mine its level of penetration. Attacks can be passive (attacker can only eavesdrop, intercept
messages or resend it) or active (attacker can manipulate data or generate new data), but their
impact can have a very broad range.

In conclusion, a penetration test to the system will allow to check that the security requirements
involving safety but also other possible security concerns (such as privacy) are satisfied.
One of the tools which is planned to be used here is the Visual Analytics tool from UKON, which due
to the complete overview of the SW vulnerabilities of each ECU and their internal relations in the
system, it can provide a really useful information to the penetration tester in order to perform complex
attacks that take into account not only one, but more ECUs or interfaces.

SPARTA D5.1 Public Page 112 of 154

D5.1 - Assessment specifications and roadmap

Moreover, it will analyze the possibilities to add as well HW vulnerabilities of each of the units to
support this visualization with a more complete overview of the system in terms of architecture.

3.2.1.5 Updates

Modern automotive vehicles are composed of a large number of cyber-physical systems containing
millions of lines of code. Due to the connectivity of the cyber-physical systems and the automotive
vehicles it is possible to update the software and firmware for maintenance purposes or for enhancing
functionality. The update process is a source of evolution of the embedded software and firmware.
From the security point of view this raises questions related to (1) securing the update process to
avoid distributing malware within the automotive vehicle and (2) determining whether some certified
components need to be recertified (incremental cybersecurity certification). In this section we ad-
dress (1) by summarising The Update Framework (TUF) and its implementation for the automotive
domain Uptane.
In the past, update software repositories have been the subject of attacks. The main aim of attackers
was to use the update process as a means of distributing their malware. TUF is a security framework
designed to protect update software repositories from attacks. The basic concept in TUF is to guar-
antee integrity of the repository contents by signing file sizes and hash metadata. Attacks can then
be detected and prevented by verifying the metadata before performing updates. TUF is based on
four design principles:

• Responsibility separation: metadata is signed using different roles in order to increase resilience
to compromise.
• Multi-signature trust: any metadata must be signed using a minimum of x out of y keys.
• Minimal risk to individual keys and roles: offline keys are used for the high impact roles such as

root, whereas on-line keys are only used for low risk roles.
• Explicit and implicit revocation: revocation is done explicitly by signing metadata and done

implicitly by defining expiration dates for access rights

The four basic roles in TUF are root, time-stamp, snapshot and target. Root is the certificate authority
that distributes and revokes public keys that are used to sign the meta-data. Timestamp indicates
availability of new updates (new meta-data or new images). The release role identifies the updates
that have been released at the same time. The targets role defines the meta-data such as file sizes
or hashes.
UPTANE [73] is a software update framework for automotive vehicles. It extends TUF by adding new
types of meta-data to be signed thus making attacks more difficult and making the update system
more resilient to attacks. The new security principles that UPTANE add to TUF are the following:

• Providing recovery from attacks by making available backups for Electronic Control Units (ECU)
sofware compromised by an attack.
• Broadcasting meta-data to prevent attacks where ECU received different versions of meta data

at the same time.
• Preventing compatibility attacks by signing a vehicle version manifest that identifies installed

software.
• Preventing attacks where ECU updates are delayed indefinitely.

The threat model for UPTANE assumes that attackers have the following goals: (1) Read updates:
steal intellectual property by reading updates and reverse-engineering ECU firmware, (2) Prevent
fixing vulnerabilities and problems by denying updates, (3) trigger abnormal vehicle behaviour by
temporarily or permanently stopping correct ECU behavior, and (4) take control of the vehicle. At-
tackers are assumed to be capable of performing man in the middle attacks and intercept or change
communications. This can be done by an external attack that takes control of a cellular network used
for distributing updates or by an internal attack to control communications over a gateway. Attackers
are assumed to be capable of compromising vehicle ECUs. Attackers are also assumed of being

SPARTA D5.1 Public Page 113 of 154

D5.1 - Assessment specifications and roadmap

capable of compromising the cryptographic keys used to sign meta-data or the server that store the
keys.
Software/firmware updates are a key process for software/firmware evolution that needs to be taken
into account during cybersecurity assessment. Any updates could require triggering cybersecurity
re-assessment of some key functionalities.

3.2.1.6 Assessments

Organizations are spending considerable resources in building proper information security risk man-
agement programs that would eventually address the risks they are exposed. These programs should
be established on solid foundations, which is the reason why companies look for accepted standards
and frameworks.
In the automotive domain three major standardization activities are currently ongoing in the field of
safety and cybersecurity, as illustrated by Figure 51:
• Functional Safety: The first version of ISO 26262 was published in November 2011. While

the standard was a huge success and adopted by the automotive industry, technological devel-
opments like the increased usage of assistant functions, increased connectivity and the rising
importance of software required a revision and update of the standard. This process is now
finalized and ISO 26262: 2018 was published December 2018 [60].
• Safety of The Intended Functionality – SOTIF: For automated or autonomous vehicles safety

is not only endangered by failures in the classical understanding, e.g. a hardware element
is failing, or a software has a design error, but also by misinterpretations of sensor signals
or lacking combination of sensor data and processing. SOTIF is a newly developed standard
which addresses such issues [59].
• Automotive Cybersecurity: Due to the increasing connectivity, V2X communication and the

shift of functionality towards software and more complexity that increases the need for Over the
Air Updates (OTA), cybersecurity is increasingly important for dependable automotive systems.
Recently demonstrated hacker attacks on automotive control systems via maintenance or en-
tertainment channels have shown the necessity as well. Therefore SAE, who already created
SAE J3061 as Guideline for Automotive cybersecurity engineering, and ISO have joined forces
towards an Automotive Cybersecurity Standard (ISO/SAE 21434) [58].

Figure 51: Automotive domain standards.

3.2.1.6.1 Functional Safety according to ISO 26262
The automotive industry implements the ISO 26262 ”Functional Safety Road Vehicles” standard [60]
for functional safety, which is the adaptation of the IEC 61508 standard for the automotive industry.
The ISO 26262 standard defines what is required to avoid unreasonable risks due to hazards caused
by malfunctioning behaviour of Electrical/Electronic systems.

SPARTA D5.1 Public Page 114 of 154

D5.1 - Assessment specifications and roadmap

ISO 26262 was published in 2011 and was designed to attend the specific safety risks of the auto-
motive industry and the road vehicles, ensuring the design and build of functionally safe vehicles and
efficient safety management through the supply chain. The standard has been considerably reworked
and ISO 26262:2018 was published in December 2018.
The Ed. 2 (ISO 26262: 2018) consists of 12 parts – a new part 11 on Semiconductors and another
new on for motorcycles. The major goals of the rework have been:
• Increase consistency between parts.
• Adapt standard to evolving technologies and industrial developments.
• Ease adaption and application of standard.
• Extension of the standard for other road vehicles like motorcycles, trucks and busses.
• Extension regarding semiconductors.

As a sub goal for the second edition, it contains some guidance on how to harmonize automotive sys-
tem engineering with safety and security engineering on the interaction between safety and security
teams/activities.

3.2.1.6.2 Safety of the Intended Functionality-SOTIF
ISO 26262 addresses possible hazards caused by malfunctioning behaviour of E/E safety-related
systems, including interaction of these systems. The ISO 26262 does not address the nominal per-
formance of E/E systems, but the development of safety-related automated functions needs rules,
which are outside of the direct scope of ISO 26262.
New automated functionalities are planned to be introduced in automotive vehicles and such kind
of systems rely on information data from the environment provided by different kind of sensor tech-
nologies. Such sensors could provide wrongly interpretable data of the environment that could lead
to safety violations, even by fault-free systems (e.g. wrong operation of a processing algorithm on
environment sensor inputs).
The ISO/TC22/SC32/WG8 was working on a standard under development called SOTIF, which was
finally released in January 2019 as ISO PAS 21448:2019 ”Road vehicles-Safety Of The Intended
Functionality“ [59], which provides guidance to avoid such kind of violations. It was published as a
Publicly Available Specifications (PAS), because, while there was the need for increased guidance, it
was also the acknowledged that there is not yet a sufficient state of the art to prescribe requirements.

3.2.1.6.3 Automotive Cybersecurity
Since security is not included on the ISO 26262 standard, ongoing work to extend ISO 26262 to
include cybersecurity is been developed, resulting in a new standard for cybersecurity/information
security called ISO/SAE 21434 ”Road Vehicles - Cybersecurity engineering” [61]. The designation
indicates that the ISO/SAE 21434 standard should be jointly developed by an ISO and SAE working
group and then released by both organizations. The ISO/SAE 21434 standard reached the status of
Committee Draft in September 2018 and its publication is scheduled for November 2020.
The ISO/SAE 21434 standard is focused on a common terminology and some key aspects of cy-
bersecurity. It aims to help companies demonstrate responsible and careful handling of vehicle de-
velopment and threat prevention. The activities are controlled on the basis of risk assessment, for
this purpose measures for the organizational anchoring are demanded. Although processes are re-
quired, the standard only describes the task of a process, leaving the design process to the users.
No specific technology or solution is proposed, and no special status has been given to the highly
automated vehicles.
Meanwhile, the J3061 ”Cybersecurity guidebook for cyber-physical vehicle systems” [103], was pub-
lished in January 2016 by the Society of Automotive Engineers (SAE). It is an anticipated standard
to fill this gap in security engineering of modern vehicles and provides high-level guidance and infor-
mation on best practice tools and methods related to cybersecurity in the automotive domain, which
can be adapted to existing development processes in an organization.

SPARTA D5.1 Public Page 115 of 154

D5.1 - Assessment specifications and roadmap

The J3061 guide builds on many existing works on security engineering and secure system devel-
opment methodologies and has a wide relation to the ISO 26262, that is why the security lifecycle
defined in J3061 is strongly influenced by the safety lifecycle defined in ISO 26262. Moreover, inter-
action points between the security and safety process are explicitly defined in J3061 to coordinate the
two engineering processes. The system lifecycle of the J3061 is divided into concept phase, product
development (including system, hardware, and software), production, operation, and service. It also
suggests supporting processes such as requirement, change, and quality management.

3.2.2 Task Roadmap

The Task 5.2 is developing and applying the techniques described above in the Connected Car verti-
cal described in Section 2.1. We are also following the steps of the V-model development process as
described in Section 3.1.1.1.
Figure 52 depicts the roadmap of activities that we will take. At the moment of writing this deliver-
able, we have finished the description of the Car Cybersecurity scenario, including the investigation
of possible demonstrators. We are currently carrying out the activities to safety and security anal-
ysis. This should finish by February 2020. These analyses will lead to requirements, that can be
refined by applying safety and security co-analyses techniques, such as trade-off and security/safety
by design techniques. The final set of requirements shall be completed by April 2020. Selected
features/requirements will be modelled and implemented using the Model-Based Engineering ap-
proaches described above that shall end by July 2020. Verification and validation techniques will be
applied on the models developed ending at October 2020. Update techniques will be investigated
until December 2020 and Assessment until January 2021.
Finally, the task T5.2 ends by contributing to the deliverables 5.2 and 5.3.

Car Cybersecurity
Description

Safety Analysis

Security Analysis

Trade-Off Analysis

Requirements Engineering

Security/Safety by Design

Verification and Validation

Update

Assessment

11.2019

Modelling and
Implementation

04.202002.2020 07.2020 10.2020 12.2020 01.2021

Deliverables 5.2/5.3

Figure 52: Roadmap for Task 5.2 activities.

Differences to the Proposal Descriptions: The Roadmap above includes a wider range of con-
cerns than the task description in the proposal. For example, the proposal did not consider important
points, such as modelling and implementation, co-verification and validation and updates. The jus-

SPARTA D5.1 Public Page 116 of 154

D5.1 - Assessment specifications and roadmap

tification of the roadmap above is that it follows the V-development model, considering additionally
updates. We believe that including the additional activities will have a great impact on the connected
car vertical and help validate the developed methods.
In order to carry out these activities, we will use the tools described in Table 44.

SPARTA D5.1 Public Page 117 of 154

D5.1 - Assessment specifications and roadmap

Name Description Phase

KAOS/objectiver

Requirements modelling tool that we use to
model security and safety goals, and their inter-
action, identify threats and select countermea-
sures.

Safety Analysis, Secu-
rity Analysis, Trade-off
Analysis, Require-
ments Engineering,
Safety and Security by
Design

EVITA
Threat Assessment Risk Analysis using attack
probability, severity level and safety impact pa-
rameters.

Security Analysis,
Requirements Engi-
neering

AutoFOCUS
(3.1.16)

Model-Driven Tool for Embedded Systems. It
supports a number of features, including secu-
rity aspects, e.g., Attack Defense Trees, and
safety, e.g., Goal Structured Notation, Formal
Verification.

All phases

Maude

Using Model-Checking and SMTs to reason
about the security of systems, in particular,
to determine whether cyber-attacks can cause
catastrophic events

Verification and Valida-
tion

SysML-
Sec/TTool

SysML-base method to design safe and se-
cure embedded systems, starting from require-
ments, then system analysis (e.g. fault and
attack trees), then HW/SW system partition-
ing, then software design and finally executable
code generation.

All phases

Sabotage
(3.1.12)

Model-driven and simulation-based fault injec-
tion tool to accomplish an early evaluation de-
pendability evaluation of safety-critical systems.
The framework sets up, configures, executes
and analyses the simulation results. It includes
a fault model library and it is possible to connect
to virtual environments such as a virtual vehicle
or a robot.

Safety Analysis, Verifi-
cation and Validation

OpenCert
(3.1.11)

PolarSys OpenCert is an integrated and
holistic solution for safety-security assur-
ance/certification management of Cyber-
Physical Systems (CPS) spanning the largest
safety and security-critical industrial markets,
such as aerospace, space, railway, manufac-
turing, energy and health.

Safety Analysis, Trade-
Off Analysis, Assess-
ment

VIS SENSE
Visual Analytics Representation of Large
Datasets for Enhancing Network Security

Validation and Verifica-
tion

VALCRI
Visual Analytics for Sense-Making in Criminal
Intelligence Analysis

Security Analysis

VASA Visual Analytics for Security Applications
Security Analysis, Veri-
fication and Validation

Table 44: List of Tools to be used by Task 5.2 and respective phase of the roadmap.

SPARTA D5.1 Public Page 118 of 154

D5.1 - Assessment specifications and roadmap

3.3 T5.3 - Risk Discovery, Assessment and Management for Complex Systems of
Systems

At high-level, software security requirements reflect security objectives, whereby some of those ob-
jectives are specific to a given vertical, industry or use-case, while others are largely independent of
such. One example of a generic, high-level requirement is that the program code of software products
and services shall be free from security vulnerabilities, both the code developed by the given vendor
(own code) as well as 3rd party code reused by the product or service in question (3rd party code).
This generic requirement is described in comparable ways in industry-specific standards, sometimes
in conjunction with recommended controls. For instance, the security standards of the Payment Card
Industry (PCI) enumerate ”technical and operational requirements [...] to protect cardholder data
[and which apply] to all entities that store, process or transmit cardholder data – with requirements
for software developers and manufacturers of applications and devices used in those transactions.”
In this context, requirement 6 of the PCI Data Security Standard (DSS) v3.2.1 [91] demands to
”Establish a process to identify security vulnerabilities”, and to ”protect all system components and
software from known vulnerabilities by installing applicable vendor-supplied security patches”.
The scope of CAPE task 5.3 is to address this generic security requirement in the light of current
software engineering methodologies and technologies. Those trends include, in particular, the ever-
increasing use of open source platforms and components through the development life cycle, both
heavy-weight application platforms developed by industry consortia as well as libraries and snippets
developed as one man show. Another trend is the increasing agility of software development, which
results in very short development cycles, as well as semi-automated and automated deployments
into production environments, e.g., cloud platforms, through CI/CD pipelines.
The goal of CAPE task 5.3 is to develop a set of tools that can be used by software development
organizations to comply with the above-mentioned high-level requirements (a) to keep own source
code free of security vulnerabilities, and (b) to detect the presence of known security vulnerabilities
in 3rd party software, especially open source components, which is commonly mitigated by the inte-
gration of vendor-supplied patches in the software application at hand. Moreover, the task aims at (c)
addressing so-called supply chain attacks, in particular ones where attackers try to inject malicious
code into upstream open source components.

3.3.1 Context and Background

Figure 53 provides a high-level overview about common systems, actors and activities of a typical
development environment. With the exception of contributors, all of those elements exist in compara-
ble form both for commercial as well as for open source development projects, no matter the industry
or vertical.

Figure 53: High-level development, build and distribution activities in software projects.

SPARTA D5.1 Public Page 119 of 154

D5.1 - Assessment specifications and roadmap

Figure 54: Example Dependency Tree

In this context, Maintainers are members of a development project who administer the depicted sys-
tems, provide, review and approve contributions, or define and trigger build processes. Open source
projects also receive code contributions from contributors, which may be reviewed and merged into
the project’s codebase by maintainers.
The build process ingests the source code and other resources of a project, and has the goal to pro-
duce software artifacts. These artifacts are subsequently published such that they become available
to end-users and other development projects.
The project resources reside in a VCS, e.g. Git, and are copied to the local file system of the build
system. Among those resources is a declaration of direct dependencies, which is analyzed at the start
of the build process by a dependency manager in order to establish the complete dependency tree
with all direct and transitive dependencies. As all of them are required during the build, for instance,
at compile time or during test execution, they are downloaded (pulled) from package repositories
such as PyPI20 for Python, npm21 for Node.js, or Maven Central22 for Java.
Obviously, the number of open source components pulled in this manner into a development project
depends on the application at hand. However, it is not uncommon for a commercial application
to depend on dozens or even hundreds of open source components, whereby some programming
languages and their respective ecosystems tend to pull in more and smaller components than others.
Accordingly, a significant share of the overall code base stems from open source projects, up to 80%
of typical commercial software applications.
Figure 54 presents a simple supply chain or dependency tree of an imaginary application. Here, the
application a has three direct dependencies on the software components t1, c1 and b1. Those com-
ponents are downloaded in some automated fashion by package managers during the development
of application a, and executed at different times according to the respective dependency scope. All
of those components are developed, built and distributed according to the illustration of Figure 53.
The component c1-c1 is a transitive dependency of a, as it is needed by a’s direct dependency c1.
At the end of a successful build, program code and other resources are assembled into one or more
build artifacts (packages), which are potentially signed and eventually published. Either to distribution
platforms like app stores such that they may be consumed by end-users or to package repositories
for other development projects.

3.3.2 Controls Specification

As mentioned before, the contributions of task 5.3 aim at the detection and mitigation of security
vulnerabilities in own and 3rd party code, as well as the detection of so-called supply chain attacks.
The majority of contributions correspond to tools, many of which target specific technologies, e.g.,

20https://pypi.org
21https://www.npmjs.com
22https://search.maven.org/

SPARTA D5.1 Public Page 120 of 154

https://pypi.org
https://www.npmjs.com
https://search.maven.org/

D5.1 - Assessment specifications and roadmap

programming languages, devices or operating systems. Thus, a given software development orga-
nization will need to select those tools that match its respective set of technologies. Typically, the
integration of those tools happens in the context of an application’s build process, which calls one
tool after another, and publishes their results in management dashboards.
The tools of this toolbox can be applied to all elements of a supply chain as the one depicted in
Figure 54. In the ideal case, this is done by the respective project maintainers, and initiatives like
the CII Badge Program 23 reflect the presence of such controls in the maturity rating of open source
projects. However, vendors of commercial software products or services cannot assume that all
maintainers of all their dependencies are security-aware and follow security best-practices, thus,
they need to perform tool-supported security scans by themselves. This can happen in the context
of a single application project, e.g., during its respective build process, or by scanning entire code or
package repositories.
Moreover, the tools differ in respect to the assessment target. Some focus on source code, e.g., code
fragments or entire programs as maintained in VCS, while others consider the binary package that is
produced towards the end of a build process.

3.3.2.1 Known and Unknown Vulnerabilities

A common classification of tools supporting the detection of security bugs or vulnerabilities distin-
guishes between static approaches - static code analysis or static application security testing (SAST)
- and dynamic approaches - dynamic application security testing (DAST). Static approaches analyze
source or compiled versions of code and do not require the actual execution of the software in ques-
tion, whereas dynamic approaches have in common to observe actual program execution. Over the
course of the last decades, numerous techniques have been developed for both approaches, with dif-
ferent degrees of automation and covering techniques as diverse as formal (mathematical) methods
(as an example for SAST) or fuzzing (DAST).
The quality of dynamic approaches generally depends on the test coverage, thus, the share of the
program code actually executed by, for instance, penetration testers or automated test cases. Dy-
namic approaches are therefore prone to false-negatives, i.e., actual problems that remain unde-
tected. While static approaches can consider the whole program code, they generally suffer from
false-positive, i.e., wrongly reported findings, due to the fact that corresponding techniques create
abstract and simplified representations of software code.
The following contributions of task 5.3 fall into the category of static code analyzers:
First, CEA further extends the open source platform Frama-C (cf. Section 3.1.3), a static analyzer
able to verify that source code complies with a formal specification written in a dedicated language,
ACSL. The focus of those contributions will be on the integration of Frama-C into automated build
pipelines as well as the support of security audits.
Second, SAP continues to work on the open source tool Steady (cf. Section 3.1.9), which aims at
detecting the presence of known vulnerabilities in application dependencies. This class of vulnera-
bilities is among the OWASP Top-10 application security risks [89], and has been the root causes for
numerous data breaches. The focus of the contributions will be on developments to improve precision
as well as to facilitate tool operation and exchange of vulnerability information.
Third, both UNILU and SAP work on AI-based classification of source code commits with the inten-
tion to understand whether a given commit introduces or fixes a security problem (cf. Section 3.1.15).
This information can be used, for instance, to down vote pull requests created by project contrib-
utors or maintainers, or to populate code-centric vulnerability databases such as the one required
by Steady [95]. Of course, those works can be applied to source code changes of both a given
application and its upstream dependencies.
Approver, on the other hand, employs both static and dynamic techniques in order to find security
vulnerabilities in Android applications. CINI will further extend Approver in the context of SPARTA (cf.

23https://www.coreinfrastructure.org/programs/badge-program/

SPARTA D5.1 Public Page 121 of 154

https://www.coreinfrastructure.org/programs/badge-program/

D5.1 - Assessment specifications and roadmap

Section 3.1.4), with a focus on the integration into automated build pipelines.
Last, UKON will implement a tool that integrates and visualizes security and supply chain information,
and which allows for manual analysis and exploration (cf. Section 3.1.13).

3.3.2.2 Supply Chain Attacks

In general, software supply chain attacks aim to inject malicious code into a software product. Fre-
quently, attackers tamper with the end product of a given vendor such that it carries a valid digital
signature, as it is signed by the respective vendor, and may be obtained by end-users through trusted
distribution channels, e.g., download or update sites.
A prominent example of such supply chain attacks is NotPetya, a ransomware concealed in a mali-
cious update of a popular Ukrainian accounting software [22]. In 2017, NotPetya targeted Ukrainian
companies but also hit global corporations, caused damage worth billions of dollars and is said to be
one of the most devastating cyberattacks known today [78]. In the same year, a malicious version of
CCleaner, a popular maintenance tool for Microsoft Windows systems, was downloadable from the
vendor’s official website, and remained undetected for more than a month. During this period it was
downloaded around 2.3 million times [70].
Another flavor of supply chain attacks aims at injecting the malicious code into a dependency of
a software vendor’s product. This attack vector was already predicted by Elias Levy in 2003 [75],
and recent years saw a number of real-world attacks following that scheme. Such attacks become
possible, because modern software projects commonly depend on multiple open source packages,
which themselves introduce numerous transitive dependencies [19]. Such attacks abuse the devel-
opers’ trust in the authenticity and integrity of packages hosted on commonly used servers and their
adoption of automated build systems that encourage this practice [18].
A single open source package may be required by several thousands of open source software
projects [64, 125], which makes open source packages a very attractive target for software sup-
ply chain attacks. A recent attack on the npm package event-stream demonstrates the potential
reach of such attacks: The alleged attacker was granted ownership of a prominent npm package
simply by asking the original developer to take over its maintenance. At that time, event-stream
was used by another 1,600 packages, and was in average downloaded 1.5 million times a week [54].
Open source software supply chain attacks are comparable to the problem of vulnerable open source
packages which may pass their vulnerability to dependent software projects. This is known as one
of the OWASP Top-10 application security risks [89]. However, in case of supply chain attacks,
malicious code is deliberately injected and attackers employ obfuscation and evasion techniques to
avoid detection by humans or program analysis tools.
Project environments as visualized in 53 are subject to numerous trust boundaries, and many threats
target the respective data flows, data stores and processes. Managing those threats may be chal-
lenging even when considering only the environment of a single software project. When considering
supply chains with dozens or hundreds of dependencies, it is important to notice that such an en-
vironment exist for every single dependency, making it obvious that the combined attack surface of
such projects is considerably larger than that of software entirely developed in-house.
Taking the perspective of attackers, malevolent actors have the intention to compromise the security
of the build or runtime environment of software projects through the infection of one or more upstream
open source packages, each one of which is developed in environments comparable to 53. How to
reach this goal is described in the following sections by means of two attack trees that provide a struc-
tured overview about attack paths to inject a malicious code into dependency trees of downstream
users and to trigger its execution at different times or under different conditions.
The attack tree illustrated by 55 is an extension and refinement of the graph presented by Pfret-
zschner and Othmane [92], and has as top-level goal to inject malicious code into the dependency
tree of downstream packages. Thus, the goal is satisfied once a package with malicious code is
available on a distribution platform, e.g. package repository, and it became a direct or transitive de-

SPARTA D5.1 Public Page 122 of 154

D5.1 - Assessment specifications and roadmap

Figure 55: Attack Tree for Open Source Supply Chain Attacks

pendency of one or more other packages. As such, this type of code injection differs from other
injection attacks, many of which exploit security vulnerabilities at application runtime, e.g. buffer
overflow attacks that become possible due to a lack of user input sanitation.
To inject a package into dependency trees an attacker may follow two possible strategies, he may
either infect an existing package or submit a new package.
Obviously, developing and publishing a new rogue package using a name that is not used by anybody
else avoids interference with other legitimate project maintainers. However, such a package has to
be discovered and referenced by downstream users in order to end up in the dependency trees of
victim packages. This may be achieved using a name similar to existing package names (typosquat-
ting) [115], or by developing and promoting a trojan horse. An attacker might also use the opportunity
to reuse the identifier of an existing project, package, or user account withdrawn by its original and
legitimate maintainer (use after free).
Another possibility is to infect an existing package that already has users, contributors and maintain-
ers. The attacker might choose packages for different reasons, e.g. a significant number or specific
group of downstream users. Once the attacker choose a package to infect, the malicious code may
be injected into the sources, during the build, or into the package repository.
In the context of such supply chain attacks, SPARTA partners will provide a number of countermea-
sures, each one addressing particular attacks and/or technologies.
First, given a package, downloaded from a distribution platform such as a website or package repos-
itory, SAP will provide a tool to identify (and assess) code of the package that is not present in the
respective version control system (cf. Section 3.1.10). As such, the tool addresses attacks aiming
to inject code during build time or into the package repository. Obviously, this approach is limited
to programming languages and systems where executable code exists in identical form both in the
source code repository and the distributed artifact. Most notably, this is not the case for compiled
languages such as C/C++. It remains to be clarified whether the approach can be adapted to sup-
port interpreted languages whose code is minimized, generated, transpiled or otherwise transformed
when being included in a distributed artifact.
Second, UNILU will provide a tool to detect logic bombs in Android applications by leveraging static
analysis methods (cf. Section 3.1.14). It addresses malicious code per se, no matter whether it has
been introduced through malicious dependencies or in the application code itself.
Third, UBO will provide a sandbox environment to monitor the behavioral changes of build processes
over time, e.g., from one commit or tag to another (cf. Section 3.1.17). It can be used by developers
when building their application in order to see whether any of their dependencies, as downloaded

SPARTA D5.1 Public Page 123 of 154

D5.1 - Assessment specifications and roadmap

from package repositories, perform suspicious activities at installation time or during the execution of
tests. And it can also be used to spot such behavioral changes when dependencies are built from
scratch, e.g., to overcome the use of 3rd party package repositories altogether.

3.3.3 Task Roadmap

As mentioned before, the contributions of task 5.3 are largely independent of a given vertical, but
address generic requirements. Nevertheless, where possible according to the technologies used,
the task 5.3 tools will be presented and demonstrated in the context of the connected cars vertical
(cf. Section 2.1) and the e-government vertical (cf. Section 2.2). Where this is not possible, due
to technology constraints, task 5.3 tools will be demonstrated outside of the context of a specific
use-case.
Moreover, since those contributions target different technology stacks, the corresponding tools will not
interface one another. The “integration” of multiple tools happens by means of an automated build
pipeline, which invokes a subset of the tools according to the technology stack of the assessment
target.
A rough development roadmap considering the deadlines of WP5 deliverables D5.2, D5.3 and D5.4
is as follows:
• January 2021 (M23): Early prototypes are available and described, the latter of which will be

included in D5.3. For each tool, a demo specification for the respective scenario exists and can
be included in D5.2 (cf. Table 45).
• January 2022 (M35): Final prototypes have been evaluated in the respective demonstration

scenarios, its summary is ready to be included in D5.4.
Depending on the respective demo scenario of each tool, the individual contributions may need
further alignment with the roadmaps of the respective vertical (cf. Figure 52), or have their own,
independent roadmap where the demonstration happens outside the context of a vertical. To that
end, the following table provides and overview about all task 5.3 tools and the current status with
regard to their demonstration in different verticals and contexts.

Partner Contribution Section Technologies Covered Use-case

UBO Build Sandbox 3.1.17 Agnostic Connected cars

CEA Frama-C 3.1.3 C Connected cars

CINI Approver 3.1.4 Java (Android) E-government

SAP Steady 3.1.9 Java, Python E-government

SAP Package Scanner 3.1.3 Python Stand-alone

UNILU Logic Bomb Detector 3.1.14 Java (Android) E-government

UNILU Commit classifier 3.1.15 C/C++ Connected cars

UKON Supply chain visualization 3.1.13 Agnostic To be discussed

Table 45: Overview about tools extended/developed in the context of task 5.3

SPARTA D5.1 Public Page 124 of 154

D5.1 - Assessment specifications and roadmap

3.4 T5.4 - Integration on Demonstration Cases and Validation

3.4.1 Definition of Certification Requirements Derived from Assessment Procedures and
Tools

One of the objectives of task 5.4 is to identify the various phases of the process that allows a po-
tential evaluation facility belonging to a generic certification scheme to demonstrate the evaluabil-
ity/certifiability of a product/system/process which for convenience will be identified as ”Target of
Evaluation” (ToE) below. In proposing this potential process, of course, the following improvement
elements, related to currently existing processes, must be taken into account:

1. developing more agile assessment and certification frameworks
2. automation, supporting developers in writing requirements and executing tests
3. assessing systems of systems, beyond individual components, and modularizing assessment

to enable assessment of complex systems and services
4. lifetime dynamicity of environments who may have long lifespans
5. execution elasticity, particularly for services

The phases identified for the process are those defined in the following diagram and are detailed in
D5.4 (Demonstrators evaluation).

Figure 56: Evaluability process phases

Task 5.1 aims to provide a set of tools/processes that support the developers of a generic ToE in order
to be able to generate elements that are already intrinsically secure and that allow them to be securely
maintained throughout the life cycle of the same. For this purpose, the validity of the tools/processes
identified in terms of security must be demonstrated in this deliverable. Once approved, this set can
be used, in the various national or international certification schemes, to simplify the evaluation pro-
cess of a generic ToE. Therefore the description of these processes/tools must adequately delineate
which are the security features that their use allows to introduce in one or more phases of the evalu-
ation/certification process indicated above. On the basis of the indications present in this deliverable,
the various certification bodies and the evaluation laboratories will be able to lighten the activities that
will be carried out in the various phases of the certification process of a generic ToE. Based on these
inputs, the evaluation laboratories in collaboration with the certification bodies will be able to validate

SPARTA D5.1 Public Page 125 of 154

D5.1 - Assessment specifications and roadmap

the correctness of the choices made on the three proposed scenarios, thus highlighting the value of
this approach in the certification activity.

3.4.2 Task Roadmap

Even if the task 5.4 is not yet started (it will start M18 and finish M36) it is important for the collabo-
ration with other WP5 tasks during their evolution.
In fact they will provide all the necessary requirement that will allow a potential evaluation facility
belonging to a generic certification scheme to demonstrate the evaluability/certifiability of the verticals
defined in the SPARTA project.
In particular the output of the task 5.1 will define the phases of the V-model process (fig. 22), adopted
in this project, where task 5.1 identified tools that are used.
The mapping of these tools will be recognized/approved by accreditation authorities, and could be
considered in a hypothetical evaluation scheme to simplify evaluation/certification activities.
In particular the adoption of certain tools in certain phases and their application with a defined process
could avoid part of the usual activity of evaluators and reduce time for the whole evaluation process
execution.
An approximate task 5.4 development roadmap can be defined by the following list:

1. November 2020 M21: for each phase indicated in figure 56, evidences/deliverables to be pro-
vided to the Evaluators to verify the evaluability of the verticals at all stages of the process will
be defined in collaboration with the managers of the vertical

2. March 2021 M25: for each vertical, the respective manager will provide all the material available
that is necessary to the evaluators for the checks that the evaluation team will carry out to define
verticals evaluability

3. January 2022 M35: for each vertical, on the basis of the material received, the evaluability of the
prototypes proposed for the two verticals will be verified. Regarding elements not covered by
the material delivered, the missing deliverables, necessary in the various stages of the process
in order to reach the assessment of the individual vertical, will be defined by the Evaluators.

SPARTA D5.1 Public Page 126 of 154

D5.1 - Assessment specifications and roadmap

Chapter 4 Roadmap

In this chapter, the goals and objectives of the various WP5 tasks will be summarized, related activi-
ties detailed and a planning in line with the D5.2, D5.3 and D5.4 deliverables will be established.

4.1 Goals and Objectives

The goal of Task 5.1 is to improve the automation of the (self-)assessment process by providing
tools and methods to the assessment activities developed in T5.2 and T5.3. The objectives of the
task are to propose a framework for automated cybersecurity assessment through integration of
various partners’ (and external) tools developed or extended in the CAPE program. The tools use
cases identified in this deliverable will enable their integration into the CAPE framework and will be
developed in the following activities:

• M12-M15: detailed design of the various tools based on the identified uses cases
• M14-M18: implementation of a first prototype version of the tools
• M14-M23: verification and validation of implementation with regard to the framework tools

software requirements (unit, integration, system, ... testing)
• M16-M23: integration of the tools to obtain first prototype versions.

The timeline for the final prototypes of the tools will follow a similar development cycle, with a focus
on integration in the verticals demonstrations:

• M25-M26: refined design of the final prototypes
• M27-M28: implementation of the final prototype version of the tools
• M25-M35: verification and validation of the updated prototypes
• M29-M35: integration and evaluation of the framework tools on the demonstration scenarios

Task 5.2 goal is to study, develop and apply the techniques and specifications for integration of
security and safety in the Connected Car vertical. The following activities are foreseen:

• M9-M12: safety and security analysis will produce requirements
• M10-M14: safety and security co-analyses: trade-off analysis, requirements engineering,

security/safety by design to refine the requirements
• M13-M17: modelling and implementation of selected features and requirements
• M13-M20: verification and validation of the models
• M16-M22: updates
• M17-M23: assessment

Task 5.3 goal is to address security requirements on complex systems of systems using modern
software engineering methods. The objectives of T5.3 are three fold: detection/mitigation of security
vulnerabilities in both own and 3rd party code, and detection of supply chain attacks:

• Known and unknown vulnerabilities using SAST and DAST tools: Frama-C, Steady, UniLu
VA2, Approver and UKON Supply chain visualization tool
• Supply chain attacks with the help of SAP Package Scanner, logic bomb detection (UniLu)

inside a sandbox environment (UBO)

The goal of Task 5.4 is to demonstrate the validity of the tools/processes described in T5.1, T5.2 and
T5.3 in the CAPE verticals. Those requirement will allow a potential evaluation facility belonging to a
generic certification scheme to demonstrate the evaluability/certifiability of the verticals. The following
activities are foreseen:

SPARTA D5.1 Public Page 127 of 154

D5.1 - Assessment specifications and roadmap

• Prototypes evaluability definition - M18-M21 - for each phase of the evaluability process
(requirements definition, security by design, tests definition, ...), evidences/deliverables will be
produced
• Prototypes evaluability materials production - M22-M25: for each vertical, materials neces-

sary to define verticals evaluability will be produced
• Prototypes evaluability verification - M26-M35: on the basis of the material received, the

evaluability of the prototypes proposed for the two verticals will be verified

4.2 Responsibilities

The work that will be performed in the next steps of the WP5 can be regrouped by demonstration
case studies in the verticals:

• vertical 1 - CCCC - TEC, UBO, FTS, IMT, CEA, UNILU
– Demo 1.1 - Tecnalia Case Study
– Demo 1.2 - fortiss Case Study
– Demo 1.3 - IMT Case Study

• vertical 2 - eGovernment - CINI, SAP, UNILU
– Demo 2.1 - CINI Desktop Scenario
– Demo 2.2 - CINI Mobile Scenario

• Misc
– Misc Demo - SAP, CETIC, UKON

4.3 Timeline

The roadmap for the CAPE program is based on the demonstration use cases for the CCCC and e-
governement verticals as well as the various independent use-cases, and is realised in a timeframe
aligned with the next deliverables:

• D5.2 Demonstrators specifications, M24, TEC: This deliverable provides the specifications of
the demonstrators coming out of T5.4. They include contributions on integration mechanisms
coming out of the three other tasks.
• D5.3 Demonstrator prototypes, M24, CNIT: This deliverable provides prototypes coming out

of T5.4. They include contributions on integration mechanisms coming out of the three other
tasks.
• D5.4 Demonstrators evaluation, M36, LEO: This deliverable provides the demonstration of the

three verticals described in T5.4. It is supported by an evaluation document.

The following figure presents a timeline of the various activities that will be performed in CAPE next
steps.

SPARTA D5.1 Public Page 128 of 154

D5.1 - Assessment specifications and roadmap

Fi
gu

re
57

:C
A

P
E

ta
sk

ro
ad

m
ap

pl
an

ni
ng

SPARTA D5.1 Public Page 129 of 154

D5.1 - Assessment specifications and roadmap

Chapter 5 Summary and Conclusion

This deliverable contains two key contributions for the CAPE program.
The first contribution is a clear description of our use cases, associated with the challenges that we
wish to address. This description will be carried on further for the following CAPE deliverables, with
the expectation that we will demonstrate most of our tools on one of these two use cases. As justified
early on, the third use case (financial platform) was deemed redundant with the other two, which are
sufficient to demonstrate tools. Focusing our activities enable a more efficient contribution towards
these final demonstrations.
The second contribution is the generic assessment framework, extending the well-known V-Model so
that we can clearly and easily position our tools in classic software development. This is extremely
important for the acceptance of our tools, as well as for ensuring that we are not leaving empty areas
without tooling. The expected coverage will be further demonstrated towards the end of the program.
The assessment tools described in the V-Model assessment framework were developed indepen-
dently and were not designed to work as an integrated assessment environment. The deliverable
proposes a loosely coupled integration of the tools in the form of continuous integration to make the
tools available for the automotive and e-government verticals. The approach will be validated with
the verticals during the second year of the program. The framework is designed to facilitate self- and
continuous assessment for end-users trough automation of the various assessment activities. It will
produce original assessment procedures, tools and methods such as simulation-based fault injection,
formal verification, software verification, penetration testing, security analysis, etc. On the connected
cars vertical for instance, early dependability of the system will be assessed using simulation-based
fault injection techniques and behavioral models, security/safety by design will be ensured through
model driven approaches (for example using Attack Defense Trees). On the e-Government verti-
cal, static and dynamic analysis methods will be demonstrated for vulnerability detection (through
dependency analysis and logic bomb detection) in Android applications.
The deliverable concludes by presenting roadmaps for the second and third years of the research
program. Roadmaps are given for each of the tasks, detailing objectives, activities and expected
results that will be reported in D5.2, D5.3 and D5.4.

SPARTA D5.1 Public Page 130 of 154

D5.1 - Assessment specifications and roadmap

Chapter 6 List of Abbreviations

Abbreviation Translation

ACC Adaptive Cruise Control

ADAS Advanced Driver-Assistance System

ASIL Automotive Safety Integrity Level

CACC Cooperative Adaptive Cruise Control

CI/CD Continuous Integration and Continuous Delivery

CCCC Connected & Cooperative Car Cybersecurity

CIE Italian Electronic Identity Card

CPS Cyber-physical system

CRC Cyclic Redundancy Check

DoS Denial of Service

DAST dynamic application security testing

DC Direct Current

DSS Data Security Standard

EAL Evaluation Assurance Level

ECU Engine Control Unit

eIDAS electronic IDentification Authentication and Signature

FI Fault Injection

FMVEA Failure Modes, Vulnerabilities and Effects Analysis

FTA Fault Tree Analysis

FTM Fault Tolerance Mechanisms

GSN Goal Structuring Notation

HARA Hazard Analysis and Risk Assessment

HW Hardware

IACS Industrial Automation and Control Systems

IdP Identity Provider

IPZS Istituto Poligrafico e Zecca dello Stato

ISMS Information Security Management System

ISO International Organization for Standardization

LAN Local Area Network

MiM Man in the Middle

SPARTA D5.1 Public Page 131 of 154

D5.1 - Assessment specifications and roadmap

Abbreviation Translation

NFC Near Field Communication

NFV Network Function Virtualisation

PAS Publicly Available Specifications

ROS Robot Operating System

SAE Society of Automotive Engineering

SARIF Static Analysis Results Interchange Format

SAST static application security testing

SFC Service Function Chaining

SP Service Provider

SSO Single Sign-On

SW Software

TARA Threat Analysis and Risk Assessment

TOSCA OASIS Topology and Orchestration Specification for Cloud Applications

VM virtual machine

VCS version control system

WLAN Wireless Local Area Network

SPARTA D5.1 Public Page 132 of 154

D5.1 - Assessment specifications and roadmap

Chapter 7 Bibliography

[1] SysML-Sec. More information at https://sysml-sec.telecom-paris.fr/.
[2] AF3 – AutoFOCUS 3. More information at https://af3.fortiss.org/.
[3] Standard ARP 4761: Guidelines and methods for conducting the safety assessment. Available

from https://www.sae.org/standards/content/arp4761/.
[4] GSN Community Standard Version 1. 2011. Available at http://

www.goalstructuringnotation.info/documents/GSN Standard.pdf.
[5] Hackers remotely kill a Jeep on the highway—with me in it, 2015. Available at https://

www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/.
[6] Ccmb-2017-04-002 - common criteria for information technology security evaluation, part 2 -

security functional components. Technical report, April 2017.
[7] Ccmb-2017-04-003 - common criteria for information technology security evaluation, part 3 -

security assurance components. Technical report, April 2017.
[8] A deep flaw in your car lets hackers shut dowm safety features, 2018. Available at https:

//www.wired.com/story/car-hack-shut-down-safety-features/.
[9] Protection profile - automotive-thin specific tpm - tcg tpm 2.0 automotive thin profile , family 2.0,

level 0, version 1.0. Technical report, December 2018.
[10] AMASS. AMASS D3.3 deliverable, pages 57-62, . https://www.amass-ecsel.eu/

sites/amass.drupal.pulsartecnalia.com/files/documents/D3.3 Design-of-
the-AMASS-tools-and-methods-for-architecture-driven-assurance-%28b%
29 AMASS Final.pdf.

[11] AMASS. AMASS Platform Developers’ Guide, . https://www.polarsys.org/
opencert/resources/documentation/AMASS-Platform-P2-Developers-
Guide 23112018.pdf.

[12] AMASS. AMASS Platform User Manual, . https://www.polarsys.org/opencert/
resources/documentation/AMASS-Platform-P2-User-Manual 23112018.pdf.

[13] AMASS. Project website, . URL https://amass-ecsel.eu/.
[14] ANSSI-SV. Anssi security visa website. URL https://www.ssi.gouv.fr/en/security-

visa/.
[15] ANSYS. Medini analyze. http://www.medini.eu, 2017.
[16] AQUAS. Project website. URL https://aquas-project.eu/.
[17] J. Arlat, A. Costes, Y. Crouzet, J. Laprie, and D. Powell. Fault injection and dependability

evaluation of fault-tolerant systems.
[18] J. West B. Chess, F. DeQuan Lee. Attacking the build through cross-build injection: How

your build process can open the gates to a trojan horse. https://www.fortify.com/
downloads2/public/fortify attacking the build.pdf, 2007. Accessed: 2019-03-
06.

[19] Grey Baker. Keep your dependencies secure and up-to-date with github and de-
pendabot. https://github.blog/2019-01-31-keep-your-dependencies-secure-
and-up-to-date-with-github-and-dependabot/, 2019. Accessed: 2019-10-08.

[20] BEACON. Project website. URL https://cordis.europa.eu/project/id/644048.
[21] Stefano Bistarelli, Fabio Fioravanti, and Pamela Peretti. Defense tree for economic evaluations

of security investment. In ARES 06, pages 416–423, 2006.
[22] Catalin Cimpanu. Petya ransomware outbreak originated in ukraine via tainted accounting soft-

ware. https://www.bleepingcomputer.com/news/security/petya-ransomware-
outbreak-originated-in-ukraine-via-tainted-accounting-software/, 2017.
Accessed: 2019-02-24.

SPARTA D5.1 Public Page 133 of 154

https://sysml-sec.telecom-paris.fr/
https://af3.fortiss.org/
https://www.sae.org/standards/content/arp4761/
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/story/car-hack-shut-down-safety-features/
https://www.wired.com/story/car-hack-shut-down-safety-features/
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf
https://www.polarsys.org/opencert/resources/documentation/AMASS-Platform-P2-Developers-Guide_23112018.pdf
https://www.polarsys.org/opencert/resources/documentation/AMASS-Platform-P2-Developers-Guide_23112018.pdf
https://www.polarsys.org/opencert/resources/documentation/AMASS-Platform-P2-Developers-Guide_23112018.pdf
https://www.polarsys.org/opencert/resources/documentation/AMASS-Platform-P2-User-Manual_23112018.pdf
https://www.polarsys.org/opencert/resources/documentation/AMASS-Platform-P2-User-Manual_23112018.pdf
https://amass-ecsel.eu/
https://www.ssi.gouv.fr/en/security-visa/
https://www.ssi.gouv.fr/en/security-visa/
https://aquas-project.eu/
https://www.fortify.com/downloads2/public/fortify_attacking_the_build.pdf
https://www.fortify.com/downloads2/public/fortify_attacking_the_build.pdf
https://github.blog/2019-01-31-keep-your-dependencies-secure-and-up-to-date-with-github-and-dependabot/
https://github.blog/2019-01-31-keep-your-dependencies-secure-and-up-to-date-with-github-and-dependabot/
https://cordis.europa.eu/project/id/644048
https://www.bleepingcomputer.com/news/security/petya-ransomware-outbreak-originated-in-ukraine-via-tainted-accounting-software/
https://www.bleepingcomputer.com/news/security/petya-ransomware-outbreak-originated-in-ukraine-via-tainted-accounting-software/

D5.1 - Assessment specifications and roadmap

[23] CIS-SC. Cis security controls 7.1. URL https://learn.cisecurity.org/cis-
controls-download.

[24] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José
Meseguer, and Carolyn Talcott. All About Maude: A High-Performance Logical Framework,
volume 4350 of LNCS. Springer, 2007.

[25] James S Collofello. Introduction to software verification and validation. Technical report,
CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, 1988.

[26] CommonCriteria. Project website portal. URL https://
www.commoncriteriaportal.org/.

[27] SEC Consult. Authentication bypass in eIDAS-node, 2019. Available at https://sec-
consult.com/en/blog/advisories/15587/.

[28] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe. A
comprehensive symbolic analysis of TLS 1.3. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017, pages 1773–1788. ACM, 2017. ISBN 978-1-4503-4946-8. doi: 10.1145/3133956.3134063.
URL https://doi.org/10.1145/3133956.3134063.

[29] CSA-CCM. Working group website. URL https://cloudsecurityalliance.org/
research/working-groups/cloud-controls-matrix.

[30] CyberEssentials. Crest cyber essentials overview. URL https://
www.cyberessentials.org/.

[31] Trey Darley and Ivan Kirillov. STIXTM Version 2.0. Part 3: Cyber Observable Core Concepts.
OASIS Open, committee specification 01 edition, 2017. https://oasis-open.github.io/
cti-documentation/resources.html.

[32] DECODER. Project website, 2019. URL https://cordis.europa.eu/project/id/
824231.

[33] A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping. The Annals
of Mathematical Statistics, 1967.

[34] Lian Duan, Sanjai Rayadurgam, Mats Heimdahl, Oleg Sokolsky, and Insup Lee. Representa-
tion of confidence in assurance cases using the beta distribution. 2016.

[35] Jürgen Dürrwang, Kristian Beckers, and Reiner Kriesten. A lightweight threat analysis ap-
proach intertwining safety and security for the automotive domain. In Stefano Tonetta, Erwin
Schoitsch, and Friedemann Bitsch, editors, SAFECOMP, volume 10488 of LNCS, pages 305–
319. Springer, 2017. ISBN 978-3-319-66265-7. doi: 10.1007/978-3-319-66266-4\ 20. URL
https://doi.org/10.1007/978-3-319-66266-4 20.

[36] M. Eby, J. Werner, G. Karsai, and A. Ledeczi. Integrating security modeling into embed-
ded system design. In 14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS’07), pages 221–228, March 2007. doi:
10.1109/ECBS.2007.45.

[37] ECSO-sota. Ecso state of the art syllabus overview of existing cybersecurity standards
and certification schemes v2. URL https://ecs-org.eu/documents/publications/
5a31129ea8e97.pdf.

[38] eITUS. Project website. URL https://robmosys.eu/e-itus/.
[39] Tamas Elteto and Sandor Molnar. On the distribution of round-trip delays in tcp/ip networks.

pages 172–181, 11 1999. ISBN 0-7695-0309-8. doi: 10.1109/LCN.1999.802014.
[40] Nils Engelbertz, Nurullah Erinola, David Herring, Juraj Somorovsky, Vladislav Mladenov, and

Jörg Schwenk. Security analysis of eidas – the cross-country authentication scheme in eu-
rope. In 12th USENIX Workshop on Offensive Technologies (WOOT 18), Baltimore, MD, Au-
gust 2018. USENIX Association. URL https://www.usenix.org/conference/woot18/
presentation/engelbertz.

SPARTA D5.1 Public Page 134 of 154

https://learn.cisecurity.org/cis-controls-download
https://learn.cisecurity.org/cis-controls-download
https://www.commoncriteriaportal.org/
https://www.commoncriteriaportal.org/
https://doi.org/10.1145/3133956.3134063
https://cloudsecurityalliance.org/research/working-groups/cloud-controls-matrix
https://cloudsecurityalliance.org/research/working-groups/cloud-controls-matrix
https://www.cyberessentials.org/
https://www.cyberessentials.org/
https://oasis-open.github.io/cti-documentation/resources.html
https://oasis-open.github.io/cti-documentation/resources.html
https://cordis.europa.eu/project/id/824231
https://cordis.europa.eu/project/id/824231
https://doi.org/10.1007/978-3-319-66266-4_20
https://ecs-org.eu/documents/publications/5a31129ea8e97.pdf
https://ecs-org.eu/documents/publications/5a31129ea8e97.pdf
https://robmosys.eu/e-itus/
https://www.usenix.org/conference/woot18/presentation/engelbertz
https://www.usenix.org/conference/woot18/presentation/engelbertz

D5.1 - Assessment specifications and roadmap

[41] ENISA. Enisa factsheet on eu framework for cybersecurity certification. URL http://
ec.europa.eu/newsroom/document.cfm?doc id=46999.

[42] EU-CSA. Press release - eu negotiators agree on strengthening europe’s cybersecurity. URL
https://ec.europa.eu/commission/presscorner/detail/en/IP 18 6759.

[43] EVITA. Project website. URL https://www.evita-project.org.
[44] Peter H. Feiler, Bruce A. Lewis, Steve Vestal, and Edward Colbert. An overview of the SAE ar-

chitecture analysis & design language (AADL) standard: A basis for model-based architecture-
driven embedded systems engineering. In IFIP-WADL, volume 176 of IFIP, pages 3–15.
Springer, 2004. ISBN 978-0-387-24589-8.

[45] FINCSC. Fincsc website. URL https://www.fincsc.fi/en/services/.
[46] Marcus S Fisher. Software verification and validation: an engineering and scientific approach.

Springer Science & Business Media, 2007.
[47] Stichting Cuckoo Foundation. Cuckoo Sandbox - Automated Malware Analysis. https://

cuckoosandbox.org, 2019. Accessed: 2019-11-29.
[48] Abdoulaye Gamatié, Sébastien Le Beux, Éric Piel, Rabie Ben Atitallah, Anne Etien, Philippe

Marquet, and Jean-Luc Dekeyser. A model-driven design framework for massively parallel
embedded systems. ACM Trans. Embedded Comput. Syst, 10(4):39, 2011.

[49] Benjamin Glas, Carsten Gebauer, Jochen Hänger, Andreas Heyl, Jürgen Klarmann, Stefan
Kriso, Priyamvadha Vembar, and Philipp Wörz. Automotive safety and security integration
challenges. In Herbert Klenk, Hubert B. Keller, Erhard Plödereder, and Peter Dencker, editors,
Automotive - Safety & Security 2014 (2015), Sicherheit und Zuverlässigkeit für automobile
Informationstechnik, Tagung, 21.-22.04.2015, Stuttgart, Germany, volume 240 of LNI, pages
13–28. GI, 2014. ISBN 978-3-88579-634-3. URL https://dl.gi.de/20.500.12116/2456.

[50] Edward Griffor, editor. Handbook of System Safety and Security. 2016. ISBN 9780128037737.
[51] Monowar Hasan, Sibin Mohan, Rodolfo Pellizzoni, and Rakesh B Bobba. A design-

space exploration for allocating security tasks in multicore real-time systems. arXiv preprint
arXiv:1711.04808, 2017.

[52] Ian i. Mason, Vivek Nigam, Carolyn L. Talcott, and Alisson Vasconcelos De Brito. A frame-
work for analyzing adaptive autonomous aerial vehicles. In Software Engineering and Formal
Methods - SEFM 2017 Collocated Workshops: DataMod, FAACS, MSE, CoSim-CPS, and FO-
CLASA, Trento, Italy, September 4-5, 2017, Revised Selected Papers, pages 406–422, 2017.
doi: 10.1007/978-3-319-74781-1 28. URL https://doi.org/10.1007/978-3-319-74781-
1 28.

[53] IEC62443. Iec 62443-4-1:2018 - security for industrial automation and control systems - part
4-1: Secure product development lifecycle requirements. URL https://webstore.iec.ch/
publication/33615.

[54] Th. Hunter II. Compromised npm package: event-stream. https://medium.com/
intrinsic/compromised-npm-package-event-stream-d47d08605502, 2018. Ac-
cessed: 2019-03-06.

[55] IISF. Industrial internet security framework technical report. URL https://
www.iiconsortium.org/IISF.htm.

[56] INCSF. 2015 italian cyber security report a national cyber security framework, research cen-
ter of cyber intelligence and information security sapienza universita di roma, cini cyber se-
curity national laboratory national interuniversity consortium for informatics. URL https:
//www.cybersecurityframework.it/sites/default/files/CSR2015 ENG.pdf.

[57] ISKE. Three-level it baseline security system iske website. URL https://www.ria.ee/en/
cyber-security/it-baseline-security-system-iske.html.

[58] ISO21434. Iso/sae cd 21434 road vehicles - cybersecurity engineering website. URL https:
//www.iso.org/standard/70918.html.

SPARTA D5.1 Public Page 135 of 154

http://ec.europa.eu/newsroom/document.cfm?doc_id=46999
http://ec.europa.eu/newsroom/document.cfm?doc_id=46999
https://ec.europa.eu/commission/presscorner/detail/en/IP_18_6759
https://www.evita-project.org
https://www.fincsc.fi/en/services/
https://cuckoosandbox.org
https://cuckoosandbox.org
https://dl.gi.de/20.500.12116/2456
https://doi.org/10.1007/978-3-319-74781-1_28
https://doi.org/10.1007/978-3-319-74781-1_28
https://webstore.iec.ch/publication/33615
https://webstore.iec.ch/publication/33615
https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502
https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502
https://www.iiconsortium.org/IISF.htm
https://www.iiconsortium.org/IISF.htm
https://www.cybersecurityframework.it/sites/default/files/CSR2015_ENG.pdf
https://www.cybersecurityframework.it/sites/default/files/CSR2015_ENG.pdf
https://www.ria.ee/en/cyber-security/it-baseline-security-system-iske.html
https://www.ria.ee/en/cyber-security/it-baseline-security-system-iske.html
https://www.iso.org/standard/70918.html
https://www.iso.org/standard/70918.html

D5.1 - Assessment specifications and roadmap

[59] ISO21448. Iso/pas 21448:2019 - road vehicles — safety of the intended functionality. URL
https://www.iso.org/standard/70939.html.

[60] ISO26262. Iso 26262-1:2018 - funtional safety road vehicles. URL https://www.iso.org/
standard/68383.html.

[61] ISO27034. Iso/iec 27034-1:2011 - information technology - security techniques - application
security. URL https://www.iso.org/standard/44378.html.

[62] ISO27K. Project website. URL https://www.iso.org/isoiec-27001-information-
security.html.

[63] ITGrundschutz. Germany - federal office for information security website. URL https://
www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz node.html.

[64] Michał Janaszek. State of package.json dependencies. https://medium.com/warsawjs/
state-of-package-json-dependencies-de99828b6c3f, 2018. Accessed: 2019-10-
08.

[65] K. Jiang, P. Eles, and Z. Peng. Co-design techniques for distributed real-time embedded sys-
tems with communication security constraints. In 2012 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 947–952, March 2012. doi: 10.1109/DATE.2012.6176633.

[66] Audun Jøsang. A logic for uncertain probabilities. International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems, 2001.

[67] Tero Kangas, Petri Kukkala, Heikki Orsila, Erno Salminen, Marko Hännikäinen, Timo D.
Hämäläinen, Jouni Riihimäki, and Kimmo Kuusilinna. UML-based Multiprocessor SoC Design
Framework. ACM Trans. Embed. Comput. Syst., 5(2):281–320, May 2006. ISSN 1539-9087.
doi: 10.1145/1151074.1151077. URL http://doi.acm.org/10.1145/1151074.1151077.

[68] Daniel Keim. Mastering the information age: solving problems with visual analytics. 2010.
[69] Daniel Keim, Gennady Andrienko, Jean-Daniel Fekete, Carsten Görg, Jörn Kohlhammer, and

Guy Melançon. Visual analytics: Definition, process, and challenges. In Information visualiza-
tion, pages 154–175. Springer, 2008.

[70] Swati Khandelwal. Ccleaner attack timeline - here’s how hackers infected 2.3 million pcs.
https://thehackernews.com/2018/04/ccleaner-malware-attack.html, 2018. Ac-
cessed: 2019-02-24.

[71] Antoaneta Kondeva, Carmen Carlan, Harald Ruess, and Vivek Nigam. On computer-aided
techniques for supporting safety and security co-engineering. In The 9th IEEE International
Workshop on Software Certification WoSoCer, 2019.

[72] Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Patrick Schweitzer. Foundations of
attack-defense trees. pages 80–95, 2010. doi: 10.1007/978-3-642-19751-2 6. URL https:
//doi.org/10.1007/978-3-642-19751-2 6.

[73] Trishank Karthik Kuppusamy, Lois DeLong, and Justin Cappos. Securing software up-
dates for automotives using uptane. ;login:, 42(2), 2017. URL https://www.usenix.org/
publications/login/summer2017/kuppusamy.

[74] Sonali S. Lagu and Sanjay B. Deshmukh. Raspberry Pi for Automation of Water Treatment
Plant. In Computing Communication Control and Automation (ICCUBEA), 2015 International
Conference on, pages 532–536, February 2015. doi: 10.1109/ICCUBEA.2015.109.

[75] Elias Levy. Poisoning the software supply chain. IEEE Security & Privacy, 1(3):70–73, 2003.
[76] Per Håkon Meland, Elda Paja, Erlend Andreas Gjære, Stéphane Paul, Fabiano Dalpiaz, and

Paolo Giorgini. Threat analysis in goal-oriented security requirements modelling. Int. J. Secur.
Softw. Eng., 5(2):1–19, 2014. ISSN 1947-3036. doi: 10.4018/ijsse.2014040101. URL http:
//dx.doi.org/10.4018/ijsse.2014040101.

[77] Modbus Organization. Official Modbus Specifications, 2016, http://www.modbus.org/
specs.php, Last access: April 2019.

[78] Alfred NG. Us: Russia’s notpetya the most destructive cyberattack ever. https:

SPARTA D5.1 Public Page 136 of 154

https://www.iso.org/standard/70939.html
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/44378.html
https://www.iso.org/isoiec-27001-information-security.html
https://www.iso.org/isoiec-27001-information-security.html
https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html
https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html
https://medium.com/warsawjs/state-of-package-json-dependencies-de99828b6c3f
https://medium.com/warsawjs/state-of-package-json-dependencies-de99828b6c3f
http://doi.acm.org/10.1145/1151074.1151077
https://thehackernews.com/2018/04/ccleaner-malware-attack.html
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6
https://www.usenix.org/publications/login/summer2017/kuppusamy
https://www.usenix.org/publications/login/summer2017/kuppusamy
http://dx.doi.org/10.4018/ijsse.2014040101
http://dx.doi.org/10.4018/ijsse.2014040101
http://www.modbus.org/specs.php
http://www.modbus.org/specs.php
https://www.cnet.com/news/uk-said-russia-is-behind-destructive-2017-cyberattack-in-ukraine/
https://www.cnet.com/news/uk-said-russia-is-behind-destructive-2017-cyberattack-in-ukraine/

D5.1 - Assessment specifications and roadmap

//www.cnet.com/news/uk-said-russia-is-behind-destructive-2017-
cyberattack-in-ukraine/, 2018. Accessed: 2019-02-25.

[79] Vivek Nigam and Carolyn Talcott. Formal security verification of industry 4.0 applications. In
ETFA, 2019.

[80] Vivek Nigam, Carolyn Talcott, and Abraão Aires Urquiza. Towards the automated verification
of cyber-physical security protocols: Bounding the number of timed intruders. In European
Symposium on Research in Computer Security (ESORICS), 2016.

[81] Vivek Nigam, Alexander Pretschner, and Harald Ruess. Model-based safety and security en-
gineering. White Paper, 2018.

[82] NIST-CSF. Us gsa website. URL https://www.gsa.gov/technology/technology-
products-services/it-security/nist-cybersecurity-framework-csf.

[83] Nicola Nostro, Andrea Bondavalli, and Nuno Silva. Adding security concerns to safety critical
certification. In Symposium on Software Reliability Engineering Workshops, 2014.

[84] Thomas Novak, Albert Treytl, and Peter Palensky1. Common approach to functional safety and
system security in building automation and control systems. 2007.

[85] OASIS. Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0, 2005. Avail-
able at http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-
os.pdf.

[86] OASIS. SAML V2.0 Technical Overview, 2005. Available at http://docs.oasis-open.org/
security/saml/Post2.0/sstc-saml-tech-overview-2.0-cd-02.pdf.

[87] DPCM of 24 October 2014. Sistema Pubblico per la gestione dell’Identità Digitale (SPID),
2014. Available at http://www.agid.gov.it/agenda-digitale/infrastrutture-
architetture/spid.

[88] OPENCOSS. Project website. URL http://www.opencoss-project.eu/.
[89] OWASP. OWASP Top 10 security risk A9, Using Components with Known

Vulnerabilities. https://www.owasp.org/index.php/Top 10-2017 A9-
Using Components with Known Vulnerabilities.

[90] European Parliament. Regulation 910/2014 of the European Parliament and of the Council
of 23 July 2014 on electronic identification and trust services for electronic transactions in
the internal market and repealing Directive 1999/93/EC, 2014. Available at http://eur-
lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910&from=EN.

[91] PCI Security Standards Council. Payment Card Industry (PCI) Data Security Standard v3.2.1,
Last Access: November 2019. Available at https://www.pcisecuritystandards.org/
documents/PCI DSS v3-2-1.pdf?agreement=true&time=1574868634382.

[92] Brian Pfretzschner and Lotfi ben Othmane. Identification of dependency-based attacks on
node.js. In Proceedings of the 12th International Conference on Availability, Reliability and
Security, page 68. ACM, 2017.

[93] Polarsys. ARCADIA/CAPELLA (webpage). In https://www.polarsys.org/capella/arcadia.html,
2008.

[94] Christophe Ponsard and Jeremy Grandclaudon. Survey and guidelines for the design and
deployment of a cyber security label for smes. In Paolo Mori, Steven Furnell, and Olivier Camp,
editors, Information Systems Security and Privacy, pages 240–260, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-25109-3.

[95] Serena E. Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cedric Dangremont. A
manually-curated dataset of fixes to vulnerabilities of open-source software. In Proceedings of
the 16th International Conference on Mining Software Repositories, May 2019. URL https:
//arxiv.org/pdf/1902.02595.pdf.

[96] Christopher Preschern, Nermin Kajtazovic, and Christian Kreiner. Security analysis of safety
patterns. PLoP ’13, pages 12:1–12:38, USA, 2013. ISBN 978-1-941652-00-8. URL http:
//dl.acm.org/citation.cfm?id=2725669.2725684.

SPARTA D5.1 Public Page 137 of 154

https://www.cnet.com/news/uk-said-russia-is-behind-destructive-2017-cyberattack-in-ukraine/
https://www.cnet.com/news/uk-said-russia-is-behind-destructive-2017-cyberattack-in-ukraine/
https://www.cnet.com/news/uk-said-russia-is-behind-destructive-2017-cyberattack-in-ukraine/
https://www.gsa.gov/technology/technology-products-services/it-security/nist-cybersecurity-framework-csf
https://www.gsa.gov/technology/technology-products-services/it-security/nist-cybersecurity-framework-csf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0-cd-02.pdf
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0-cd-02.pdf
http://www.agid.gov.it/agenda-digitale/infrastrutture-architetture/spid
http://www.agid.gov.it/agenda-digitale/infrastrutture-architetture/spid
http://www.opencoss-project.eu/
https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910&from=EN
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf?agreement=true&time=1574868634382
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf?agreement=true&time=1574868634382
https://arxiv.org/pdf/1902.02595.pdf
https://arxiv.org/pdf/1902.02595.pdf
http://dl.acm.org/citation.cfm?id=2725669.2725684
http://dl.acm.org/citation.cfm?id=2725669.2725684

D5.1 - Assessment specifications and roadmap

[97] Carlos Queiroz, Abdun Mahmood, and Zahir Tari. Scadasim—a framework for building scada
simulations. IEEE Transactions on Smart Grid, 2(4):589–597, 2011.

[98] Mark Rollins. Beginning LEGO MINDSTORMS EV3. Apress, 2014.
[99] Rafael Rosales, Michael Glass, Jürgen Teich, Bo Wang, Yang Xu, and Ralph Hasholzner.

MAESTRO— Holistic Actor-Oriented Modeling of Nonfunctional Properties and Firmware Be-
havior for MPSoCs. ACM Trans. Des. Autom. Electron. Syst., 19(3):23:1–23:26, June 2014.
ISSN 1084-4309. doi: 10.1145/2594481. URL http://doi.acm.org/10.1145/2594481.

[100] Jose Rubio-Hernan, Juan Rodolfo-Mejias, and Joaquin Garcia-Alfaro. Security of cyber-
physical systems — from theory to testbeds and validation. In Security of Industrial Control Sys-
tems and Cyber-Physical Systems – Second International Workshop, CyberICPS 2016, Herak-
lion, Crete, Greece, September 26-30, 2016, Revised Selected Papers, pages 3–18. Springer,
September 2016. doi: 10.1007/978-3-319-61437-3 1. URL https://doi.org/10.1007/978-
3-319-61437-3 1.

[101] Giedre Sabaliauskaite, Lin Shen Liew, and Jin Cui. Integrating autonomous vehicle safety
and security analysis using STPA method and the six-step model. International Journal on
Advances in Security, 11, 2018.

[102] SABOTAGE. Sabotage: A Simulation-Based Fault Injection Tool Framework. https://
www.cyberssbytecnalia.com/node/271.

[103] SAEJ3061. Sae j3061 - cybersecurity guidebook for cyber-physical vehicle systems. URL
https://www.sae.org/standards/content/j3061 201601/.

[104] Tripti Saxena and Gabor Karsai. MDE-Based Approach for Generalizing Design Space Explo-
ration, pages 46–60. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-
16145-2.

[105] B. Schneier. Attack trees: Modeling security threats. Dr. Dobb’s Journal of Software Tools, 24:
21–29, 1999.

[106] Mariana Segovia, Ana Cavalli, Nora Cuppens, Jose Rubio-Hernan, and Joaquin Garcia-Alfaro.
Reflective attenuation of cyber-physical attacks. In Security of Industrial Control Systems
and Cyber-Physical Systems – 5th International Workshop, CyberICPS 2019, Luxembourg,
September 2019, Revised Selected Papers, ESORICS workshops 2019. Springer, September
2019.

[107] SPARTA. Deliverable D.11.1, Mapping of International and national cybersecurity certification
initiatives, January 2020.

[108] STANCE. Project website, 2011. URL https://cordis.europa.eu/project/id/
317753.

[109] Tivadar Szemethy and Gabor Karsai. Platform modeling and model transformations for analy-
sis. Journal of Universal Computer Science, 10(10):1383–1407, 2004.

[110] Kenji Taguchi, Daisuke Souma, and Hideaki Nishihara. Safe & sec case patterns. In SAFE-
COMP 2015 Workshops, ASSURE, DECSoS, ISSE, ReSA4CI, and SASSUR, 2015. doi:
10.1007/978-3-319-24249-1\ 3. URL https://doi.org/10.1007/978-3-319-24249-1 3.

[111] André Teixeira, Iman Shames, Henrik Sandberg, and Karl Henrik Johansson. A secure control
framework for resource-limited adversaries. Automatica, 51:135–148, 2015. ISSN 0005-1098.
doi: http://dx.doi.org/10.1016/j.automatica.2014.10.067.

[112] The OMNeT++ Network Simulation Framework, Last Access: April 2019. Available at http:
//www.omnetpp.org/.

[113] The OMNeT++/INET Framework, Last Access: April 2019. Available at http://
inet.omnetpp.org/.

[114] TOSCA. Project website. URL https://www.oasis-open.org/committees/
tc home.php?wg abbrev=tosca.

[115] Nikolai Philipp Tschacher. Typosquatting in programming language package managers. Mas-
ter’s thesis, Universität Hamburg, Fachbereich Informatik, 2016.

SPARTA D5.1 Public Page 138 of 154

http://doi.acm.org/10.1145/2594481
https://doi.org/10.1007/978-3-319-61437-3_1
https://doi.org/10.1007/978-3-319-61437-3_1
https://www.cyberssbytecnalia.com/node/271
https://www.cyberssbytecnalia.com/node/271
https://www.sae.org/standards/content/j3061_201601/
https://cordis.europa.eu/project/id/317753
https://cordis.europa.eu/project/id/317753
https://doi.org/10.1007/978-3-319-24249-1_3
http://www.omnetpp.org/
http://www.omnetpp.org/
http://inet.omnetpp.org/
http://inet.omnetpp.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

D5.1 - Assessment specifications and roadmap

[116] U3CAT. Project website, 2010. URL https://frama-c.com/u3cat.
[117] Abraão Aires Urquiza, Musab A. AlTurki, Max I. Kanovich, Tajana Ban Kirigin, Vivek Nigam,

Andre Scedrov, and Carolyn L. Talcott. Resource-bounded intruders in denial of service at-
tacks. In 32nd IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ,
USA, June 25-28, 2019, pages 382–396, 2019. doi: 10.1109/CSF.2019.00033.

[118] András Varga and Rudolf Hornig. An overview of the OMNeT++ simulation environment. In
1st International conference on Simulation tools and techniques for communications, networks
and systems & workshops (Simutools), 2008.

[119] VDS3473. Vds website - cyber-security. URL http://vds-global.com/en/vds-cyber-
security/.

[120] VESSEDIA. Project website, 2017. URL https://cordis.europa.eu/project/id/
731453.

[121] Jorgiano Vidal, Florent de Lamotte, Guy Gogniat, Philippe Soulard, and Jean-Philippe Diguet.
A co-design approach for embedded system modeling and code generation with UML and
MARTE. In Design, Automation and Test in Europe, pages 226–231, Dresden, Germany, April
2009.

[122] Dolores Wallace and Roger U Fujii. Software verification and validation: Its role in computer
assurance and its relationship with software project management standards. Technical report,
1989.

[123] Rui Wang, Jérémie Guiochet, and Gilles Motet. Confidence assessment framework for safety
arguments. In SAFECOMP, 2017.

[124] Haissam Ziade, Rafic A. Ayoubi, and Raoul Velazco. A survey on fault injection techniques. 1:
171–186, 2004. http://ccis2k.org/iajit/PDF/vol.1,no.2/04-Hissam.pdf.

[125] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel. Small
world with high risks: A study of security threats in the npm ecosystem. arXiv preprint
arXiv:1902.09217, 2019.

SPARTA D5.1 Public Page 139 of 154

https://frama-c.com/u3cat
http://vds-global.com/en/vds-cyber-security/
http://vds-global.com/en/vds-cyber-security/
https://cordis.europa.eu/project/id/731453
https://cordis.europa.eu/project/id/731453
http://ccis2k.org/iajit/PDF/vol.1,no.2/04-Hissam.pdf

D5.1 - Assessment specifications and roadmap

Chapter 8 Appendix

The appendix contains detailed tools description (requirements and specifications) in relation with
the CAPE Assessment Framework described in T5.1.

NeSSoS risk assessment tool

User requirements description

The tool can be used in order to evaluate existing risks for the e-government system.

UC1 Evaluation of e-government risks

Description A risk analyst assesses risks of the system.

Actors

• Risk analyst

• A person responsible for security

• IT (security) team

• Various responsible persons (e.g., HR head, Physical security head,
etc.)

Basic flow

Once the scope of the system is defined, the analyst (with the help of the
tool) will identify the key assets to protect, existing security practices and
the threats relevant for the considered system. Next, risks will be computed
and possible improvements identified.

Table 46: NeSSoS - Use Cases

NeSSoS will identify the main security risks and the security controls which should be installed to
ensure the relevant Security Assurance Level.

SPARTA D5.1 Public Page 140 of 154

D5.1 - Assessment specifications and roadmap

CR1 Identification of risks and relevant security controls

Description A risk analyst identifies the main security risks and the security controls that
are required for the the selected Security Assurance Level.

Actors

• Risk analyst/certifier

• A person responsible for security

• IT (security) team

• Various responsible persons (e.g., HR head, Physical security head,
etc.)

CR2 Continuous risk assessment/certification

Description The identified risks are updated upon receiving new information.

Actors
• A monitoring module [external]

• Risk consumer module (e.g., risk analyst/certifier)

Table 47: NeSSoS - Certification requirements

SPARTA D5.1 Public Page 141 of 154

D5.1 - Assessment specifications and roadmap

SR1 A stand alone on-line tool

Description The tool is to be available on-line as a separate service

Actors
• Tool developers (CNR)

• User (e.g., Risk Analyst)

Basic flow Make the tool developed on-line.

SR2 Identification of (additional) countermeasures

Description The tool should help to identify (additional) countermeasures to be installed.

Actors
• Tool developers (CNR)

• User (e.g., Risk Analyst)

Basic flow The tool computes the risk. Next, it helps the user to identify (additional)
security controls to mitigate the identified risks.

SR3 Continuous assessment

Description The tool should consume inputs and provide responses automatically.

Actors

• Tool developers (CNR)

• Monitoring module

• Risk consumer module

Basic flow
The tool API is triggered by an external monitoring module providing the
information about the current state of security configuration. The tool re-
computes the risk and sends it to the risk consumer.

Table 48: NeSSoS - Software requirements

Technical specifications

The NeSSoS tool consists of the following components:
• User interface. A web-based GUI for the user to insert the information about the system, as

well as for receiving the results of risk assessment.
• Risk computation unit. The core unit which computes (and re-computes) the risks and identifies

suggested countermeasures.
• Communication unit. A unit that manages communication of machine-readable information

(e.g., receiving it from a monitoring module and sending it to a risk consumer module).
• Database. A database with the expert knowledge stored and used for simplifying the analysis.

SPARTA D5.1 Public Page 142 of 154

D5.1 - Assessment specifications and roadmap

Figure 58: NeSSoS Risk Assessment Architecture

In short, the tool is to work as follows (see Figure 58). A user (e.g., Risk Analyst) enters the required
data (the information about available security controls, key cyber assets and expected impact). The
user interface passes this information to the risk computation unit, which, with the help of the knowl-
edge stored in the database, identifies relevant threats and compute risk levels. This information is
provided to the user through the user interface. If the tool is to be used for continuous assessment,
the risk computation unit triggers the communication unit to send the aggregated risk information
in a machine-readable format to any risk consumer module (e.g., a tool working on behalf of risk
analyser). At this point, a monitoring module must be set up (based on the information previously
generated by the NeSSoS tool (e.g., credentials and tokens for access, the ID for the system under
evaluation, etc.). Once the monitoring module provides the up to date information about the state
of security practices to the communication unit, risk is re-computed and the updated risk results are
provided to the risk consumer module.

Development roadmap

Use
Case Architecture components Realisation Involved part-

ners

UC1
User interface, risk computa-
tion, Database

Use the tool to compute the risks
and suggest the additional controls

CNR, CINI

Table 49: NeSSoS - Use cases, realisations and architecture

SPARTA D5.1 Public Page 143 of 154

D5.1 - Assessment specifications and roadmap

Software verification and validation plan

SR id Description Verification method Demonstration scenario

SR1 The tool works on-line
Check if the tool is available
on-line and provides the risk
levels

Use the tool through the web
interface

SR2
(Additional) Secu-
rity configuration is
suggested

Check if the tool is able to
provide reasonable sugges-
tions for (additions) security
configuration

Use this functionality through
the web interface

SR3
The tool works auto-
matically

Check if the tool is able to
receive the input from the
monitoring module and re-
compute risk levels without
human intervention

Use the tool through the ma-
chine interface

Table 50: NeSSoS - Demo scenarios and verification methods

Buildwatch

User requirements description

The main use case of Buildwatch is the inspection of alternations to the host systems state, originating
from a dependency during one of the aforementioned development processes. The inspections result
may influence the decision on the roll-out of a dependency update to the dependent project.

UC1 Build Host State Introspection

Description
The build host state introspection entails the capture of the build host system
state information generated by a software development process (i.e. build,
test, install) and the reporting.

Actors Developer

Basic flow

A build script is submitted to the Buildwatch Sandbox. The sandbox triggers
the script and monitors the operating system calls made by the resulting
process (and child processes) during the execution. The resulting is pre-
processed and reported back for review by the developer. The review might
either entail a manual assessment of the resulting host state changes or a
automated comparison of different versions, of the monitored build process.

Table 51: Buildwatch - Use Cases

The Buildwatch Sandbox use case requires a deployed dependency management process. This
process needs to define under which circumstances a dependency is to updated or held back, given
an update is available. The Buildwatch Sandbox provides insight into the dependencies behavior.
Based on this insight, a decision on holding an update back may be made. Hence, dependency
updates have to be pulled into the project in a controlled fashion, that allows for a review of the
changes within these dependencies.

SPARTA D5.1 Public Page 144 of 154

D5.1 - Assessment specifications and roadmap

SR1 Process Automation

Description The process to be monitored needs to be fully automated.

Actors
• Developer

• DevOps Engineer

Basic flow The script that automates the process (i.e. build, test, install) is passed to
the Buildwatch Sandbox and executed.

SR2 Version Control

Description The software dependency needs to be version controlled. Either by commits
or semantic versioning depending on monitoring granularity.

Actors
• Developer

• DevOps Engineer

Basic flow
Comparing the differences with the diff tool is only feasible if two versions
of the same product are evaluated. Both need to pass the sandbox, the diff
tool is subsequently used to compute the differences.

Table 52: Buildwatch - Software requirements

Technical specifications

The Buildwatch system consist of three parts:

1. The Monitor
2. The Reporting Module
3. The Diff Tool

The Buildwatch Sandbox is based on the Cuckoo Sandbox [47] which has experimental support for
Linux-based guest systems. Hence, the monitor is based on the Cuckoo agent. Recorded system
calls are passed to the reporting module. The reporting module computes an abstraction based on
cyber observable objects [31]. The diff tool allows the computation of differences between two of
these reports in an object position (in terms of order) independent manner.
In order to use the Buildwatch Sandbox in a continuous integration pipeline supported development
process, the required interfaces have to be added.

SPARTA D5.1 Public Page 145 of 154

D5.1 - Assessment specifications and roadmap

Development roadmap

Use Case
Architecture
compo-
nents

Realisation
Involved
part-
ners

UC1 Monitor
Extend Cuckoo monitoring capabilities for Linux-based
guests

UBO

UC1
Reporting
Module

Implement a custom reporting module the ingests the
Cuckoo reported data and aggregates them to cyber ob-
servable objects

UBO

UC1 Diff tool
Implement a script that computes the differences be-
tween two Buildwatch reports

UBO

UC1 Integration
Implementation of the interfaces to ingest a ci job and
report the result

UBO

Table 53: Buildwatch Sandbox - Use cases, realisations and architecture

Software verification and validation plan

SR id Description Verification method Demonstration
scenario

SR1
Ingest a common
build dependency

Check that a report comprises all cyber observable
objects created or modified by the build process of
the software

CCCC

SR2
Compute differ-
ence between
two versions

Two Versions are built in the Buildwatch Sandbox
two times each. The differences are computed
between all four reports. The computation yields
no result between builds of the same version, but
computes the same differences on reports of dif-
ferent versions.

CCCC

Table 54: Buildwatch Sandbox - Demo scenarios and verification methods

SPARTA D5.1 Public Page 146 of 154

D5.1 - Assessment specifications and roadmap

IDS and SIEM assessment tool

User requirements description

UC1 Synthetic traffic generation from existing traces

Description

Traffic is generated from features learned from network traffic traces includ-
ing variations of protocol distribution and respective amplitudes over time.
Protocol traffic can be generated from activities graph for improved realism.
The size of the network traffic can be adapted to stress the network, while
preserving the protocols distribution. The resulting synthetic trace is ex-
pected to confuse the system under test by hiding injected attack traffic, or
at least evaluate the performance limitations of the system under test.

Actors
• Tester

• Pentester

Basic flow

The tester recovers a sample network trace to be reproduced. The tool
processes the trace to extract features in a privacy preserving manner,
anonymizing sensitive identifiers. Once the features of the trace are learned,
these features are given as input to the traffic generator to output a similar
traffic respecting the protocols distribution and associated amplitudes. The
generated traffic can also be amplified to fit stress test scenarios by arith-
metically transforming the learned values of the model features. The pen-
tester is then able to inject attacks during the play of the generated traffic to
conceal her activities.

UC2 Attack traffic mutation

Description

Attack traffic is generated and confronted to the system under test to as-
sess its ability to bypass it. Test results are fed back to the generator to
improve the generation by mutating it. The resulting traffic should enable
the discovery of possibly new attacks.

Actors Tester

Basic flow

The tester starts the generator with or without an attack seed. The gen-
erated attack traffic is sent through the system under test. If the traffic is
accepted, the generator reinforces the features that allowed the bypass.
If the traffic is rejected, the generator degrades the weights of features that
raised an alert. Traffic is then generated again with the newly computed fea-
tures. The workflow is repeated until the situation does not evolve anymore.
The outputs of the test may result in new attacks and therefore avenues to
improve the robustness of the system under test.

Table 55: IDS - Use Cases

SPARTA D5.1 Public Page 147 of 154

D5.1 - Assessment specifications and roadmap

UR1.1 Availability of network traffic trace

Description Network traffic traces for the system under test is available to be processed
and reproduced.

Actors System owner

UR1.2 Privacy-preserving traffic generation

Description Selection of features avoid sensitive information to prevent learning it. If
needed, some features are anonymized using

Actors Data protection officer

UR2.1 Availability of network intrusion traffic

Description Optionally, generation of intrusions is driven by network intrusion features
or traces.

Actors Pentester

UR2.2 Interpretability of results

Description Bypasses enable the tester to understand how vulnerable the system under
test is and to decide how to improve it.

Actors Tester

Table 56: IDS - User Requirements

SPARTA D5.1 Public Page 148 of 154

D5.1 - Assessment specifications and roadmap

SR1.1 Metrics to measure realism

Description Design of a set of metrics able to capture the realism of generated traffic, in
order to guarantee the fairness of evaluation.

Actors
• Network expert

• Tester

Basic flow

Study network traffic datasets to retain a number of features necessary to
generate life-like traffic. Metrics should be derived from these features in or-
der to measure the realism of generated traffic. The network expert assists
the tester in selecting features and designing appropriate metrics.

SR1.2 Anonymization functions

Description Select a set of functions to anonymize network trace to reproduce.

Actors
• Privacy expert

• Tester

Basic flow

Traces to be reproduced are pre-processed to extract features necessary to
the traffic generation stage. The privacy expert assists the tester in choos-
ing features that are privacy-preserving. If needed, a set of anonymization
functions is provided to process the trace before feature extraction.

SR2.1 Metrics to measure malice.

Description Design of a set of metrics able to capture the malice of generated attack
traffic, in order to guarantee the fairness of evaluation

Actors
• Pentester

• Tester

Basic flow

Study attack traffic datasets to retain a number of features necessary to
generate malicious life-like traffic. Metrics should be derived from these
features in order to measure the malice of generated attack traffic. The
pentester assists the tester in selecting features and designing appropriate
metrics.

SR2.2 Mutation functions

Description Select a set of functions to mutate attack traces.

Actors
• Pentester

• Tester

Basic flow

Attack traces are mutated to evade the system under test. Mutation func-
tions should not alter the malice of the attack trace. The pentester assists
the tester in choosing mutation functions to transform the attack traces into
seemingly innocuous network traces.

Table 57: IDS - Software requirements

SPARTA D5.1 Public Page 149 of 154

D5.1 - Assessment specifications and roadmap

Technical specifications

The proposed tool is constituted of at least two main modules:

• a network traffic parser to process captured traffic inputs;
• a network traffic generator to generate traces for IDS/SIEM evaluation.

In CAPE, IMT aims at improving the parser to extract new features that will enable a more faithful
modelling of traffic traces. By reliably modelling real traffic traces, we believe that we will be able
to generate more realistic network traffic. The models learned from a single traffic trace allows the
generator to reproduce traffic for this particular trace. One particular challenge is the feasibility of
producing real traffic features from certain model features.
The traffic generator takes as input the model features learned from the parser and generates a
synthetic network traffic. A legacy and more heavy approach was to set up a number of agents sup-
porting the protocols identified in the input and to have them generate a traffic envelope that fulfills
the distribution of protocols and their respective amplitudes over time. While this work is interesting
to pursue particularly with respect to agent orchestration, in CAPE, we aim at developing novel ap-
proaches based on generative networks. In particular, a first attempt using autoencoders – a type of
neural networks that efficiently learn and reproduce inputs – has been studied. IMT will focus on im-
proving the realism of generated traffic, with respect to packet contents and flow behaviour. Indeed,
the autoencoder actually output a feature vector and not network traffic per se. IMT needs to develop
a function (translator) to generate life-like traffic from the outputted feature vector.
Secondly, in order to generate malicious vector able to challenge the systems under evaluation (IDS,
SIEM), IMT will develop a generative adversarial network-based (GAN) approach. Using a GAN, we
aim at improving concurrently two aspects of the generated traffic: its realism and its malice, so that
it becomes difficult for the system under evaluation to discriminate real, legitimate traffic from the
malicious, synthetic one.
Finally, a human interface module should summarize the results of the test and assist the tester in
identifying the weaknesses of the system under evaluation to make recommendations on how to
improve it.

Development roadmap

Use Case Architecture compo-
nents Realisation Involved partners

UC1 Parser
Design new features set to ex-
tract

IMT

UC1 Generator
Design and implement
autoencoder-based feature
generator and translator

IMT

UC1 User interface
Produce explainable outputs
for IDS/SIEM evaluation

IMT

UC2 Generator
Design and implement a
GAN-based attack traffic
generator

IMT

UC2 User interface
Produce explainable outputs
for IDS/SIEM evaluation

IMT

Table 58: IDS - Use cases, realisations and architecture

SPARTA D5.1 Public Page 150 of 154

D5.1 - Assessment specifications and roadmap

Software verification and validation plan

SR id Description Verification method Demonstration scenario

SR1.1
Metrics to measure real-
ism

Check the metrics against
real traffic traces

Test set of real traffic traces

SR1.2 Anonymization functions
Assess the privacy of pro-
cessed traces

Privacy impact assessment
(PIA)

SR2.1
Metrics to measure mal-
ice

Check the potential damage
to a target system

Set of target systems

SR2.2 Mutation functions Measure mutation ratio
State-of-the-art mutation
metrics

Table 59: IDS - Demo scenarios and verification methods

VaCSInE

User requirements description

UC1 Enforce security policy on the edge infrastructure based on certifica-
tion criteria

Description

A security policy can be applied on the edge infrastructure to provide se-
curity properties, the SFC securing the edge infrastructure is adapted to
satisfy the security policy. The security policy and corresponding NFCs will
be described using the OASIS Topology and Orchestration Specification for
Cloud Applications (TOSCA) [114] and aligned on a certification scheme
property.

Actors Security officer

Basic flow
Admin provides a security policy at the federation level, the SFC protect-
ing the underlying infrastructure is automatically reconfigured to satisfy the
security policy

UC2 Continuous self-assessment for adaptive security with service func-
tion chaining

Description
Monitor and detect: Ensure the edge infrastructure is protected through an
automated reconfiguration of the service function chains . This can involve
adding/removing or updating existing NFV’s

Actors security officer

Basic flow
The intrusion detection triggers a firewall re-configuration, remediation is
checked against the system’s security policy (derived from certification cri-
teria) and applied to the SFC’s protecting the infrastructure

Table 60: VaCSInE - Use Cases

SPARTA D5.1 Public Page 151 of 154

D5.1 - Assessment specifications and roadmap

CR1 Minimal network attack surface

Description Ensure only the allowed network ports are open for the various components
of the system.

Actors

• security officer

• federated security agents

• federated security manager

Basic flow

A security policy is applied to the edge system, which is then continuously
stressed by simulated intrusions in a continuous integration sandbox envi-
ronment. The Adaptive security component will detect the security breach,
provide feedback to the security manager component that will adapt the se-
curity policy and apply it automatically to all the parts of the system.

Table 61: VaCSInE - Certification requirements

UC1 and UC2 will be developed in D5.3, UC2 will be further developed to study more complex SFC
configurations before D5.4.

SPARTA D5.1 Public Page 152 of 154

D5.1 - Assessment specifications and roadmap

Foreshadow-VMM Assessment Tool (CNIT/University of Rome Tor Vergata)

User requirements description

UC1 Detect security vulnerabilities in Android applications packages

Description

The security analyst of an organization uses Approver to scan all mobile ap-
plication packages, by submitting the APK packages either manually using
the web front-end or using a set of REST APIs. Then, he uses the Web
front-end to understand and assess findings and find the best mitigation
option.

Actors Security Analyst

Basic flow

The analysis of the Android application packages is triggered either manu-
ally, by uploading the APK package through the tool web interface or using
the available REST APIs. Analysis results are made available through Ap-
prover’s Web front-end. Furthermore, from the front-end, it is also possible
to download a security report in PDF format.

UC2 Detect security vulnerabilities in Android applications during develop-
ment and suggest mitigations

Description

An organization uses Approver to scan Android application projects. To do
that, application developers can integrate Approver in their software devel-
opment pipelines to detect security vulnerabilities in each build step of the
application and to obtain mitigation strategies to solve those problems.

Actors Developer & Security Analyst

Basic flow

The security analysis of the Android application is automatically triggered by
the CI software, e.g., Jenkins. Once a new build is submitted, the Approver
CI plugin will automatically report the security findings to the developer and,
if available, automatically opens ad-hoc issues on the software repository.

Table 62: Approver - Use Cases

SR1.1 Implementation of Approver CI Plugins

Description

The current architecture of Approver supports the submission on the An-
droid application package directly from the Web front-end or through REST
APIs. However, it has no support for the automated submission of the ap-
plication package during the development phase, especially in a continu-
ous integration scenario. To this aim, the SR1 requirement is to develop
the integration plugin for at least a state-of-the-art automation server (e.g.
Jenkins 1) and a version control system (e.g. Github 2).

Actors Not applicable

Basic flow Description of the use case flow

Table 63: Approver - Software requirements

Technical specifications

At high-level, cf. Figure 59, Approver is composed of a set of modules for both Static Analysis (SAST)
and dynamic analysis (DAST).

SPARTA D5.1 Public Page 153 of 154

D5.1 - Assessment specifications and roadmap

Each module, developed as a microservice using Docker technology, enables a different security
analysis and is managed by an orchestration layer. Besides, each module exposes a set of RESTful
APIs. The modules for SAST are in charge of analyzing the application package according to its
content. Examples of implemented SAST analysis include vulnerability analysis, permission analysis,
and string analysis. Instead, the DAST modules aim to install the application package in a testing
environment and evaluate the security of the application during the execution. Examples of DAST
analysis include network analysis, API monitoring and filesystem monitoring.
Finally, Approver provides a web front-end that allows to i) view the detailed results of each application
analyzed, ii) download all the artefacts produced during the analysis, and iii) download a security
report which contains all the identified issues.

Figure 59: Approver architecture

Software verification and validation plan

The high-level development roadmap is to implement the software requirement SR1 within 2020-21
such that it can be demonstrated at project end, as explained in Table 64.

SR id Description Verification method Demonstration scenario

UC1
Scan mobile app(s)
packages related to
e-government vertical

Check if scans succeed and
findings are correct

e-government

UC2
Scan mobile app(s)
projects developed for
the e-government vertical

Check if scans succeed and
findings are correct

e-government

Table 64: Approver - Demo scenarios and verification methods

SPARTA D5.1 Public Page 154 of 154

	1 Introduction
	2 Assessment and Certification Requirements for the Verticals
	2.1 Vertical 1: Demonstration of converging tools for assessing Connected and Cooperative Car Cybersecurity (CCCC) in the context of Euro NCAP
	2.1.1 Case Study Objectives, Description and Relevance
	2.1.2 Architecture and Technology of the Case Study
	2.1.3 Assessment and Certification Requirements
	2.1.4 Standards and Certifications
	2.1.5 Assessment Methods and Tools

	2.2 Vertical 2: Demonstration of a Complex System Assessment Including Large Software and Open Source Environments, Targeting e-Government Services (CINI)
	2.2.1 Case Study Objectives, Description and Relevance
	2.2.2 Architecture and Technology of the Case Study
	2.2.3 Assessment and Certification Requirements

	2.3 Summary of Certification Requirements

	3 SPARTA Assessment Specifications
	3.1 T5.1 - Assessment Procedures and Tools
	3.1.1 SPARTA Cybersecurity Assessment Tool Framework
	3.1.2 Tools Descriptions and Development Plans
	3.1.3 Frama-C (CEA)
	3.1.4 Approver (CINI)
	3.1.5 Foreshadow-VMM Assessment Tool (CNIT/University of Rome Tor Vergata)
	3.1.6 NeSSoS Risk Assessment Tool
	3.1.7 IDS and SIEM Assessment Tool (IMT)
	3.1.8 Risk Assessment for Cyberphysical Interconnected Infrastructures (MRA)
	3.1.9 Steady (SAP)
	3.1.10 Package Scanner (SAP)
	3.1.11 OpenCert (TEC)
	3.1.12 Sabotage (TEC)
	3.1.13 Visual Investigation of Security Information for Larger Software Development Organizations (UKON)
	3.1.14 Logic Bomb Detection in Android Apps (UniLu)
	3.1.15 Vulnerability Detection Tool For DevOps Communities (UniLu)
	3.1.16 AutoFOCUS3 (FTS)
	3.1.17 Buildwatch (UBO)
	3.1.18 VaCSInE (CETIC)
	3.1.19 Continuous Integration of Assessment Tools
	3.1.20 Task Roadmap

	3.2 T5.2 - Convergence of Security and Safety
	3.2.1 Specifications
	3.2.2 Task Roadmap

	3.3 T5.3 - Risk Discovery, Assessment and Management for Complex Systems of Systems
	3.3.1 Context and Background
	3.3.2 Controls Specification
	3.3.3 Task Roadmap

	3.4 T5.4 - Integration on Demonstration Cases and Validation
	3.4.1 Definition of Certification Requirements Derived from Assessment Procedures and Tools
	3.4.2 Task Roadmap

	4 Roadmap
	4.1 Goals and Objectives
	4.2 Responsibilities
	4.3 Timeline

	5 Summary and Conclusion
	6 List of Abbreviations
	7 Bibliography
	8 Appendix

