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Executive Summary 

Deliverable 5.2, CAPE Demonstrators Specifications, is the second deliverable of the CAPE 
program. CAPE stands for Continuous Assessment in Polymorphous Environments. This scientific 
activity of the SPARTA project addresses the issue of assessing cybersecurity performance of two 
environments, security and safety co-design on the one hand, and complex software systems of 
systems on the other hand.  

This deliverable is the continuation of D5.1 (Assessment specifications and roadmap), contributing 
with D5.3 (Demonstrators Prototypes) to the documentation of the first design-implement-integrate 
cycle of the CAPE program, providing a full picture of the scientific contributions of the CAPE 
program. 

The first contribution of the deliverable is the development of the SPARTA Cybersecurity assessment 
framework that maps security assessment tools to the security engineering process for continuous 
assessment. The framework defines the lifecycle process phases for security and safety 
engineering, and certification evaluation. To understand how SPARTA assessment tools can be 
used in these processes, each tool has been associated with one or more lifecycle phases where 
they can be used. The framework and associated tools provide information that can help design 
specific cybersecurity assessment processes. In the context of the SPARTA project, we have 
explored the use of continuous integration methods that provide loosely coupled integration for some 
of the framework tools. Some of the demonstrators rely on DevSecOps approaches that allow 
security activities to be integrated in the DevOps process phases. 

The second contribution of the deliverable is the development of a methodology and framework to 
jointly reason on safety and security properties in the context of a critical system, in our case the 
connected vehicle platooning scenario. This deliverable proposes the first formal framework (to our 
knowledge) to reason jointly about security and safety in the context of a critical cyber-physical 
system. The analysis develops the safety and security objectives of the use case independently. 
Several propositions are then developed to mix the two approaches, trade-off analysis between the 
safety and security objectives, requirements engineering and security/safety by design. 

The third contribution of the deliverable is the development of a methodology to address security in 
complex software systems that are built in an agile fashion with short and frequent release cycles, 
and which depend to a considerable extent on 3rd party open source components. It focuses on 
detecting vulnerable or malicious code, introduced either inadvertently by benign software 
developers, or intentionally by malicious actors. The tools developed in this context are particularly 
relevant for maintaining security in large software systems and services, thereby analysing and 
addressing latest trends regarding supply chain attacks through malicious open source. Beside 
actual tools, the contributions also comprise public datasets to enable further research within and 
beyond the SPARTA research project. 

The fourth contribution of the deliverable is the specification of our two use cases, the “Connected 
and Cooperative Car Cybersecurity” vertical and the “Complex System Assessment including large 
software and open-source environments, targeting e-Government services” vertical. These two 
vertical use cases are particularly representative of the cybersecurity issues that modern digital 
systems are facing. Both use-cases are thoroughly described and analysed, in order to provide a 
strong and common vision of the validation and demonstration activities to be developed in 
deliverable 5.4 (Demonstrators evaluation).  

The fifth contribution of the deliverable is the description (or extended description with respect to 
D5.1) of 18 tools related to assessment of software systems, covering the entire extended software 
development lifecycle. Several tools address multiple points of the software validation cycle, often 
related, such as design on the down-side and validation on the up-side. Out of these 18 tools, 2 are 
stand-alone and independent of our use cases, 9 are applicable to vertical 1 (Connected Car use 
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case) and 7 are applicable to vertical 2 (e-government use case). The descriptions of the tools have 
been significantly improved from D5.1, while keeping a similar formalism to facilitate understanding 
of the tools. Each of the tools has provided a detailed technical specification, describing the internal 
functions of the tool.  

The deliverable also addresses the program planning for implementation and experimentation with 
the tools. When we identified tools that had the same (or very close) assessment targets, rather than 
implement two times the same tool (with different techniques), we harmonized the specification of 
the tools so that they had complementary goals. This implemented a cooperating rather than a 
competing governance model, focusing on leveraging synergies and competencies between 
researchers to extend the coverage of our research activities. 
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 Introduction  

1.1 Scope and Purpose 

The CAPE program address the issue of assessing cybersecurity performance, through tasks T5.2 
about security and safety co-design, and T5.3 about complex software systems of systems, each of 
these tasks focusing also on an use case.  

The outcome of the WP5 tasks takes the form of a generic continuous assessment framework based 
on the V-Model software development process (see Figure 1):  

 Task 5.1 (Assessment procedures and tools) focuses on the framework specification, 
describing how the various tools that compose the framework can contribute to the 
continuous assessment process.  

 Task 5.2 (Convergence of security and safety) proposes techniques for integration of security 
and safety on the connected car vertical such as safety-security co-analysis techniques, 
requirements engineering, modelling and implementation, safety and security co-verification 
and validation techniques, etc.  

 Task 5.3 (Risk discovery, assessment and management for complex systems of systems) 
proposes a set of tools that can be used by software development organizations for 
compliance activities, by detecting the presence of known security vulnerabilities in 3rd 
party software and addressing supply chain attacks. 

 Task 5.4 (Integration on demonstration cases and validation) demonstrates the continuous 
assessment framework in the connected car and e-government verticals by verifying the 
evaluability of the two verticals.  

The first CAPE deliverable was D5.1 [1], delivered at M12, which set the scene of the CAPE program 
activities, defining the first specifications for the development and demonstration of the assessment 
tools being developed or extended in the CAPE research program.  

D5.2 is the second CAPE deliverable and includes contributions for each task and vertical in the 
context of the CAPE program. It reports the work that has been conducted by the CAPE partners 
over the last 12 months on defining technical specifications for the development of the assessment 
tools and the demonstrators.  

The third CAPE deliverable is D5.3 [2], delivered at the same time than D5.2. It starts from the 
specifications defined in D5.2 and describes the implementation of the tool prototypes and their 
integration in the demonstrators. The fourth CAPE deliverable is D5.4 [3], to be delivered at M36, 
that will include the validation and demonstration of the two vertical use cases. 

CAPE tasks have addressed several ambitious technological challenges over the last 12 months 
which are described in detail in this document. 

The main technical challenges in T5.1 (see Chapter 2) include the adaptation of the various tools to 
provide incremental and continuous operation modes, and the lack of common ground for integration 
between the tools. Those challenges led to the development of connectors to continuous integration 
and deployment orchestration platforms (ex. Gitlab-CI and GitHub Actions) for several of the tools 
that can automate previously manual assessment steps, and the use of standard protocols and 
exchange formats (SARIF, SCAP, ...) for the communication between tools when transitioning 
between the various certification and assessment steps.   

The main technical challenges in T5.2 (see Chapter 3) include the development of common 
semantics for safety and security analysis as well as the clarification of possible interactions between 
safety and security analysis. These challenges need to be tackled successfully to provide, e.g., 
safety and security co-analysis techniques. T5.2 also provides validation techniques for safety and 
security by using formal verification. Technical challenges to achieve this include the formalization 
of a platoon model, the formalization of parametric intruder models to subvert communication 
channels to carry out attacks, as well as the implementation of such models in a formal verification 
tool to automatically verify platoon specifications. 
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The main technical challenges in T5.3 (see Chapter 4) relate to the unavailability of public datasets 
with detailed, code-level information about known vulnerabilities in open-source components 
and open-source supply chain attacks. Such data is essential for developing detective and 
preventive countermeasures, especially when it comes to AI/ML-based techniques. Several works 
performed in T5.3 address this lack of public datasets, namely the two open-source projects Project 
KB and Backstabbers Knife Collection, as well as SafeCommit, which aims at identifying security-
introducing commits, and whose results will be published as part of the before-mentioned datasets.  

D5.2 also contains the specification of the CAPE use cases, the “Connected and Cooperative Car 
Cybersecurity” (a.k.a. Connected Car) vertical and the “Complex System Assessment including large 
software and open-source environments, targeting e-Government services” (a.k.a. e-Government) 
vertical. These two vertical use cases are particularly representative of the cybersecurity issues that 
modern digital systems are facing. Both use-cases are thoroughly described and analysed, in order 
to provide a strong and common vision of the validation and demonstration activities to be developed 
in deliverable 5.4 (Demonstrators evaluation). 

The main technical challenges in the Connected car use case (see Chapter 5) are the 
implementation of countermeasures to mitigate the injection of false messages into the CACC 
communication channels (Basic Scenario).  Dynamic orchestration of security services in cloud/edge 
infrastructures raises the challenges of how to guarantee the continuity of the assessment. Inputs 
and output of several assessment steps such as vulnerability scan reports and risk assessment need 
to be identified and made available as early as possible (Scenario 2). The Verification Tool Scenario 
(Scenario 3) takes into account the inputs provided by previous steps performed by safety and 
security co-analysis techniques. This leads to a technical challenge consisting of a mix between 
currently standards, such as CC standard, and design of a HW and SW setup for testing the rovers. 
One of the goals of using the OpenCert tool for Safety and Security compliance assessment and 
certification (Scenario 4) is the digitization of both safety and security standards. The main challenge 
is the use of both standards in parallel but keeping in mind that one standard is not in conflict with 
the other. If there is a conflict, there shall be another goal to assess what the conflict is and how to 
obtain the most adequate scenario. The challenge of the Sabotage tool in the Fault-injection and 
analysis of faulty scenarios (Scenario 5) is to perform an early analysis of the algorithm used by the 
plausibility checks developed in the Basic Scenario. The goal is to observe through simulations the 
behaviour of the algorithm under the different effects that may be produced by carrying out attacks 
on the vehicles. Based on the simulation results, modifications may be made to the algorithm in the 
early stages of its development. 

The main technical challenges in the e-Government use case (see Chapter 6) are posed by the 
complexity of the real-world innovative authentication solutions based on the usage of the Italian 
national electronic identity card. The challenges include the identification of the relevant components 
of the complex system in the scope of the demonstration and their security requirements. Then, it is 
envisaged the selection of the CAPE tools capable to increase the security of the components and 
the specification of DevSecOps pipelines to properly integrate the CAPE tools in the complex 
environment already in place. The final challenge is posed by the assessment of the adoptability of 
the proposed framework, by showing how the deployed DevSecOps scenarios can be used by end-
users willing to include the CAPE assessment tools in their pipeline and perform a security 
assessment of their complex systems. 

Finally, please note that the vertical related to financial services that was identified in the SPARTA 
DoA has not been further pursued. As it was explained in D5.1 [1], this vertical was originally meant 
to demonstrate assessment tools developed in the context of CAPE task 5.3, however further 
investigation revealed that those tools are largely independent of a given industry or vertical and 
their specific security and certification requirements. Moreover, it turned out that many tools 
developed by CAPE partners target specific technologies that are not present in the software 
application part of the financial services use case, thus, cannot be demoed in this context. For those 
reasons, it was decided to demonstrate tools developed as part of CAPE task 5.3 at the example of 
the other use-cases, which also allows to focus CAPE partners’ efforts. 
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1.2 Structure of the Document 

The structure of the document is organized as follows:  

 Chapter 1 is the current section presenting the objectives, scope and structure of the 
document. 

 Chapter 2 presents the technical specifications of the Assessment Procedures and Tools 
resulting from the work in T5.1. 

 Chapter 3 details the technical specifications of the techniques for integration of security and 
safety that have been developed by the partners in T5.2. 

 Chapter 4 details the technical specifications of the techniques for detecting security 
vulnerabilities in 3rd party software and addressing supply chain attacks that have been 
developed by the partners in T5.3. 

 Chapter 5 presents the technical specifications for the implementation of the Connected Car 
vertical use case. 

 Chapter 6 presents the technical specifications for the implementation of the e-Government 
vertical use case. 

 Chapter 7 describes the technical specifications of the CAPE Assessment tools.  

 Chapter 8 presents the conclusions of the report. 
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 Assessment Procedures and Tools (T5.1) 

2.1 Context and Background 

Task 5.1 addresses the aspects related to assessment automation, augmenting the assessment 
toolbox to support pre-assessment by users, as well as incremental assessment and continuous 
monitoring.   

The assessment tools being developed or extended in the CAPE research program are presented 
in the form of a cybersecurity assessment framework. The role of the framework is to describe in 
which phase of the security engineering process each of the assessment tools can be used. The 
framework also takes into account safety engineering and cybersecurity certification evaluation 
processes in order to explain how each of the assessment tools could also be useful in these 
processes. 

Figure 1 shows the SPARTA Cybersecurity assessment framework that has been created in the 
context of the SPARTA CAPE program. Using the V-Model is a good compromise to compare 
security engineering and safety engineering processes. The security engineering process covers 
both software and hardware development; however, the focus is on software development. The 
safety certification process is not considered in the SPARTA assessment framework because it is 
beyond the scope of the SPARTA project. For the cybersecurity certification process the Common 
Criteria standard (ISO/IEC 15408 and ISO/IEC 18045) is used.  

The framework covers the following phases of the software lifecycle: 

 the design phase is assumed to be iterative and covers requirements, architecture, design, 
development, unit testing, integration testing, acceptance testing and deployment; 

 the operation phase when a system is running in its target environment; 

 the end of life phase when the system is taken out of operation. 

The assessment tools of the SPARTA assessment framework can be used during different phases 
of the software lifecycle (see D5.1 [1], section 3.1.1.1). 

 

Figure 1: V-Model - Certification for safety and security 

 

Figure 2 shows the Roadmap that was defined in D5.1 [1] for the development of the tools: 
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 M12-M15 / M25-M26: detailed design of the changes and additions to the various tools 
based on the use cases. 

 M14-M18 / M27-M29: implementation of a first/second prototype version of the use 
cases. 

 M14-M23 / M29-M36: verification and validation that the framework tools software 
requirements are satisfied by the implementation.  

 M16-M23 / M27-M36: integration of the various tools to obtain a first/second prototype 
version of the use cases. 

 

Figure 2: CAPE T5.1 Roadmap 

 

2.2 CAPE Assessment Tools 

Table 1 and Figure 3 provide a summary of the CAPE Assessment tools. For each tool, we indicate 
its name and acronym, the partner in charge of its development, the V-model phases supported by 
the tool in the SPARTA Cybersecurity assessment framework (see Figure 1), the related task in the 
CAPE program and the vertical use case in which the tool will be validated. Those tools that cannot 
be demonstrated in the context of the verticals will be demonstrated independently. 

Note that, in order to facilitate the reading of the document, the technical specifications of the CAPE 
tools prototypes have been included at the end of this document (see Chapter 7).  

Tool Partner V-model Phase Task Scenario Tech. Specif. 

Approver (RAA)  CINI Development process T5.3 
e-Government 

(Vertical 2) 
Section 7.1 

AutoFOCUS3 (AF3) FTS 
Development process; 

All phases 
T5.2 

Connected Car 
(Vertical 1) 

Section 7.2 

Buildwatch (BW) UBO 
Application 

development 
T5.3 

e-Government 
(Vertical 2) 

Section 7.3 

Frama-C (FC) CEA 
Development, Unit 

testing 
T5.3 

Connected Car 
(Vertical 1) 

Section 7.4 

Legitimate Traffic 
Generation System (LTGen)  

IMT Operations T5.1 Stand-alone Section 7.5 

Logic Bomb Detection 
(TSOpen) 

UNILU 
Design (from unit testing 

to acceptance testing) 
T5.3 

e-Government 
(Vertical 2) 

Section 7.6 

Maude (MAU) FTS 
Verification and 

Validation 
T5.2 

Connected Car 
(Vertical 1) 

Section 7.7 

NeSSoS Risk assessment 
tool (RA) 

CNR 
Risk Management 

process at the global 
level 

T5.1 
e-Government 

(Vertical 2) 
Section 7.8 
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Tool Partner V-model Phase Task Scenario Tech. Specif. 

OpenCert (OC) TEC 

Safety Goals definition; 
Safety Goals validation¸ 
Safety Analysis, Trade- 

Off Analysis, 
Assessment 

T5.2 
Connected Car 

(Vertical 1) 
Section 7.9 

Project KB (KB) SAP All phases T5.3 
e-Government 

(Vertical 2) 
Section 7.10 

Risk assessment for cyber-
physical interconnected 
infrastructures (MRA) 

NCSR Requirements analysis T5.1 
Connected Car 

(Vertical 1) - 
security profile 

Section 7.11 

Sabotage (SB) TEC 

Functional and technical 
Safety concept design; 

Functional and technical 
Safety concept 

verification 

T5.2 
Connected Car 

(Vertical 1) 
Section 7.12 

SafeCommit (SF) UNILU 
Software development 
(of the libraries used by 

the application) 
T5.3 

Connected Car 
(Vertical 1) 

Section 7.13 

SideChannelDefuse (FS) CNIT Deployment T5.1 Stand-alone Section 7.14 

Steady (VA) SAP 

Design (from 

component design to 

deployment) and 

Operations 

T5.3 
e-Government 

(Vertical 2) 
Section 7.15 

SysML- Sec (TTool) IMT All phases T5.2 
Connected Car 

(Vertical 1) 
Section 7.16 

VaCSInE (VCS) CETIC Operations T5.1 
Connected Car 

(Vertical 1) 
Section 7.17 

Visual investigation of 
security information (VI) 

UKON 
Security Analysis, 
Verification and 

Validation 
T5.3 

e-Government 

(Vertical 2) 
Section 7.18 

Table 1: Summary of CAPE Assessment Tools 
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Figure 3: CAPE assessment tools in the Security Engineering V-Model 

To provide a clear view of the progress of the tools maturity in the context of CAPE, Table 2 
summarises the technology readiness level (TRL) of each tool at the start of the SPARTA project 
compared to now and what is the target at the end of the SPARTA project. When no development 
has been planned in the context of SPARTA, the target TRL is marked as “-”. 

Technology Readiness Levels (TRLs) are indicators of the maturity level of particular technologies. 
This measurement system provides a common understanding of technology status and addresses 
the entire innovation chain. There are nine technology readiness levels; TRL 1 being the lowest and 
TRL 9 the highest [4] [5].  

Tool Partner Start TRL Current TRL Target TRL 

Approver (RAA)  CINI 9 9 - 

AutoFOCUS3 (AF3) FTS 7 7 - 

Buildwatch (BW) UBO 1 4 6 

Frama-C (FC) CEA 2 3 4-5 

Legitimate Traffic Generation System (LTGen)  IMT 3 3 4-5 

Logic Bomb Detection (TSOpen) UNILU 2 4 5 

NeSSoS Risk assessment tool (RA) CNR 5 6 7 

OpenCert (OC) TEC 5 5 - 

Project KB (KB) SAP 2 4 5 

Risk assessment for cyber-physical 
interconnected infrastructures (MRA) 

NCSR 3 3 5 
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Tool Partner Start TRL Current TRL Target TRL 

Sabotage (SB) TEC 3 3 4 

SafeCommit (SF) UNILU 2 3 5 

SideChannelDefuse (FS) CNIT 2 4 5 

Eclipse Steady (VA) SAP 9 9 - 

SysML- Sec (TTool) IMT 4 4 5 

VaCSInE (VCS) CETIC 2 4 5 

Visual investigation of security information (VI) UKON 1 4 4 

Table 2: SPARTA Assessment Framework tools Technology Readiness Level progress 

 

2.3 Continuous Integration 

In recent years, the need to improve software delivery in terms of speed and quality has given rise 
to a set of practices that combine continuous build, testing, integration, delivery, ... The DevOps 
approach, closely related to Agile software development method, combines software development 
(”Dev”) and operations (”Ops”) processes to ensure that new features are added to a software 
solution in the shortest time possible, and with a high level of quality. This approach emphasizes the 
importance of communication between the involved parties, including the whole production chain 
(developers, sys-admins, network team, …), to break the classic “silos” of specialists. DevOps relies 
on the “CAMS” (Culture, Automation, Measurement, Sharing) characteristics and on a “shift to the 
left” where aspects such as resilience or security are taken into account sooner in the software 
development lifecycle (architecture design, coding, pre-production, ...). 

DevOps is focused on producing quality code, quickly and reliably. The security problematic is not 
directly addressed in this approach and DevSecOps is aiming to correct this by complementing 
DevOps with security procedures to ensure continuous security assessment. 

Security is now a shared responsibility between all the actors of a project, at every stage of the 
software development lifecycle (SDLC). To reach that goal, the reflection has to start from the very 
beginning, several tools and methodologies will be needed, along with a good deal of automation. 
DevSecOps, as DevOps, is not only about tooling but also about changing mentality and bad habits. 

The benefits of DevSecOps can impact the SDLC in various ways. The left-shift in security 
integration provides a better approach to security by intervening earlier in the deployment cycle and 
thus detecting security issues sooner, similarly the automation of security enables a continuous 
monitoring of the system where vulnerabilities are detected with minimal human intervention. 
DevSecOps also provides value by reducing the cost of making mistakes, detecting them, 
investigating their cause and fixing the problems. Finally, security concerns are among the major 
concerns that limit the adoption of DevOps processes, DevSecOps proposes tools and 
methodologies to ease this friction. 

In the context of CAPE, we leverage DevSecOps to integrate the incremental certification process 
with the continuous integration. When possible, CAPE tooling provides an interface to use in 
mainstream continuous integration systems (see for example Frama-C, VaCSIne, TSOpen, 
Approver and Steady GitLab-CI/GitHub Actions integration), existing security tooling (see VaCSIne 
integration with OpenSCAP or Frama-C SARIF adoption in Section 5.4), etc. The demonstrations of 
the verticals illustrate various continuous assessment processes where CAPE tooling is included as 
steps in the continuous integration. 
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Various additional technical challenges have been identified during the course of the CAPE activities. 
For example, static code analysis run time or security services deployment duration need to be 
reduced in order to provide a more reactive incremental assessment, as they can currently take a 
long time to complete. Solving those issues would help widespread adoption of SPARTA tools, by 
improving the reaction time and lowering the entry cost. 
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 Convergence of Security and Safety (T5.2) 

3.1 Context and Background 

This section describes the specifications efforts carried out by the CAPE partners in task T5.2 
Convergence of Security and Safety. The goal of this task is to advance the techniques and tools for 
the integration of safety and security, which is particularly important given the increased 
interconnectivity of safety-critical systems, such as autonomous cars. Since attackers could exploit 
the increased attack surface to cause harm and accidents by disabling, for example, safety features, 
countermeasures are needed. 

Figure 4 shows the T5.2 roadmap activities that were defined in D5.1 [1]. This roadmap started with 
the description of the Connected Car vertical (Vertical 1), that was detailed in D5.1 [1]. Then, from 
the identified scenarios, this deliverable goes on describing the work performed in the following 
activities: Safety Analysis, Security Analysis, Trade-off Analysis, Requirements Engineering and 
Safety-Security by design. 

The activities related to the last four phases of the Roadmap (Modelling and Implementation, 
Verification and Validation, Update  and Assessment) will be described in the deliverable 5.3 [2]. 

 

Figure 4: Roadmap for Task 5.2 activities (Source: D5.1 [1]) 

 

3.2 Technical Specifications for the Convergence of Safety and 
Security 

3.2.1 Overview 

This section builds on the contents of D5.1 [1] that took the first steps in the T5.2 Roadmap shown 
in Figure 4. For example, D5.1 already describes the Platooning scenario, including basic 
requirements as well as machinery available among the partners, such as the FTS and TEC Rovers. 
Moreover, D5.1 also contains Safety and Security analysis of the connected car scenario. Notice as 
well that this deliverable also breaks down the Platooning scenario into more specific scenarios as 
described in Chapter 5.  
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In the following sections, we describe the technical specifications developed since D5.1: 

 Section 3.2.2 describes further safety analysis for the Platooning scenario, such as Failure 
Mode and Effects Analysis (FMEA).  

 Section 3.2.3 expands the security analysis in D5.1 that included Attack Defence Trees with 
other modelling methodologies such as those based in KAOS.  

 Section 3.2.4 introduces a new automated methodology for analysing the trade-offs between 
safety and security based on safety and security architectural patterns.  

 Section 3.2.5 describes the efforts in Requirement Engineering for safety and security of the 
Platooning scenario. This resulted in a protection profile document (in Chapter 12) for a safety 
and security platoon management module.  

 Finally, Section 3.2.6 describes Safety and Security by Design methodologies developed 
based on model-based engineering and formal verification techniques. 

Those contributions that correspond to actual tools are listed in Table 3, and are comprehensively 
described in the respective subsections of Chapter 7. Contributions of other types, e.g., models, as 
well as background information are described in the following subsections. 

Tool Partner Tech. Spec. Demonstrator use case 

 AutoFOCUS3 FTS Section 7.2  Connected car: basic scenario (Section 5.2.1) 

 Maude FTS Section 7.7  Connected car: basic scenario (Section 5.2.1) 

 OpenCert TEC Section 7.9  Connected car: scenario 4 (Section 5.2.4) 

 Sabotage TEC Section 7.12  Connected car: scenario 5 (Section 5.2.5) 

 SysML-Sec IMT Section 7.16  Connected car: basic scenario (Section 5.2.1) 

 VaCSInE CETIC Section 7.17  Connected car: scenario 2 (Section 5.2.2) 

Table 3: Overview about tools involved in the context of task 5.2 

 

3.2.2 Safety Analysis 

 FMEA methodology 

In the deliverable D5.1[1] a short introduction was made about FMEA (Failure Mode and Effect 
Analysis) and how this technique is being used in the Platooning scenario. This section builds on it 
providing a more detailed description of the methodology. 

The FMEA methodology is one of the risk analysis techniques recommended by most of international 
standards as ISO 26262 “Road Vehicles Functional Safety”. This methodology points out potential 
failures to identify possible failure causes with the aim of removing and locating the failure impacts 
in order to reduce them. The FMEA process has three main focuses: 

 The recognition and evaluation of potential failures and their effects. 

 The identification and prioritization of actions that could eliminate the potential failures, 
reduce their chances of occurring or reduce their risks. 

 The documentation of these identification, evaluation and corrective activities so that product 
quality improves over time. 

Several derivatives of FMEAs have been developed, with two basic types: “Design FMEA” (DFMEA) 
and “Process FMEA” (PFMEA). Design FMEA identifies potential risks introduced in a new or 
changed design of a product/service, whereas Process FMEA deals with the manufacturing and 
assembly processes. Nevertheless, both use a common approach, by identifying: 
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 potential product or process failure to achieve the correct performance; 

 potential consequences; 

 potential causes of the failure mode; 

 application of current controls; 

 level of risk, and 

 risk reduction. 

FMEA is usually performed by filling in a table on a worksheet (see Figure 6). There is not a single 
or unique process for FMEA development, however we can always find some common elements or 
terminologies: 

 Item Function: Item function specifies the function of the part or item under review. 

 Potential Failure Mode: A potential failure mode is the way in which a failure can occur. The 
potential failure mode could be also the cause of another potential failure mode in a higher-
level subsystem or system or be the effect of one in a lower-level component. 

 Potential Failure Effects: Potential failure effects refer to the outcome of the failure on the 
system, design, process or service. The local and global impacts must be analysed. For 
example, if a local effect is an outcome with only an isolated impact that does not affect other 
function or if a global effect affects other functions/components affecting completely to the 
system. 

 Potential Failure Causes: They identify the root cause of the potential failure mode and 
provide an indication of a design weakness that leads to the failure mode. The identification 
of the root cause is very important for the implementation of preventive or corrective 
measures. 

 Severity (S), Occurrence (O) and Detection (D): Severity is the seriousness of the effects 
of the failure. It is an assessment of the failure effects on the user, surrounding people, and 
environment. Occurrence is the frequency of the failure, in other words, how often the failure 
can be expected to take place. Detection is the ability to identify the failure before it reaches 
the user. Figure 5 shows some values for these parameters. 

 

Figure 5: Score of Security, Occurrence and Detection 

 Risk Priority Number (RPN): An RPN is a measurement of relative risk. Its value is obtained 
by multiplying the Severity, Occurrence and Detection values. The RPN is determined before 
implementing recommended corrective actions, and it is used to prioritize those actions. It is 
recalculated after the implementation of the corrective actions to assure that the risk priority 
has decreased. 

𝑅𝑃𝑁 = 𝑆 ∗ 𝑂 ∗ 𝐷 

 Recommended Actions: The recommended corrective actions are intended to reduce the 
RPN by reducing the Severity, Occurrence or Detection ranking, or all three together. 

After applying the necessary recommended actions, a brief description of the current actions, the 
responsible and date, and the new security occurrence and detections are recalculated. 
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Figure 6: Example of FMEA datasheet 

As mentioned at the beginning of this Section, the FMEA methodology has been applied in the 
Connected Car vertical use case (see Section 5.3.1). 

 GSN modelling 

In D5.1 [1], we detailed other safety modelling techniques based on Goal Structure Notation (GSN). 

The Goal Structuring Notation is a semi-formal language that has been successfully used to express 

safety arguments, called GSN-arguments. GSN-arguments are trees formed by different types of 

nodes, such as Goal nodes with safety requirements, whose satisfaction is argued by strategy 

nodes, and Solution nodes referencing evidence for the satisfaction of safety requirements. We refer 

a more interested reader to [6]. Several argumentation patterns, such as GSN Hazard Pattern, GSN 

FTA Pattern and GSN FMEA Pattern have been proposed as templates for expressing safety 

patterns [7]. We applied these patterns in D5.1 for the safety analysis of the Connected Car use case 

(Vertical 1). These were modelled in the AutoFOCUS3 tool.  

Moreover, as also reported in D5.1, we extended AutoFOCUS3 to enable the quantitative evaluation 

of GSN following the work in [8]. They have proposed mechanisms for associating GSN-arguments 

with quantitative values denoting the confidence level. These values are inspired by Dempster-

Shafer Theories containing three values for, respectively, the Belief, Disbelief, and Uncertainty on a 

safety assessment. 

3.2.3 Security Analysis  

We have continued the work reported in D5.1 [1] on developing models for the security analysis of 
polymorphic systems, such as the vehicle platooning scenarios. In D5.1, we carried out the following 
activities: 

 Development of the machinery to model attack defence trees in AutoFOCUS3. 

 Designed methodologies for the automated extraction of security relevant information from 
safety cases. These methodologies are described in D5.1 and also in the paper [9]. 

 Application of these methodologies to the Connected Car use case (Vertical 1). 

Following the work reported in D5.1, we have expanded the security analysis carried out for the 
Connected Car vertical, now focusing on the basic scenario described in Section 5.2.1. For example, 
we have identified attack scenarios where intruders can cause harm, e.g., vehicle crash, by 
exploiting the communication channels used by vehicles in a platoon. These analyses have been 
used for the definition of requirements documented as a protection profile described in Section 5.3.4. 
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For the analysis of the firewall reconfiguration and update scenarios described later on in Section 
5.2.2 the KAOS goal-oriented requirements engineering methodology [10] was used. The KAOS 
methodology was used to model some of the safety and security goals of the Connected Car vertical 
related to the firewall reconfiguration and update scenarios (see Section 5.3.2). The aim was to 
experiment safety-security co-engineering [9] on the Connected Car vertical.  

The KAOS methodology provides a specification language to capture why, who, and when aspects 
in addition to the usual what requirements; a goal-driven elaboration method; and meta-level 
knowledge used for local guidance during method enactment. Hereafter we introduce some features 
of the language and the meta level that will be used later. 

The KAOS methodology language, a multi-paradigm specification formalism which combines 
semantic nets for the conceptual modelling of goals, constraints, agents, objects and operations in 
the system; temporal logic for the specification of goals, constraints and objects; and state-based 
specifications for the specification of operations. The language has a rich ontology which is 
explicitly defined and accessible at the meta-level. The KAOS language, the specification language, 
provides constructs for capturing a rich variety of concepts involved in the requirements engineering 
lifecycle, namely, goals, constraints, agents, entities, relationships, events, actions, views, and 
scenarios. There is one construct for each type of concept. The following types of concepts will be 
used in the sequel. 

 Object: an object is a thing of interest in the domain whose instances may evolve from state 
to state. It is in general specified in a more specialized way -as an entity, relationship, or 
event according as the object is autonomous, subordinate, or instantaneous, respectively. 
Objects are described formally by invariant assertions. 

 Action: an action is an input-output relation over objects; action applications define state 
transitions. Actions may be caused/stopped by events. They are characterized by pre-, post- 
and trigger conditions. 

 Agent: an agent is an object acting as a processor for some actions. An agent performs an 
action if it is effectively allocated to it; the agent knows an object if the states of the object are 
made observable to it. Agents can be humans, devices, programs, etc. 

 Goal: a goal is an objective the system should meet. Refinement links relate a goal to a set 
of subgoals. The goal refinement structure for a given system is in general an AND/OR 
directed acyclic graph. Goals often conflict with others. Goals concern the objects they refer 
to.  

 Requirement: a requirement is an implementable goal, that is, a goal that can be assigned 
to some individual agent in the system.  

Goals must be AND/OR refined into requirements. Requirements in turn are AND/OR 
operationalized by actions and objects through strengthening of their pre-, post-, trigger conditions 
and invariants, respectively. Alternative ways of assigning responsibilities for a constraint are 
captured through AND/OR responsibility links; the actual assignment of agents to the actions that 
operationalize the constraint is captured in the corresponding performance links. 

Meta-level knowledge: Domain-independent knowledge is used for local guidance and validation 
during goal-driven elaboration. In particular, a rich taxonomy of goals, requirements, objects and 
actions is defined at the meta level together with rules for specifying concepts of the corresponding 
sub-type. Here are a few examples. 

 Goals are classified by pattern of temporal behaviour they require, where <> is the operator 
for a formula f eventually becoming true (sometime in the future), and [] is the operator for a 
formula always remaining true (always in the future): 

Achieve: P => <> Q or Cease: P => <> not Q 

Maintain: P => [] Q or Avoid: P => [] not Q  
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 Goals are also classified by type of requirements they will drive with respect to the agents 

concerned (e.g., SatisfactionGoal, InformationGoal, ConsistencyGoal, SafetyGoal, 

PrivacyGoal, etc.). 

 Requirements are in the HardRequirement category if they may never be violated, or in the 
SoftRequirement category if they are likely to be temporarily violated. 

 Actions are Modify or Inspect actions according as they modify some object state or not. 

Such taxonomies are constrained by rules, e.g.,  

 SafetyGoals are AvoidGoals to be refined in Hard-Requirements. 

 PrivacyGoals are AvoidGoals on Knows predicates. 

 SoftRequirements must have associated ModifyActions to restore them. 

 

 

Figure 7: Complementary KAOS system views 

Figure 7 shows the complementary system views between KAOS sub-models: 

 The Goal model presents the intentional view of the system by modelling the system’s 
functional and non-functional goals in terms of attributes describing their specification, type, 
or priority, and inter-relationships, such as their contributions to each other, their potential 
conflicts, and their alternative refinements into software requirements and environment 
assumptions. 

 The Obstacle model focuses on what could go wrong with goal modelling. Obstacles are 
conditions that prevent reaching goals and are modelled in a similar way to risk trees. New 
goals for a more robust system are then added to the goal model as countermeasures to the 
modelled obstacles. 

 The Object model provides a structural view of the system, by defining concepts as an entity, 

attribute, relationship, event, or agent. Objects can be structured by aggregation and 

specialization with inheritance. The object model is derived from the goal model. 

 The Agent model provides a view of responsibilities of the system. It identifies the agents 

forming and their restricted behaviour to meet the goals they are responsible for. Agent 

capabilities are described in terms of ability to monitor or control the objects involved in goal 

specifications.  
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 The Operation models provides a functional view of the system by identifying operations 

performed by system agents under specific conditions. 

 Goals. Operations are described in terms of pre and post conditions and restricted further to 
meet requirements. Behaviour is described in terms of scenarios and state machines. 

Modelling Safety and Security Goals: When modelling safety-critical or security-critical systems it 
is important to capture high priority safety and security properties. These properties can be captured 
in goals of type safety and security. Given the duality between goals and obstacles, safety goals are 
obstructed by hazard obstacles, and security goals are obstructed by threat obstacles. For the latter 
disclosure obstacles obstruct confidentiality goals, corruption obstacles obstruct integrity goals, and 
denial-of-Service obstacles obstruct availability goals. 

Threat analysis is carried out by identifying threats as obstacles to security goals and refining the 
root obstacle that negates it into threat trees. Attacker goals are captured as anti-goals that are 
intentional obstacles that can be monitored or controlled by an attacker. The last step of threat 
analysis involves defining countermeasures in the form of new security goals to leaf anti-
goals/obstacles.  

3.2.4 Trade-off Analysis  

Our vision is to provide methods for automating safety and security co-analysis with patterns. These 
methods shall incorporate safety and security reasoning principles and consider the trade-offs 
between safety and security. The remainder of this section motivates why such automated methods 
are needed. 

System interconnectivity has been a motivating factor behind the evolution of, e.g., autonomous 
cars. This interconnectivity, however, leads to new challenges for safety and security. That is, an 
intruder might cause catastrophic events by remotely targeting safety-critical systems. For example, 
an intruder might exploit a connection vulnerability in an autonomous car to remotely disable safety 
features, such as airbags or the braking system, in order to put passengers in danger [9]. Also, an 
intruder tries to remain undetected so that safety incidents look like hazards. A better integration 
between safety and security is then appealing. Standards and guidelines for avionics [12] and 
automotive [13] industries have already taken steps towards this integration. They specify interaction 
points between the analyses performed by safety and security engineers. That is, when information 
gathered by safety engineers shall be made available to security engineers and vice versa [14]. The 
goal is a co-analysis between safety and security engineers to address, respectively, malfunctioning 
behaviour and intentionally caused harm on safety-critical systems. 

Such co-analyses can, however, lead to at least three interrelations:  

 Conflicts between safety and security: for example, a security function, e.g., encryption of 
messages, may increase the latency of safety flows thus reducing the capacity of the system 
to control hazards. 

 Synergies between safety and security: for example, a security function, e.g., the use of 
machine authenticated messages, plays a similar role as CRC checks used for safety. 

 No conflict nor synergy between safety and security: for example, a security function may not 
interfere with any safety function, e.g., typically, security measures for privacy or IP-related 
issues do not affect the safety of systems. 

The challenge is to understand what the trade-offs between safety and security analyses are, and 
how to proceed when conflicts or synergies are found. 

Our goal is to provide automated methods for safety and security co-analysis that account for trade-
offs. Before achieving this goal, we first investigate how much of the safety analysis and security 
analysis w.r.t pattern selection can be automated. 

Safety engineers commonly use hazard analysis and risk assessment (HARA) to identify the main 
hazards that might potentially cause harm. To control the identified hazards, safety engineers may 
use safety architectural patterns [15] (e.g., watchdogs or safety monitors). Security engineers focus 
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on threat detection and mitigation under the presence of an intruder, using, e.g., threat assessment 
and remediation analysis (TARA). Security engineers may use security patters (e.g., firewall or 
encryption) to mitigate the identified threats. 

Currently, however, safety and security analyses are mostly performed manually by safety 
engineers. That is, the reasoning of which pattern to use at which part of the target system to control 
which hazard is documented is mostly in textual form or by means of models, such as GSN-models 
[16], with limited support for automation. As a result, it is not possible to automatically check whether 
all hazards have been properly controlled by, e.g., safety patterns. 

The methodology that we are applying in SPARTA is summarized as follows: 

 First, we propose a domain specific language with safety and security patterns. 

 Based on the proposed language, we specify safety and security reasoning principles with 
patterns during the definition of system architecture for embedded systems. We specify these 
principles using logic and logic programming as they are suitable frameworks for the 
specification of reasoning principles as knowledge bases. 

 Then, we use logic programming engines to automate the trade-off analysis between safety 
and security.  

 Finally, we validate our current results with an example of safety-critical embedded system 
taken from the automotive domain. 

Figure 8 illustrates our approach. After specifying the domain specific language that includes the 
types of functions, channels, hazards, threats, and architectural patterns, we specify reasoning rules. 
In the figure, two reasoning principles are illustrated using logic programming notation. The first one 
specifies when a safety monitor (safMon) can be used to control a hazard (hz). The second reasoning 
principle specifies when a firewall can be used to mitigate a threat.  

 

Figure 8: Illustration of the methodology for trade-off analysis 

Since these reasoning rules are specified as logic programs, we can use logic programming engines 
to understand the trade-offs of placing safety and security patterns in a given architecture. Moreover, 
we can also explore the different architectures obtained by placing safety and security patterns. By 
using this machinery, engineers can automatically evaluate whether a design has enough control 
and countermeasures and understand the trade-offs between them. Formal proofs can be applied 
only on high-level models or sub-systems and the trade-offs should be performed as soon as 
possible in the development cycle. 

Another approach to support the trade-off analysis in SPARTA is provided by the OpenCert tool (see 
Section 7.9). The tool facilitates the trade-off analysis between safety and security by providing a 
collaborative editor that allows all actors (safety and security engineers) to work simultaneously on 
the same compositional assurance case of security and safety aspects of the platooning in real time, 
showing automatically the last contents provided by any of the OpenCert clients.  
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Collaborative work on the same argumentation will make it easier to see the dependencies between 
safety and security goals. To enable this collaboration, each actor should have an OpenCert client 
that is connected to the same OpenCert central server. This server will store all the data of the 
platooning safety project, such as the assurance case information. 

Since Tecnalia is the only partner using OpenCert for creating an assurance case in the Connected 
Car scenario, these collaborative features will not be necessary. For this reason, to simplify the 
OpenCert infrastructure needed to work in the Scenario 4 of the Vertical 1 (see Section 5.2.4), both 
the client and the server will be installed locally on the same computer. 

3.2.5 Requirements Engineering  

In order to have a convergence of Security and Safety it is necessary to foresee a safety/security 
co-engineering process where safety and security are analysed together. Even though there are 
many different ways for safety and security co-engineering, certification processes also need to be 
integrated. 

The effort made in the SPARTA CAPE program was to define safety and security requirements in 
the same Common Criteria protection profile (see Section 5.3.4 and Chapter 12). 

As described in Section 2.1, the V-model of the SPARTA Cybersecurity Assessment Framework 
includes a Common Criteria Assurance Class mapping. This was obtained considering the following 
mapping scheme (see Figure 9) where the various assurance classes, that characterize the activities 
carried out during a process of evaluation/certification of a TOE, go perfectly to map the needs 
defined in the various phases of the Cyber security process. 

 

Figure 9: Cyber Security process and Common Criteria Assurance Classes mapping 

There are many ways that safety and security requirements can be co-engineered. Figure 10 shows 
the planned approach for the SPARTA project, where safety and security analysis are re-reconciled 
during trade-off analysis to produce safety and security requirements that are linked together. The 
above Protection Profile approach has been experimented on the Connected Car vertical, using ISO 
26262 “Functional Safety Road Vehicles” for the safety certification, and ISO/IEC 15408 “Common 
Criteria”  and SAE J3061 “Cyber Security guidelines” for security certification.  
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Figure 10: Safety and security trade-off analysis 

Safety analysis and cybersecurity analysis are being performed in parallel. A trade-off analysis then 
needs to be carried out to determine which trade-offs between safety and security need to be taken.  

The results of the trade-off analysis are then documented in the common safety/security protection 
profile, as it is described in Section 5.3.4. 

3.2.6 Security/Safety by Design  

This section describes some of the methodologies that we have developed for ensuring the safety 
and security by design of complex systems, such as cyber-physical systems as the Connected Car 
system considered for Vertical 1. Notice that some of the methodologies described in the previous 
sections support the development of safety and security by design. For example, the use of models 
for safety and security analysis and the use of logic programming engines for trade-off analysis 
provide analysis that can be used by engineers early on to design safe and secure systems.   

In the following section, we build on these techniques and elaborate further methodologies based 
on precise mathematical models for the (automated) analysis of systems. We propose a formal 
assessment framework for specification and verification of cyber-physical systems, such as vehicle 
platooning.  

 Formal Verification of Cyber-Physical Systems 

Designing safe and secure systems is challenging as intruders may carry out attacks by exploiting 
corner-cases or implicit requirements overseen by developers. For example, several communication 
protocols have been shown to be vulnerable to attacks, some of which have been discovered 
decades after they have been developed [20]. The safety and security of vehicle platooning have 
the additional complexities of cyber-physical systems, including speed, time to react, and position. 
Engineers must ensure that intruders cannot exploit these aspects, as in the injection attacks 
described by [21].  

The use of formal verification provides further evidence about the security of platoons using CACC. 
An advantage of formal verification over, e.g., simulation analysis, lies on the fact that its methods 
are based on precise mathematical models that specify the behaviour of the analysed system. By 
using formal verification, implicit requirements are made explicit thus exposing existing 
vulnerabilities. Moreover, from such models, automated tools can determine whether undesired 
events are possible by traversing all behaviours including corner-cases. 

Existing formal frameworks for platooning [22], [23] and other agent-based cyber-physical systems 
[24], [25] have successfully been used to verify the safety of agent-based cyber-physical systems, 
such as platoon joining manoeuvres and strategies used by Unmanned Aerial Vehicles [26]. These 
frameworks, however, do not consider security aspects. They do not include intruders and therefore, 
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it is not possible to verify in such frameworks whether an intruder may attack a system and cause 
harm, e.g., a vehicle crash. 

To the best of our knowledge, this deliverable proposes the first formal framework to consider 
platooning, CACC and security. Our main contributions are three-fold: 

 Vehicle Platoon Behaviour Specification: Our first contribution is a platoon model that 
includes specifications of both cyber aspects, e.g., specifications for the communication 
protocols, and physical aspects, e.g., speed, acceleration, positions of vehicles. Our model 
enables the specification of a wide range of vehicle strategies for executing platooning based 
on soft-constraints [27], a general algebraic framework for specifying optimization problems. 
That is, our model can accommodate several strategies including those expressed as 
classical, fuzzy and probability theories and their combination. For example, strategies for 
maintaining distances between vehicles that are both safe and fuel-efficient can be reduced 
to an optimization problem based on soft constraints. 

 Intruder Models: Our second contribution consists of formal intruder models that subvert 
communication channels to carry out attacks. These intruder models are parametric on the 
intruder capabilities, i.e., the capability of either blocking messages from a communication 
channel or injecting messages into communication channels. 

 Automated Verification: Our third contribution is the implementation of our models, both 
platoon and intruder models, in Maude [28], an efficient formal verification tool based on 
Rewriting Logic. Our specifications are executable. That is, users can automatically invoke 
Maude’s search mechanisms to formally verify their platooning specifications for the 
verification of safety, e.g., vehicles not crashing, by considering security, e.g., in scenarios 
where an intruder may block or inject messages. 

Using our formal framework, engineers can evaluate whether the proposed safety and security 

measures are sufficient to mitigate the considered attack scenarios. The model we developed for 

the Connected Car vertical is described in Section 5.3.5. 
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 Risk Discovery, Assessment and Management for 
Complex Systems of Systems (T5.3) 

4.1 Context and Background 

Figure 11 provides a high-level overview about actors and systems commonly involved in the 
development and build process of a given software project. Project maintainers and contributors 
commit source code changes to a versioning control system (VCS) like Git or SVN, which is hosted 
in an organization’s own infrastructure or by providers like GitHub. Periodically or upon every commit, 
build processes compile and test the software project in question, whereby open source 
dependencies are downloaded from 3rd party package repositories like PyPI, Rubygems or npm. 
Once a new version of the respective software project is released, all relevant resources are 
packaged and uploaded to a private or public distribution site, which could be public package 
repositories (for open-source software libraries), private package repositories (for proprietary re-use 
components) or application stores like Google Play Store (for end-user applications). 

Such development and build processes, with all its actors and systems, exist for every single 
software component ending up in a given end-user application. According to a recent report from 
GitHub1, typical JavaScript (Node.js) applications depend in average on 10 direct and 683 transitive 
components. In other words, the security of a given Node.js application depends on the security 
posture of almost 700 other projects. 

 

Figure 11: Actors and systems part of typical, open source-based software development 

Figure 12 illustrates the focus of Task 5.3 regarding such development and build processes: 

 On the one hand, security vulnerabilities can be accidently introduced by benign developers, 
when committing source code in their respective VCS. Such security-relevant bugs happen 
on a regular basis and affect any direct or indirect user of the respective component, who 
downloads affected component releases during their own development and build process. 
As mentioned above, a typical application depends on many upstream components 
(transitive dependencies), and the application developer must track known vulnerabilities of 
those dependencies in order to update to non-vulnerable component versions where 
necessary. 

 On the other hand, attackers deliberately try to inject malicious code into open source 
components in order to infect downstream consumers. Those attacks became more 
prominent in the past, e.g., Sonatype noticed a 430% year-over-year growth of such supply 
chain attacks in a recent report from 20202 (even though on relatively low numbers).  

                                                

1 https://octoverse.github.com/static/2020-security-report.pdf  

2 https://www.sonatype.com/software-supply-chain-2020  

https://octoverse.github.com/static/2020-security-report.pdf
https://www.sonatype.com/software-supply-chain-2020
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Figure 12: Security threats targeting such actors and systems 

4.2 Technical Specifications 

4.2.1 Overview 

Several contributions developed in the context of the SPARTA CAPE program address the above-
mentioned threats related to the security of software supply chains. 

Figure 13 positions those contributions with respect to common development and build 
environments. Most contributions, e.g., Buildwatch (Section 7.3), Frama-C (Section 7.4) or Approver 
(Section 7.1), are executed as part of build processes, e.g., automated jobs executed by build 
servers such as Jenkins. Other contributions target package repositories such as Google’s Play 
Store, e.g., the Logic bomb detection (Section 7.6), whereas others read information from versioning 
control systems such as Git, e.g., SafeCommit (Section 7.13). A detailed description of integrations 
and synergies of all contributions can be found in deliverable D5.3 [2]. 

 

Figure 13: Positioning of Task 5.3 contributions 

Those contributions that correspond to actual tools are listed in Table 4, and are comprehensively 
described in the respective subsections of Chapter 7. Contributions of other types, e.g., datasets or 
models, as well as background information are described in subsections 4.2.2 and 4.2.3. 
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Partner Contribution Tech. Spec. Technologies Covered Vertical 

UBO Buildwatch Section 7.3 Agnostic e-Government 

CEA Frama-C Section 7.4 C Connected Car 

CINI Approver Section 7.1 Java (Android) e-Government 

SAP Steady Section 7.15 Java, Python e-Government 

SAP Project KB Section 7.10 Agnostic e-Government 

UNILU Logic Bomb Detection Section 7.6 Java (Android) e-Government 

UNILU SafeCommit Section 7.13 C/C++ Connected Car 

UKON Supply chain visualization Section 7.18 Java, Python e-Government 

Table 4: Overview about tools extended/developed in the context of task 5.3 

4.2.2 Known and Unknown Vulnerabilities 

This section describes the co-training approach used by UNILU’s tool described in Section 7.13, as 
well as SAP’s work on fix commit identification. Both contributions relate to the use of artificial 
intelligence to automatically identify or classify commits in source code repositories as security 
relevant. This work is significant to accelerate the detection of new security vulnerabilities on the one 
hand (Section 4.2.2.1), and the detection of vulnerability patches on the other hand (Section 4.2.2.2). 
The former promises to reduce the number of security vulnerabilities in released software 
components, the latter is meant to accelerate and automate the curation of vulnerability databases, 
which suffer from deficiencies regarding coverage, quality and timeliness [29][30][31]. 

 New approaches for commit-classification 

According to the meeting on Oct 9th, the tool currently available and described in Section 7.13 does 
not reflect the latest research. Initially, the goal of UNILU was to develop a tool able to detect both 
vulnerability introducing commits and vulnerability fixing commits. However, thanks to several 
discussions with researchers from SAP in the context of SPARTA, UNILU researchers realized that 
SAP already works on the detection of vulnerability fixing commits. Rather than competing, both SAP 
and UNILU decided to join forces: Together they can propose a generic approach and tool aiming at 
detecting security-relevant commits, i.e., commits that either introduce or fix a vulnerability. UNILU 
will focus on the detection of vulnerability introducing commits and SAP will focus on the detection 
of vulnerability fixing commits. 

A major issue with any vulnerability introducing commit detection endeavour is the lack of labelled 
data, i.e., a dataset in which samples are correctly labelled as vulnerability introducing commit or 
not. While researchers can collect many hundreds of thousands commits, acquiring even a modest 
dataset of known vulnerability introducing commits requires a massive effort.  

One semi-supervised learning approach, called co-training and introduced by Blum and Mitchell [32] 
will be investigated in the course of SPARTA. On a Web page classification problem, Blum and 
Mitchell [32] used two classifiers in parallel to complete training sets with unlabelled data. They 
ended up with an error rate of just 5% based on both the page content and hyperlinks over a test set 
of 265 pages: only 12 pages labelled (3 as positives course-pages, 9 negatives) and around 800 
unlabelled. They demonstrated that Co-Training achieved performances on this problem that was 
unmatched by standard, fully supervised machine learning methods. It is a technique that has 
industrially proven a reduction of false positives by a factor of 2 to 11 on specific element detection 
on a video [33], and for which conditions of maximum efficiency it induces were analysed [34]. 

Co-Training Principle: When trying to detect vulnerability introducing commits, an important point 
is that unlabelled commits are unlabelled not because they are not vulnerability introducing commits, 
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but because it is unknown whether they are vulnerability introducing commits. Arguably, in any large-
enough collection of commits, it is reasonable to assume at least some of them are actually 
vulnerability introducing commits. The insight behind trying Co-Training with vulnerability introducing 
commits detection is the following:  

 By building two preliminary and independent vulnerability introducing commit classifiers, the 
unlabelled commits predicted to be vulnerability introducing commits by both classifiers could 
be used to augment the training set. By repeating this step, it might be possible to leverage 
the vast space of unlabelled commits. 

Description of the algorithm: [32] showed that the co-training algorithm works well if the feature 
set division of dataset satisfies two assumptions: 

1. each set of features is sufficient for classification, and 

2. the two feature sets of each instance are conditionally independent given the class.  

Both vulnerability introducing commits features set and the alternate feature set can be split into two 
subsets of features: one based on code metrics, and one based on the commit message.  

Previous work on security patches detection showed that, for the New Feature set, the two resulting 
feature subsets are independent, and thus satisfy the two main assumptions for Co-training [35]. 

Once these two assumptions are satisfied, the Co-training algorithm considers these two feature 
sets as two different, but complementary views. Each of them is used as an input of one of two 
classifiers used in Co-training: one focused on code metrics, and the other on commit messages. 
The algorithm is given three sets: a positive set, a negative set, and a set of unlabelled.  

As shown in Figure 14, the training process is an iterative process in which each classifier (h1 and 
h2 on Figure 14) is initialized being just given the labelled inputs LP. From the whole set of 
unlabelled, a subset is randomly selected U'. At every round, each classifier is trained and chooses, 
from this subset of unlabelled commit, an arbitrary amount of commits to be added. The former 
training set and the selected commits form the new training set. The commits are confirmed to 
augment pseudo labelled classes (negatives and positives) based on the confidence of the classifier 
(distance from the hyperplane) and on the agreement of the other classifier. The new round starts 
by training the classifiers a new, based on the augmented just-labelled set. The process keeps going 
until we reach a predetermined size of label set. U' is refurbished every round by as many commits 
that were taken from it, using commits left from U. 

 

Figure 14: Co-Training (Figure extracted from [35]) 
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 Commit2Vec – Learning distributed representations of code changes 

Deep learning methods have been proven successful in a variety of problems, such as image 
classification, natural language processing, speech recognition, and others. More recently there is a 
growing interest in using similar approaches to programming-language related tasks [39] [40] [41] 
[48], using code as the main input source. 

To this end, a key prerequisite is the ability to represent the code (or code fragments) as a numerical 
vector (embedding), similarly to the word2vec [43] approach for natural language processing (NLP). 
Such vectoral representation should have the property of mapping similar instances of code 
elements onto close points in the embedding vector space. Using NLP methods to build 
representations of software code is meaningful, indeed, as empirically shown in [42]. Source code 
is characterized by similar statistical properties as natural language (naturalness hypothesis [37], 
which is not surprising considering that code is written and read by humans, in addition to being 
executable by machines). On the other hand, there are significant differences, since code is written 
in a programming language, which is a formal language: it presents minimal ambiguity, large re-use 
of identical “sentences”, and reduced robustness to small changes compared to natural language. 
In addition, the semantic units of text, as sentences or paragraphs, are typically relatively short, 
present a high level of locality, and they rarely used more than one time in the text. On the contrary, 
(sequences of) code statements or functions are clearly delimited, they may be used multiple times 
in different contexts, and present long range correlations (i.e., the semantic of a statement can be 
influenced by other statements in a somewhat distant part of the code). 

For these reasons, beyond NLP-inspired methods, a number of representations that use the 
structural nature of code have been proposed, such as using data flowgraphs, control flow graph 
and abstract syntax trees, and used to perform tasks as variable and method naming [36] [40], clone 
detection [47], code completion [45] [46],summarization [38], and algorithm classification [44].  

Due to the complexity of the code structure, training a deep learning algorithm to solve a code-related 
task needs a large amount of labelled data, which in many practical cases is not available. Ideally, 
we would like to build a low-dimensional representation using a task where a large amount of labelled 
data is available (or can be obtained in a relatively inexpensive way), and use the learned 
representation to solve a different (target) task, where fewer data point are available, but enough to 
finetune the model (transfer learning). 

In the following, we propose a new model for representing code changes, called commit2vec, which, 
along the lines of [40], uses paths from the abstract syntax tree (AST) to build a representation of 
code changes. 

Finding the best-suited representation of code in machine learning frameworks is an open research 
question. The survey in [37] classifies the representation of code into three main categories: 

 token-level models treat code as a sequence of tokens in a similar way as traditional natural 
language processing (NLP) techniques represent text as a sequence of words in a given 
language 

 syntactic models leverage on the underlying structural information of code through their 
abstract syntax tree (AST) representations 

 semantic models represent code as a graph generalizing both token-level and syntactic 
models 

The concept of word embeddings, made popular by the work in [43], allowed a breakthrough in many 
NLP-related tasks. Over the last few years, approaches in-spired on the same concept are emerging 
in the domain of source code analysis. The work in [41] presents a survey of different works that use 
the concept of embeddings at different granularities of code. 

In this work, we introduce a method to represent source code changes (such as those contained in 
the commits of a source code repository). Differently from the approaches that represent a static 
snapshot of code [40], or that represent changes in small code fragments [48], we focus on 
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representing full commits, which can contain changes across multiples methods, classes, and even 
files. 

Our method uses code2vec as  a  basic  building  block: for  a  given  commit,  we  extract  all  the  
methods  that are  changed  and  use  the  same  pre-processing  steps  as code2vec to extract a 
set of paths over the AST (context in the terminology of [40]); we then discard the contexts that are 
identical in the code before and after the commit, and use the remaining paths as the basis for the 
commit representation. 

More precisely, let a code commit, C, be defined as a change in the source code of a given project 
in a set of files fi∈F, where i∈[1..I], where I is the number of files changed within C. 

The concept of a commit implies a prior and a posterior version of files fi, which we denote as fi,pre 
and fi,post respectively. 

Analogously to textual tokens in token-based representations, our model uses paths constructed 
traversing the AST of each method changed in C. Consistently with the terminology of [40], we call 
contexts the triplets of two terminal nodes and their connecting path on the AST. Let the union of all 
the contexts of the prior versions of  all  methods m1..J,pre in  all  files f1..I,pre in  commit C be  defined  
as Spre={p1,p2, ...,pk} and  the  union of all the contexts of the posterior versions of all methods 
m1..J,postin  all  files f1..I,postin  commit C be defined as Spost={p1,p2, ...,pk}. We then define the set of 
contexts describing commit C as the symmetric difference between Spre and Spost: 

SC = Spre ∆ Spost ≡ {p: p∈Spre ∪ Spost, p/∈Spre ∩ Spost} 

Intuitively, the symmetric difference SC between the two sets of contexts contains the contexts that 
have been changed in the commit C. SC is the input provided to the neural network architecture that 
yields a distributed representation of the code changes performed in commit C.  In order to generate 
meaningful representations, the neural network typically requires large amounts of data to be trained 
on. Unfortunately, in many applications the data available is not sufficient. In these cases, transfer 
learning techniques are applied, where the network is pre-trained on a similar task for which large 
amounts of data are available, often called the pretext task, and then fine-tuned on the target task 
using a smaller dataset. 

 

 

Figure 15: commit2vec method 

In Figure 15 the prior (fpre) and posterior (fpost) versions of all code-relevant files in a commit, C, are 
transformed into contexts through an AST-based code representation, generating both Spre and Spost.  
The commit representation, SC, is computed as the symmetric difference between Spre and Spost and 
is provided as the input to a neural network. In this diagram, the exemplified task is that of 
classification of security and non-security relevant commits. 
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4.2.3 Supply Chain Attacks 

Figure 16 provides an attack tree illustrating various attack vectors that can be used by malicious 
actors to inject malicious code into legitimate open source projects. This version is a slightly modified 
version of the tree presented in deliverable D5.1[1] and has been published by SPARTA partners at 
DIMVA 2020, the 17th conference on the Detection of Intrusions and Malware & Vulnerability 
Assessment. 

 

Figure 16: Attack tree to inject malicious code into dependency trees (taken from [49]) 

With respect to this attack tree, the technique explained in Section 4.2.3.3 addresses the nodes 
“Inject during the Build” and “Inject into Repository System”, both of which have the common 
characteristic that malicious code in a distributed package is not present in the respective source 
code repository. 

The proposed detection technique compensates the lack of reproducible builds, which allows to 
verify that a given package has been produced from a given commit or tag in some versioning control 
system.  

The model presented in Section 4.2.3.1 aims to determine (predict) the attractiveness of open source 
projects for attackers depending on various project features. As such, it covers all attack vectors, 
and aims to identify projects that deserve particular attention and protection. 

 Metrics for OSS components’ attractiveness to attackers 

This section describes the development of a method aiming to evaluate open source software 
components in terms of their attractiveness to attackers. This method can reflect the way attackers 
target open source supply chains and select such components for malicious acts.  

The overall idea is to identify metrics and information related to the factors that affect the selection 
of OSS components from possible attackers and produce an algorithm that allows to rate any OSS 
components with respect to these factors. 

Nowadays, in view of the openness of information and within the context of interoperability and 
reusability of code and components, a lot of public repositories have been created, hosting 
packages, code and components which are shared between different types of software, suites, 
platforms, etc. Although this obviously contributes to the exchange and improvement of code 
development and, thus, of software engineering and development, it also offers illegal hackers and 
cybercriminals numerous ways of taking advantage of this. More specifically, since the publicly 
available components will, indeed, be used in several, different types of software, cybercriminals 
tend to attack these components aiming to inject malicious code into the software. 

Therefore, several scientists, (security) organizations, agencies, institutions, etc. look for ways to 
detect these injections as easily and fast as possible. Some publications, such as [50] where a 
pragmatic approach to facilitate the impact assessment is presented, concern known vulnerabilities 
in open-source software libraries; their approach is independent of specific kinds of vulnerabilities or 
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programming languages and capable of delivering immediate results. Furthermore, [51] addresses 
the over-inflation problem of academic and industrial approaches for reporting vulnerable 
dependencies in OSS (Open-Source Software software). Other publications, such as [52], [53], 
[54],[55] and [56] concern the detection, assessment, and mitigation of vulnerabilities. 

The aim of the methodology to be presented below is to set the foundations for the definition, 
quantification, and calculation of the “attackability”, a notion that represents the probability of an OSS 
component to become a target of a cybercriminal.  

Work Description  

In this Section, we provide the definition of the concept of attackability as well as a description of our 
methodology for the quantification and calculation of this concept. 

We propose the definition of attackability through probability theory. Let 𝑝 denote the probability that 
a repository or package will be attacked. Obviously, it holds that: 

0 ≤ 𝑝 ≤ 1 (1) 

and henceforth, we will say that “the package /repository under consideration is attackable with 

probability 𝑝” or, simply, that its “attackability is (equal to) 𝑝”. 

Factors affecting attackability 

In the absence of a concrete theory, we follow a probabilistic approach, and we seek to determine 
the factors, on which attackability depends. To this purpose, we employ a nonlinear regression 
technique, with the aid of which we will determine these factors as well as the dependence of 
attackability on these parameters; i.e. a mathematical formula, which shall be used for the calculation 
of the attackability. 

First, we make a fundamental assumption; for the repositories / packages of interest there is neither 
a way to determine the vulnerabilities of the package, nor any prior knowledge about them. 
Additionally, the factors fall within the following principal categories: 

 Ownership: Type of owner the package belongs to (e.g. user or organisation). We assume 
that a repository owned by a user is likely to be more attractive as a target. The reasoning 
behind this is that organisations tend to adopt stricter security policies and enforce better 
security practices, at least the mandatory ones. Furthermore, organisations usually have 
dedicated departments or teams or partners, who make sure their packages / repositories 
stay up to date as concerns security, latest security patches against vulnerabilities. Moreover, 
organizations usually carry out more extensive testing; either with the aid of dedicated teams 
and experts or with the help of the developers, researchers, collaborators, etc. 

 Maturity: Package’s age calculated using the timestamp of when the repository was created 
on the host. Intuitively, on the one hand, the more mature a package is, the more difficult 
dissuasive it is to attack; on the other hand, an old package that is not likely to be used may 
not be considered to be an attractive target. However, there are cases where abandoned 
packages were attacked, but we need to highlight that our approach aims to define a 
methodology, which will be able to compute the probability that a package will be attacked, 
based on specific assumptions. 

 Reach & Popularity: This category includes factors related to the popularity of the packages. 
Intuitively, the more popular a package/ repository is, the more attractive to attackers it is 
expected to be. This is because a more popular package / repository will probably allow 
attackers to affect a larger audience, contrary to a less popular one.  

 Activity: a package / repository with more activity around it from the development team is 
expected to be more attractive to attackers, as it would be easier for the attacker(s) to inject 
the malicious code in the former (even pretending they are contributors / collaborators) or 
hide the malicious code more easily, given there is a large number of commits, issues, 
releases, etc.  
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 Responsiveness: Intuitively, the higher the responsiveness, the more difficult it will be for 
an attacker to attack. This is because responsiveness is considered to indicate that people 
frequently contribute to, work on, review the repository / package, so any changes are likely 
to be reviewed and checked soon enough. 

Machine Learning Methodology 

In the context of the development of a methodology, which will be suitable for the fast computation 
of the “attackability” of a package of interest, we present the concrete steps taken to measure the 
“attackability” of a package of interest.  

To this purpose, we employ a nonlinear regression model of adaptive polynomial degree with the 
following associated Objective / Cost function: 

 𝐼(𝜃) =
1

2𝑚
∑ {𝑤𝑖[𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜃)]

2
}
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𝑖=1

 +
1
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𝑗𝑓

𝑗=𝑗0
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where: 

𝑚 denotes the number of examples, 

𝑛 stands for the number of features (predictors),  

𝑤𝑖, 𝑖 = 1,2, . . , 𝑚 represents the observation weights, chosen so that different observations in 
(2) have the corresponding influence on the model to be fitted, 

𝑥𝑖, 𝑖 = 1,2, . . , 𝑚 denote the predictors for observation 𝑖 (selected features),  

𝜃𝑖, 𝑖 = 1,2, . . , 𝑛 represents the regression coefficients (so 𝜃 is a vector, the elements of which 

are 𝜃𝑖),  

𝑦𝑖 , 𝑖 = 1,2, . . , 𝑚 are the values of “attackability”, associated with the respective features 𝑥𝑖, 𝑖 =
1,2, . . , 𝑚, and 𝜆𝑗, 𝑗 = 𝑗0, . . , 𝑗𝑓 (with 𝑗0 ≥ 1, 𝑗𝑓 ≤ 𝑛) stand for regularisation (scaling) factors, 

which can be used to control the contribution of a number of features and partially address 
overfitting. 

Finally, 𝑓(𝑥, 𝜃) denotes the nonlinear regression model. So, we seek to solve the following 
minimisation problem:  

 𝑚𝑖𝑛
𝜃

{𝐼(𝜃)} (3) 

Thus, the solution of (3) with respect to 𝜃 will yield the desired approximation of “attackability”. The 
list of possible (the algorithm will determine which ones shall be included in the final model) features 
to be employed by our model, so as to compute the “attackability” of a package under consideration 
is presented in Table 5 below.  

Data Description Category Intuition / rationale 

Owner Type of repo's owner: user or 
organisation 

Ownership More attractive to attackers in case of 
a user-owner, less attractive otherwise 

Created 
Timestamp 

Timestamp of when the repository was 
created on the host. It is used to 
calculate the age of the component 

Maturity Less attractive if the package is too old 
or too young, more attractive 
otherwise  

Releases Total number of releases for the 
package 

Maturity The higher the number of releases, the 
more attractive to attacks 

Dependent 
Packages 
Count 

Number of other packages that declare 
the package as a dependency in one or 
more of their versions 

Reach & 
Popularity 

The higher the dependent packages 
count, the more attractive to attackers 
the package 
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Data Description Category Intuition / rationale 

Dependent 
Repositories 
count  

The total count of open source 
repositories that list the package as a 
dependency  

Reach & 
Popularity 

Same as in the previous one 

Stars count  Number of stars on the repository Reach & 
Popularity 

The more popular, the more attractive 

Subscribers 
count 

Number of subscribers to all notifications 
for the repository 

Reach & 
Popularity 

The more popular, the more attractive 

Forks count Number of forks of the repository Reach & 
Popularity 

The more popular, the more attractive 

Contributors Number of unique contributors that have 
committed to the default branch. 

Activity The more the contributors, the more 
attractive to attackers it is expected to 
be 

Commits Total number of commits Activity The more the commits, the more 
attractive to attackers 

Open Issues 
Count 

Number of open issues on the repository Activity The more open issues, the more 
attractive to attacks it is expected to be 

Issue_Created 
At 

Calculate time needed to close an issue Responsiveness The higher the responsiveness, the 
less attractive it is expected to be 

Table 5: List of possible features for the regression model 

 Dataset with malicious open source components 

This section describes a public dataset with malicious open-source components used in real-world 
attacks, the methodology used to construct the dataset as well as plans to extend and use the 
dataset. 

Methodology 

The dataset comprises the subset of malicious packages used in real-world attacks for which the 
actual malicious code could be obtained (typically a compressed archive). The compilation took 
place between July 2nd and August 2nd, 2019 and was updated on 27th of January 2020. The 
programming languages JavaScript with its package repository npm, Java (Maven Central), Python 
(PyPI), PHP (Packagist) and Ruby (RubyGems), which are the most popular languages according 
to newly created GitHub repositories in 2018 [57], are covered by the dataset. 

During that time, the vulnerability database Snyk3, language-specific security advisories, and 
research blogs were reviewed to identify malicious packages and possible attack vectors. It must be 
noted that these sources solely mention the packages’ names and affected versions, thus, the actual 
malicious code has to be downloaded from other sources. However, such malicious packages are 
typically not available anymore on standard package repositories of the respective programming 
language, e.g. npm or PyPI. Instead, where possible, they were retrieved from deprecated mirrors, 
internet archives, and public research repositories. If the code of a malicious package could be 
retrieved, it was analysed and categorized manually. This was done in order to confirm the packages’ 
maliciousness, map them to the existing attack trees or extend them if necessary. The publication 
of malicious versions of a package are dated according to Libraries.io4, a service that monitors 
package releases across all major package repositories. Advisories and public incident reports are 
used to date the public disclosure of the malicious package. 

                                                
3 https://snyk.io  

4 https://libraries.io/  

https://snyk.io/
https://libraries.io/
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Description 

The dataset contains 174 packages and was compiled according to our methodology as described 
above. A total number of 469 malicious packages could be identified. Additionally, 59 packages were 
found that could be identified as proof of concept (published by researchers) and hence are excluded 
from further examination. Eventually, we were able to obtain at least one affected version for 174 
packages. The rate of successful downloads of malicious packages for npm is 109/374 (29.14%), 
for PyPI 28/44 (63.64%), for RubyGems 37/41 (90.24%), and for Maven Central 0/10 (0.00%). All 
statements and statistics below refer to the set of downloaded packages. Please refer to [49] for the 
complete description of the dataset. 

The dataset consists of 62.6% packages published on npm and hence are written forNode.js in 
JavaScript. The remaining packages were published via PyPI (16.1%, Python) and via RubyGems 
(21.3%, Ruby). Unfortunately, a malicious Java package targeting Android developers could not be 
downloaded. For PHP, we were not able to identify any malicious package at all. 

Figure 17 visualizes the publication dates of the collected packages which range from November 
2015 to November 2019. The publication and disclosure dates are identified according to the upload 
time of the package and the publication date of the corresponding advisory identifying the respective 
version as malicious. A trend for an increasing number of published malicious packages is apparent. 
While malicious packages for PyPI are known to date back to 2015 and since then are increasing, 
npm gained a massive amount of malicious packages in 2017, and malicious packages on 
RubyGems experienced a boom in 2019. 

 

Figure 17: Publication dates of collected packages (from [49]) 

Figure 18 shows that on average a malicious package is available for 209 days (min=−1, max= 
1,216, ρ= 258, x̃=67) before being publicly reported. A minimum of −1 days was reached for 
npm/eslint-config-airbnb-standard/2.1.1 which was affected by npm/eslint-
scope/3.7.2. Even though the infection of npm/eslint-scope/3.7.2 was known, the package 

was still in use due to the developers’ re-packaging strategy. The maximum of 1,216 days was 
reached by npm/rpc-websocket/0.7.7 which took over an abandoned package and went 

undetected for a long period. In general, this shows that packages tend to be available for a longer 
period. While PyPI has the highest average online time, that period varies the most for npm, and 
RubyGems tends to detect malicious packages timelier. 
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Figure 18: Temporal distance between date of publication and disclosure (from [49]) 

As shown in Figure 19, most packages aim at data exfiltration. Commonly, the data of interest is the 

content of /etc/passwd, ∼/.ssh/*, ∼/.npmrc, or ∼/.bashhistory. Furthermore, malicious 

packages try to exfiltrate environment variables (which might contain access tokens) and general 
system information. Another popular target (7 reported packages, 3 of them available in our dataset) 
is the token for the voice and text chat application Discord. A Discord user’s account may be linked 
to credit card information and thus be used for financial fraudulence. Moreover, 34% of the packages 
function as Dropper to download second stage payload.  Another 5% open a backdoor, i.e. ṙeverse 
shell, to a remote server and await further instructions. 3% aim to cause a denial of service by 
exhausting resources through fork bombs and file deletion (e.g. npm/destroyer-of-
worlds/1.0.0) or breaking functionality of other packages (e.g. npm/load-from-cwd-or-
npm/3.0.2). Only 3% have financial gain as primary objective by for instance running a cryptominer 

in the background (e.g. npm/hooka-tools/1.0.0) or stealing cryptocurrency directly (e.g. 

pip/colourama/0.1.6). In addition, combinations of the above-mentioned objectives might occur. 

 

Figure 19: Primary objective of the malicious package per package repo and overall (from [49]) 

Malicious actors often try to disguise the presence of their code, i.e. hindering its detection by sight. 
In our dataset nearly the half of the packages (49%) employ some kind of obfuscation. Most often a 
different encoding (Base64 or Hex) is used to disguise the presence of malicious functions or 
suspicious variables such as domain names. A technique often used by benign packages to 
compress source code and thus save bandwidth is minification. However, this is a welcome 
opportunity for malicious actors to sneak in extra code which is unreadable for humans (e.g. 
npm/tensorplow/1.0.0). Another way to hide variables is to use string sampling. This requires a 

seemingly random string which is used to rebuild meaningful strings by picking letter by letter (e.g. 
npm/ember-power-timepicker/1.0.8). In one case the malicious functions are hidden by 

encryption. The package npm/flatmap-stream/0.1.1 leverages AES256 with the short description 

of the targeted package as decryption key. That way, the malicious behaviour is solely exposed 
when used by the targeted package. Furthermore, combinations of the above-mentioned techniques 
exist. 
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Maintenance and use 

The complete dataset is available for free on GitHub5.  However, access will be granted on justified 
request only due to ethical reasons. The dataset is structured as follows: package-
manager/package-name/version/package.file. Malicious packages are grouped by their 

originating package manager on the first level. Further, multiple affected versions of one package 
are grouped under the respective package’s name. As example for the affected version of the well-
known case of event-stream it is: npm/event-stream/3.3.6/event-stream-3.3.6.tgz. 

After making the dataset public, it received several contributions from 3rd parties, including the 
security team of a well-known provider of Java-related open-source tooling. In the meantime, the 
dataset grew from 174 to 1,083 samples (as of December 7th). 

Going forward, the open-source dataset will allow researchers within and outside of the SPARTA 
research project to study real-world supply chain attacks in order to develop detective and preventive 
safeguards. 

The usefulness of such a public dataset is illustrated by three usages within the SPARTA CAPE 
program: The data will be one important input to train models that predict the attractiveness of open-
source projects from an attacker perspective (see Section 4.2.3.1), thus, projects that require special 
attention and protection. Moreover, the dataset entries will be transformed into YAML statements 
according to the format of Project KB (see Section 7.10), which makes it possible to consume this 
data in automated scanners such as Eclipse Steady (see Section 7.15). Furthermore, the dataset 
was used to demonstrate the feasibility of Buildwatch (see Section 7.3). 

 Commit-based detection of malicious packages 

This section presents an approach to detect malicious open source packages published on 
distribution platforms like PyPI (Python) or npm (Node.js), and which is based on the intuition behind 
reproducible builds6: it is suspicious if the code in the source code repository differs from the code 
in the artefacts distributed in the package repository. In this respect, we propose an approach to 
detect code injected into software packages by comparing their distributed artefacts (e.g., those in 
PyPI) with the source code repository (e.g., those in GitHub). The proposed approach can be used 
to detect injected code in typo squatting and hijacked packages. 

For example, consider a typo squatting Python package jeIlyfish, discovered by Lutoma [58], 

which was persistent in PyPI for nearly a year until its detection on December 1, 2019. jeIlyfish 

mimicked the popular package jellyfish (the first L is an I) to steal SSH and GPG keys. Our 

technique processes the suspected jeIlyfish artefacts to identify the corresponding source code 

repository. Then we compare the file hashes and contents extracted from the artefacts with those 
obtained from the source code repository. Our tool detects two injected files: setup.py, and 

_jellyfish.py and reports several lines in _jellyfish.py to contain suspicious API calls for 

decoding and executing the malicious code. 

As said, the approach compares distributed artefacts in package repositories (e.g., PyPI) and the 
source code repository (e.g., GitHub) to detect the injected code by the following steps: 

1. For each package, we identify the source code repository by mining metadata properties 
(e.g., homepage). 

2. We clone the repository and extract all the commits. For each commit, we check out each 
involved file, calculate the file hash, and collect the file content. The file hashes and contents 
are stored into a database. 

3. We download each artefact of the package from the package repository, decompress it into 
files. For each file, we calculate the hash and collect the file content. 

                                                
5 https://github.com/dasfreak/Backstabbers-Knife-Collection  

6 https://reproducible-builds.org/  

https://github.com/dasfreak/Backstabbers-Knife-Collection
https://reproducible-builds.org/
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4. Then we compare the file hashes and contents from step (3) with those extracted from step 
(4). This comparison results in files (and their lines) whose hashes are not recorded in (differ 
from) the source code repository. 

5. For the unknown lines, we check the presence of API calls (e.g., urlopen) and imports (e.g., 

import os) using regular expressions. 

During the packaging process, the packaging tools (e.g., setuptools in Python) create new (benign) 
metadata files (e.g., METADATA, WHEEL), these files are specified in PEP 4277. Hence, we 
exclude such files from our analysis and focus on the differences in files containing executable code 
(e.g., .py, .js, .rb). 
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 Connected and Cooperative Car Cybersecurity 
Vertical Technical Specifications (Vertical 1) 

5.1 Context and Background 

The “Connected and Cooperative Car Cybersecurity” vertical (a.k.a. Connected Car Vertical) has as 
goal to advance the cyber-security of connected vehicles driving in platoon mode. A platoon is a 
sequence of vehicles as depicted by Figure 20, it is composed by a leader vehicle and a sequence 
of followers.  

The increased interconnectivity between vehicles in the platoon and their increased level of 
autonomy raise both the attack surface of these systems and the degree of damage that intruders 
can cause. Indeed, cyber- attacks can exploit vulnerabilities in the available communication channels 
to cause catastrophic events, i.e., great human and material loss. For more details about the user 
requirements for the Platooning scenario, we refer the interested reader to D5.1 [1]. 

Each vehicle in the platoon communicates using dedicated communication channels. Moreover, 
each vehicle in the platoon possesses sensors, such as cameras, distance sensors, enabling a 
highly automated mode of operation. Indeed, when formed, the platoon requires only driver 
supervision.  

 

Figure 20: Platooning scenario 

The use of communication channels and sensors enable the gap between vehicles to be greatly 
reduced. This means that a vehicle, such as Heavy-Duty Vehicles, can greatly profit from the wind 
shadow of the following vehicle, thus greatly reducing fuel consumption. Studies have shown that 
fuel consumption can be reduced by 17% in a platoon formation with reduced gaps between vehicles 
[59][11]. 

However, the reduced gap between vehicle has serious consequences to platoon safety. On the one 
hand, the reduced gap improves safety as it avoids vehicles that are not part of the platoon to move 
between two platoon vehicles. On the other hand, the reduced gaps increase the chance of accidents 
and potentially causing harm. 

As a control measure, the platooning greatly relies on the communication channels to reduce the 
reaction time of vehicles in case of a vehicle ahead of the platoon reduces its speed or even needs 
to perform an emergency brake. Figure 21 illustrates the reduction of reaction time resulting from 
the use of the platooning communication channel [60]. The reaction time without relying on any 
automated function, such as advanced driving assistants, is greatly increased by the time that 
humans perceive that the vehicle ahead is reducing its speed and also by the time that it takes to 
react to this. The reaction time is reduced by using automated driving assistants placed in a vehicle, 
e.g., sensors. However, these functions still take time to determine that the vehicle ahead is starting 
to stop, as they need to identify the change in speed (or gap to the vehicle immediately in front). 
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Figure 21: Illustration of the reduction of reaction time by using the platooning communication channels 

By using the communication channels, on the other hand, the reaction time is greatly reduced as the 
vehicle in front can simply inform vehicles in the back that it is reducing its speed (and even to which 
speed), enabling the vehicles in the back to react almost immediately and also reducing their speed 
in order to avoid accidents. The delay caused by this communication is orders of magnitude lower 
than the delay caused by human/sensor perception. 

However, the use of communication channels leads to security challenges. Indeed, as described in 
the literature [61] [62] [63], intruders can impersonate a vehicle and inject messages with false 
information about a vehicle speed and position to cause harm, namely, accidents. Intruders can 
carry out such attacks for financial motivations like, e.g., to carry out ransom attacks or to steal the 
transported cargo. To increase the security of vehicle platooning against these types of attacks, 
countermeasures based on plausibility checks have been proposed. These plausibility checks cross 
check the consistency of the information received by a vehicle with, e.g., the data collected by its 
other sensors. 

5.2 Scenarios 

In the following sections, we describe five scenarios involving the security of vehicle platooning. Each 

scenario has been carefully selected so that they focus on different aspects for the safety and 

security of vehicle platooning, investigating how the considered CAPE tools can support the safety 

and security process.  

 Basic Scenario: The first scenario's goal is to evaluate the process, from security analysis, 
requirements to implementation and verification and validation, for increasing the security of 
vehicle platooning when assuming a malicious intruder that can manipulate the 
communication channels.  

 Firewall updates: The second scenario considers the update of firewall policies so to ensure 
safety and security in a continuous fashion. 

 Verification tooling: The third scenario focuses on the verification tools that can be used to 
verify the security of vehicle platooning. 

 Safety and Security compliance assessment and certification: The fourth scenario 
considers the generation of assurance cases for certification standards, such as the ISO 
26262 and SAE J3061. These assurance cases contain the safety and security arguments 
and the evidence supporting these arguments.  

 Fault-injection and analysis of faulty scenarios: The fifth scenario considers the impact 
of component faults for the safety and security of vehicle platooning. 
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The details on the implementation of these scenarios are collected in D5.3 [2]. 

5.2.1 Scenario 1: Basic Scenario  

We consider a platoon using Cooperative Adaptive Cruise Control (CACC), with one leader and n 
followers, where new vehicles may join the platoon after a negotiation phase. We assume that the 
platoon vehicles navigate on a straight road, and that vehicles can communicate using peer-to-peer 
connections or by broadcasting messages. We also assume that all messages are signed using 
vehicles secret keys that cannot be guessed by intruders, and contain adequate measures to ensure 
freshness, such as using timestamps or nonces, to avoid replay attacks. 

The goal of our intruder is to cause a crash between two legitimate vehicles. To this end, the intruder 
either injects false messages into the CACC communication channels or jams (i.e., blocks) legitimate 
messages from the CACC communication channels. The actual capability used by the intruder 
depends on the attack scenario. We consider scenarios where the intruder (1) injects false messages 
only, (2) blocks messages only, and (3) both injects and blocks messages. 

To ensure that injected messages are valid, we assume that the intruder can obtain encryption keys 
from any vehicle in the platoon. The same assumption is considered by previous related work like, 
e.g., [64] and [65]. For simplicity, we assume that the intruder has obtained the leader's encryption 
key. 

Given the leader's encryption key, the intruder makes valid connections with a target vehicle (i.e., a 
follower or a joining vehicle). For example, assume an attack scenario where both capabilities (i.e., 
injecting and blocking) are required. The intruder blocks all messages originated from the leader and 
injects (impersonating the leader) false messages to either followers or vehicles joining the platoon. 

We describe next in more detail the type of attacks that we consider for this basic scenario. 

Attack 1 (II-B): Injecting false messages to follower and blocking legitimate messages from 
leader 

An intruder sends false position and speed values to a vehicle in order to cause a crash with the 
preceding vehicle. This attack works because CACC algorithms ensure that a vehicle maintains a 
desired distance from the preceding vehicle based on the received messages from other vehicles in 
the platoon (especially from the leader). The attack scenario is illustrated in Figure 22. 

 

Figure 22: Attack1: Injecting false messages to follower and blocking legitimate messages from leader 

This scenario is composed of two vehicles: a leader ldr and a follower flw1. Illustrated by the green 
arrows, such vehicles exchange information to ensure that flw1 keeps a safe distance from ldr. The 
red cross illustrates that the legitimate messages from the leader are blocked by the intruder while 
the attack is in progress. Next, the intruder impersonates ldr to send high position and speed values 
to flw1. The follower flw1 adapts its distance based on the high false values sent by the intruder. As 
a result, a crash between flw1 and ldr is expected, as illustrated by the right-hand side of Figure 22. 

To mitigate this attack, we propose a countermeasure based on plausibility checks for the 
information that is communicated between the platoon vehicles. These plausibility checks are 



D5.2 - Demonstrators specifications  

SPARTA D5.2  Public Page 38 of 170 

described in the protection profile and described in this deliverable (see Section 5.3.4). In a nutshell, 
the countermeasure works as follows: Whenever a vehicle receives a message with the speed of 
the preceding vehicle, the countermeasure checks it against the local history of measurements. The 
countermeasure is triggered if the incoming speed value deviates from given percentage w.r.t. the 
average of the last n speed values received by the vehicle.  

Attack 2 (II-C): Slow-Injection of false messages 

The goal of Attack 1 is a quick crash between two vehicles. To this end, the intruder injects extreme 
false position and speed values into the CACC communication channels. However, existing 
countermeasures (a.k.a plausibility checks) are able to detect such extreme values, and thus 
mitigate the attack. Attack 2 is a smarter variation of the previous attack in order to bypass existing 
countermeasures that checks whether incoming values highly deviate from the previous received 
ones. To this end, the intruder injects messages with false information into the CACC communication 
channels modifying the values of speed and position with a small increase rate after each message. 

Attack 3 (II-D): Injection of false messages against joining vehicle 

A new vehicle may join a platoon after a negotiation phase (a.k.a synchronization handshake) with 
the leader of the platoon. During this negotiation phase, the leader sends the platoon information to 
this vehicle, including the position and speed of the last vehicle, so that the joining vehicle can adapt 
itself to catch up to the platoon.  

An intruder may impersonate the leader to send false information during this negotiation phase. For 
example, assume an attack scenario composed of two vehicles: the leader ldr of the platoon and a 
vehicle (veh) that wishes to join the platoon. The intruder may inject (as ldr) high position and speed 
values to veh during the negotiation phase, while blocking all messages originated from ldr. 
Eventually, veh crashes into ldr, as veh adapts its acceleration based on the received values. 

Attack 4 (II-E): Injection of false emergency brake messages 

Emergency brake is a safety-type message that may be triggered by any vehicle in the platoon to 
avoid crashes. For example, the leader may trigger an emergency brake if an obstacle is detected 
in its path. Then each follower receives an emergency brake message from the leader, and 
immediately actuates by stopping the vehicle. 

An intruder, however, might take advantage of this situation to carry out attacks. Figure 23 illustrates 
an attack scenario using emergency brake messages. This scenario is composed of three vehicles: 
a leader (ldr) and two followers (flw1) and (flw2). The goal of this attack is a crash between flw1 and 
flw2. To this end, the intruder injects a false emergency brake message to flw1 only. This message 
results in a crash as flw1 immediately stops and flw2 keeps driving, yet following the previously 
received information (e.g., position and speed). 

 

Figure 23: Injecting false emergency brake to follower 

Attack 5 (II-F): Blocking legitimate emergency brake messages 

Instead of injecting false emergency brake messages, the intruder may block legitimate emergency 
brake messages from the CACC communication channels in order to cause a crash. An attack 
scenario with this purpose is illustrated in Figure 24. 



D5.2 - Demonstrators specifications  

SPARTA D5.2  Public Page 39 of 170 

 

Figure 24: Blocking legitimate emergency brake from leader 

The intruder monitors the channels till a legitimate emergency brake message is triggered by the 
leader (ldr). At this point, ldr stops the vehicle and the intruder blocks the message to avoid that any 
follower (flw1) can receive and trigger emergency brake as well. As a result, flw1 keeps driving the 
vehicle till crashing into ldr. 

Finally, the Connect Car basic scenario is complemented by the incorporation of a dashboard, a 
web page that allows to check the status of the platoon and launch cyber-attacks to the platoon 
members. The dashboard mock-up is depicted in Figure 25. The dashboard shows the following 
data for each platoon member: 

 The unique identifier of the car. 

 The current mode of the car in the platoon. We will manage only three modes: leader, follower 
and emergency break. Others, such as joining to the platoon or leaving the platoon, are not 
involved in our scenario. 

 The current speed of the car. 

 The distance gap with any obstacle behind detected by the distance sensor. 

 The id and speed of the preceding vehicle in the platoon. 

 The number of speed messages received that didn’t pass any of the plausibility checks. 

The dashboard will also have capabilities to launch three kind of cyber-attacks to the platoon 
members: 

1. Injecting false speed messages from one car to another. 

2. Blocking the legitim incoming messages to a car. 

3. Hacking one of the sensors of a car (camera, speed or distance). 
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Figure 25: Dashboard mock-up (Platooning basic scenario) 

 Specificities for FTS Rovers 

Figure 26 shows an FTS Rover. FTS rovers are composed of two Raspberry Pi devices, two 
ultrasonic sensors, one laser sensor, and one camera. The model of the Raspberry Pi devices is 
Raspberry Pi 3 Model B Plus and they are responsible, respectively, for running the code generated 
from the AutoFOCUS3 model, and for the lane detection using the camera. The Raspberry Pi 
devices communicate with each other (e.g., to exchange information on lane detection) through a 
WiFi network. Both the ultrasonic and the laser sensors are responsible for detecting the distance to 
the preceding FTS rover. The camera, as mentioned before, is responsible for detecting the lanes. 
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Figure 26: FTS Rover 

FTS rovers may drive autonomously with the help of the sensors listed above and the exchanged 
messages (e.g., with speed values) between rovers. Those messages are exchanged through 
Ethernet network. When set to manual-drive mode, the FTS rover is remote-controlled by an Xbox 
controller connected through a WiFi network. Figure 27 illustrates two of the FTS rovers driving on 
a single lane circuit, marked with white lines.   

 

Figure 27: FTS rovers moving on the circuit 

AutoFOCUS3 supports the automatic generation of C code from the component architectures 
specified in the AutoFOCUS3 model. Once the C code generation is completed, one can deploy the 
C generated code into the FTS rovers7. The deployment process is performed by (1) copying the C 
generated code into the FTS rover, (2) locally compiling the code on the rover, and (3) launching the 
executable code on the rover.  

 Specificities for TEC Rovers 

Figure 28 shows the hardware components of TEC rovers: 

 ADAS-ECU. An Odroid-XU4 board that will run all the autonomous-driving-functions as lane 
detection, lane keeping and the CACC generated by AUTOFOCUS3. All those functions need 
the inputs coming from the sensors. This board is also in charge of managing the rover 
communications with other rovers, through a WiFi network, and with the Vehicule-ECU, in 
order to manage the camera and the ultrasonic sensor. 

                                                
7 https://download.fortiss.org/public/projects/af3/help/ta/code_generation.html  

https://download.fortiss.org/public/projects/af3/help/ta/code_generation.html
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 Vehicle-ECU to manage the speed and direction of the rover. 

 Camera to capture images for the detection of the road to calculate the direction. 

 Ultrasonic Sensor to obtain the distance of the preceding rover or the distance to any 
obstacles in the path of a rover. 

 Encoders in each of the back wheels to measure the current wheel speed. 

 Wifi Module to allow communications between rovers.  

 Remote Control. It’s possible to control the speed of a rover by its remote control and its 
direction by the ADAS, or vice versa. Even when the speed and direction of a rover are 
controlled by the ADAS, the vehicle remote control system still has to be used as a deadman-
switch to enable the movement of the rover. 

 

Figure 28: TEC Rover + Remote Control 

TEC rovers may drive autonomously with the help of the above sensors on a single lane circuit of 
3m x 2,5m (see Figure 29), marked with white lines separated approximately by 45cm.  

 

Figure 29: TEC Rovers moving on the circuit 

5.2.2 Scenario 2: Firewall updates  

In this demonstration scenario, we consider the Basic Scenario as a basis and develop an 
Infrastructure to Vehicle (I2V) case study where continuous compliance can be maintained when 
security requirements are dynamic. 
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This section describes the analysis of two V2I scenarios in the context of Platooning: the firewall 
reconfiguration scenario and the firewall update scenario.  

The context for these two scenarios is the “platoon gap adaptation” case study and a multi-layer 

platoon management platform from the ENSEMBLE (ENabling SafE Multi-Brand pLatooning for 

Europe) H2020 project [66] that aims for multi-brand vehicle platooning to improve fuel economy, 

traffic safety and throughput. 

 

Figure 30: Layered architecture of ENSEMBLE 

Figure 30 shows the multi-layer ENSEMBLE architecture for platoon management [66]. The layers 

are the following: 

 Service layer: provides a platform for added value logistic services related to platooning. 

 Strategic layer: planning of platoons based on vehicle types and optimisation with respect to 
fuel consumption, travel times, destination, and impact on highway traffic flow and 
infrastructure. It is also responsible for vehicle routing to enable platoon forming. Centralised 
traffic control centres communicate via long-range wireless communication with platoon 
vehicles and drivers. 

 Tactical layer: coordinates platoon formation, operation and dissolution. 

 Operational layer: controls actuators to accelerate, brake and steer to regulate inter-vehicle 
distance or velocity.  

The “platoon gap adaptation” case study involves V2I communication between the platoon vehicles 

and the traffic control centres. In this case study the traffic control centres inform passing platoons 

of specific zone policies such as increased distances between vehicles, specific speeds or lateral 

positioning.  

In the V2I firewall reconfiguration scenario platoons communicate with the traffic control centres 

via edge clouds distributed along the road network. As the platoon progresses it must change edge 

clouds to get the best network latency available. Each platoon leader that communicates with the 

traffic control centres is protected by a firewall. As the platoon progresses the firewall needs to be 

reconfigured when a new edge offers better QoS than the currently connected edge.  

From the monitoring point of view only authorized firewall reconfigurations should be made. The 

firewall must be monitored for detecting firewall intrusions and unauthorized changes to the 

configuration that would allow an attacker to launch injection or jamming attacks [67] [68].  Assuming 

that the firewall has been certified with respect to a Common Criteria protection profile such as the 
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SafeSecPMM protection profile (see Section 5.3.4), as long as the firewall operates within the 

requirements defined in the protection profile, and includes the ability to reconfigure the firewall, 

there is no need to re-certify the firewall. However, the reconfigurations of the firewall must be 

monitored in order to verify that the certified requirements are respected.   

 

Figure 31: V2I firewall reconfiguration scenario 

In the V2I firewall update scenario, a new version of the firewall is available and needs to be 
deployed on customer vehicles. The update is performed when vehicles are not being driven. The 
update process is described in the figure below. 

 

 

Figure 32: Firewall update scenario 

The firewall update is orchestrated by the VaCSIne tool that is running in a Cloud and has agents 
deployed in the cars. The firewall shows that the firewall protects the SafeSecPMM from external 
communication threats. From a certification point of view the new firewall version must be analysed 
with respect to the SafeSecPMM protection profile to determine if some certified requirements are 
impacted. If some certified requirements are impacted then the new firewall version must be re-
certified. In this case an incremental certification [69] can be performed.   

The infrastructure informs driving vehicles of zone policies, those can state for example increased 
distances between vehicles, speed recommendations, increased security requirements, etc. Upon 
notification of a new zone policy, the platoon will coordinate to apply it. When the platoon leaves the 
zone, the policy is invalidated and the platoon will reconfigure itself accordingly. We assume the 
platoon is running in a default mode and without error, and that the platoon and I2V communications 
are secure. 

The demonstration is composed of a platoon of rovers connected to a cloud using edge infrastructure 
nodes that have various security requirements. When the platoon enters the zone controlled by a 
given edge node, it receives a new security policy. For our purposes, the change of edge node is 
based on the strength of WIFI signal between the edge node and the platoon. The new security 
policy can be more or less strict than the previous one. We consider an edge node with a default 
security policy where security considerations are kept minimal, and another edge node that 
necessitates enhanced security functions such as hardening of the firewall with stricter network 
access rules. To ensure that the platoon security configuration satisfies the new zone security policy, 
the platoon is scanned for vulnerabilities by the edge node. Vulnerability scan reports and audit logs 
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of the security operations are collected, made available for the next steps of the continuous 
certification process and displayed in a basic web dashboard. 

 

Figure 33: CETIC Donkey Car rovers 

CETIC rovers are based on the Donkey Car8 platform. They can use a Raspberry Pi to drive the 
rover autonomously, but we chose the Jetson Nano Development Board9 instead to leverage its 
improved GPU capabilities. The rovers use a camera for lane detection, ultrasonic sensors and a 
2D Lidar for distance detection. The rovers can also be controlled manually using generic joypad 
controllers over WIFI, for example when doing autonomous driving training. The edge infrastructure 
consists of single board computers playing the role of WIFI access points that have associated zone 
security policies. The cloud consists of a container orchestration platform deployed inside a private 
or public cloud. 

5.2.3 Scenario 3: Verification tooling 

We consider the Basic Scenario described in Section 5.2.1. as a basis. Taking into account the 
functions of this scenario the following Verification tooling setup has been proposed. 

The penetration testing scenario comprises the following inputs: 

 Analysis of the attack’s surfaces and protocols to be checked as part of the TOE as defined 
in the Protection Profile. 

 Preparation of a set of HW tools to interact with the surfaces found in the rovers’ demo. 

 Preparation of a set of scripts or manual procedures to be run over the HW tools.  

 Follow the directives and standards of the AVA_VAN family of the CC standard [19]. 

                                                
8 https://www.donkeycar.com/  

9 https://developer.nvidia.com/embedded/jetson-nano-developer-kit 

https://www.donkeycar.com/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
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Two sets of Rovers (FTS and TEC) are considered with the following architectures and attack’s 
surfaces (see Figure 34). CACC protocol and plausibility checks work thanks to the WiFi protocol. 
The ultrasonic sensors are used as distance sensors and the camera is used for lane detection. 

 

Figure 34: Set of architectures to be tested 

In order to perform the verification activities, the output of some of the tools considered in the 
SPARTA CAPE project are going to be used: 

 AF3 block diagrams/functionality diagrams (see Section 7.2) 

 Maude verification outputs (see Section 7.7) 

 Code and System Architectures (EUT will provide a questionnaire to be filled by TEC and 
FTS with the different protocols used) 

 Others: Firewalls attacks are going to be considered, due to the firewall update 
architecture planned in the Scenario 2 (see Section 5.2.2). 

Another important point is to prepare a set of HW tools that will be used to attack the attack’s surfaces 
identified. These tools include a basic USB Alfa Wifi Antenna to perform attacks on Wifi interfaces 
and protocols, ultrasound sensors or other devices which are able to provoke misfunction of the 
cameras. 
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Figure 35: Set of HW tools to be used for the penetration testing 

Due to the COVID-19, the possibilities of performing penetration testing on-site are difficult because 
a set of rovers is in Munich (FTS), another one is in Bilbao (TEC) and the penetration testers are in 
Barcelona (EUT). A possible mitigation plan which is under study is to use Raspberrys Pi and a basic 
set of tools which are connected to them and allow remote access to the Raspberry on each of the 
scenarios. It’s a kind of complicated setup but the situation requires it. 

On top of this HW tools the following kind of scripts and manual procedures are considered: 

 Scripts of protocols (known vulnerabilities, as defined in AVA_VAN) WiFi, TLS, etc. 

 Scripts of the Platooning CACC (with inputs of Maude Verification, etc.). 

 Scripts involving also sensors. 

 Scripts on the firewall update protocols. 

The quantity of scripts and surfaces to attack will depend on the quantity of time available to perform 
the analysis, beginning on the most characteristics of the platooning main application and ending in 
the less related attacks. It’s important to mention as well that some attacks require a “step by step 
exploration” instead of a basic script.  

5.2.4 Scenario 4: Safety and Security compliance assessment and 
certification 

For the Scenario 4, the Basic Scenario described in Section 5.2.1 has considered as a basis. The 
OpenCert management tool (see Section 7.9) will be applied helping the Safety and Security 
engineer in the whole assurance processes of the Connected Car vertical life cycle. 

As it was mentioned in the deliverable D5.1 [1], Safety and Security standards has been considered, 
particularly ISO 26262 ”Functional Safety Road Vehicles” for functional safety and SAE J3061 
“Cybersecurity Guidebook for Cyber-Physical Vehicle System” for cybersecurity. OpenCert will 
support knowledge management about these two standards. The “Standards & Regulations 
Information Management” activity group supports knowledge management about standards, 
regulations and interpretations, in a form that can be stored, retrieved, categorized, associated, 
searched and browsed. The activities involved in this group are intended to be shared among various 
assurance projects. Figure 36 shows in a graphical way the ISO 26262 standard modelled in 
OpenCert, where the different parts of the ISO 26262 are represented with boxes and, their activities, 
sub-activities and requirements are defined inside them.  
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Figure 36: OpenCert – Modelling the ISO 26262 standard 

OpenCert will assist the entire assurance process of the platooning scenario, on the one hand, the 
Safety assurance process following the ISO 26262 and on the other hand, the Security assurance 
process regarding SAE J3061. Both assurance processes will be constantly connected to each other 
to be sure that there are not incongruences between them. This is the main activity group called 
“Assurance Project”, where assurance process management, and global monitoring of the 
compliance with standards, assurance cases and evidence management are performed.  

Assurance Case Management functionality is a feature which manages argumentation information 
in a modular fashion as it is shown in Figure 37. Assurance cases are a structured form of an 
argument that specifies convincing justification that a system is adequately safety and secure for a 
given application in an environment. Assurance cases are modelled as connections between claims 
and their evidence. 

 

Figure 37: OpenCert - Assurance Case example 
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The Evidence Management functionality deals with the specification of the artefacts that are used 
as evidence in an Assurance Project. The artefacts can have specific properties and can be the 
result generated from external tools (e.g. results of a test case) stored in OpenCert. All these aspects 
are managed throughout an artefact’s lifecycle, which can include changes to an artefact and 
evaluations (e.g. about the completeness of a document). Figure 38 shows an example of how the 
results generated are stored. 

 

Figure 38: OpenCert - Evidence management feature 

To conclude, the development of all the above mentioned activities related to the OpenCert tool will 
be carried out and documented in detail within the deliverable D5.3 [2]. 

5.2.5 Scenario 5: Fault-injection and analysis of faulty scenarios 

For the Scenario 5, the Basic Scenario described in Section 5.2.1 has considered as a basis. The 
Sabotage tool (see Section 7.12) will be used to simulate how a fault, originated from a random 
hardware fault or cyber-attack, can affect the vehicle behaviour by changing the velocity to an 
abnormal value.  

Each vehicle in the platooning has different control measures integrated. In this scenario, the sensor-
based plausibility check will be evaluated. This plausibility check verifies the incoming sensor signals 
(ultrasonic sensor) and the speed received from the preceding vehicle via WIFI and detects faulty or 
missing signals (see Section 5.3.4.3).  

The developed sensor-based plausibility check is used to validate the correctness of the speed 
received from the preceding vehicle and to compare it with the distance sensor. By adding different 
faults into the plausibility check algorithm, the engineer can verify that it assesses safety and security 
requirements. The effectiveness (detection and/or recovery of errors) of the measures can be 
analysed to know if it is needed, for example, to modify the algorithm or to add sensor redundancy. 

Simulation-based fault injection contains remarkable benefits. For instance, it allows high 
observability and controllability of the experiments without corrupting the original design. 
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The Sabotage framework is the responsible to automatically inject faults into the system and 
compute the results.  First, the Workload Generator creates the functional inputs to be applied to the 
system. More specifically, it is the responsible of the following subtasks: 

 selecting the system model under test, in this case, the sensor-based plausibility check; 

 choosing the operational scenario from an and environment scenario library (different inputs 
will be chosen to evaluate the algorithm); and 

 configuring the fault injection experiments. This includes creating the fault list and deciding 
the read-out or observation points (signal monitors). 

Second, we configure the Fault Injector. The fault list is used to produce a Faulty system only in 
terms of reproducible and prearranged fault models by including saboteur blocks (S-functions). Fault 
models are characterised by a type (e.g. frozen, stuckat0, delay, invert, oscillation or random), target 
location, injection time triggering, and duration. In order to create a Faulty System, the Fault Injector 
injects an additional saboteur model block per fault entry from the Fault List. Moreover, the injected 
block is fulfilled with information coming from a fault model template library. Saboteurs are extra 
components added as part of the model-based design for the sole purpose of Faulty injection 
experiments. 

After performing the configuration of the fault injection scenarios and creating the required amount 
of Faulty systems, the Monitor invokes the simulator. It tracks the execution flow of the fault free 
(Golden) system and Faulty simulations. The Monitor compares Golden and Faulty SMUT (switch 
matrix under test) results by the data analysis activity. The pass/fail criterion of the tests, which was 
established by the designer. This pass/fail criterion will help the engineer to adjust and/or modify the 
plausibility check algorithm if it is necessary. 

To conclude, the development of all the above mentioned activities related to the Sabotage tool will 
be carried out and documented in detail within the deliverable D5.3 [2]. 

5.3 Technical Specifications 

In the following sections we describe how some methodologies and tools described in Chapter 3 and 
Chapter 7 respectively have been applied in the technical specifications of the Connected Car use 
case, in particular those related to Safety Analysis, Security Analysis, Trade-off analysis, 
Requirements engineering and Security/Safety by design. 

5.3.1 Safety Analysis 

Following the ISO 26262 standard guidelines, we have applied the HARA methodology to identify 
possible hazards in the Connected Car use case. The results of the resulting HARA were illustrated 
in the deliverable D5.1[1]. The ISO 26262 highly recommends applying methodologies such as 
FMEA, which points out potential failures to identify possible failure causes with the aim of reducing 
or removing the hazards impact. 

In the Platooning scenario, potential risks will be evaluated in a new platooning design, thus, a 
Design FMEA has been developed. A DFMEA should begin with the development of information to 
understand the system, subsystem or component being analysed and the definition of their functional 
requirements and characteristics. To do that, a block diagram and a functional requirements list is 
recommended. 

The main functional requirements of the Platooning VeloxCars for the Connected Car use case are 
as follows: 

 Each vehicle’s camera should get an image each 10 milliseconds. 

 Each car should detect the two continuous white lines that delimit the lane. 

 Each vehicle should be kept on the lane. 

 Each vehicle should calculate a trajectory of 10 points to keep on the lane. 

 The leader vehicle shall drive to the established speed. 
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 The follower vehicles shall drive to the speed calculated by the CACC. 

 Each follower vehicle should be connected with the leader via WIFI. 

 Each vehicle should exchange messages with heart-beat data and sensoring data with the 
others every 10 milliseconds. 

 Each follower vehicle should maintain a safety distance with the previous car. 

 The leader should stop in case of detecting obstacles in the trajectory. 

The comprehensive DFMEA table has been included in the Chapter 11, as an annex of this 
document. At this moment, an impact analysis has been done to identify potential failure modes in 
the platooning system. However, the actions to reduce and/or avoid these failures have not been 
implemented yet, therefore, the last columns of the DFMEA table related to that implementation are 
still empty. They will be reported on the deliverable D5.3 [2] after the recommended actions have 
been applied. 

5.3.2 Security Analysis 

 Goal Oriented Analysis of the Firewall Reconfiguration and Update Scenario 

Following the KAOS goal-oriented requirements engineering methodology described in Section 3.2.3 
a partial analysis of the connected Car vertical has been made. 

Figure 39 describes some of the platooning goals. One of the important goals of a platooning system 
is to maintain a safe distance between vehicles in a platoon. This goal is decomposed into three 
different cases: maintaining a safe distance while joining, leaving and being a member of a platoon. 
While in a platoon, speed needs to be adapted in time to maintain a safe distance with vehicles in 
front and back using braking and acceleration actions. 

 

 

Figure 39: High-level platooning goals 

Attackers may have as objective to achieve an unsafe distance between vehicles in a platoon to 
provoke an accident. Figure 40 shows an attack tree on the goal “Maintain safe distance when in 
platoon”, where false information about the speed and distance with respect to other vehicles is 
injected by an attacker. 
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Figure 40: Fragment of high-level obstacles to platooning 

The two automotive scenarios defined in Section 5.2.2 are analysed below. 

Analysis of Firewall Reconfiguration Scenario 

 

Figure 41: Firewall reconfiguration main goals and operations 

In the V2I firewall reconfiguration scenario platoons communicate with the traffic control centres via 
edge clouds distributed along the road network. As the platoon progresses it must change edge 
clouds to get the best network latency available. Figure 41 shows the goal model for maintaining 
platoon to edge communication QoS when the platoon is moving. The high-level latency objective is 
decomposed into the following sub-goals: 

 ChangeOfEdgeProviderTriggered: when a new edge provider that provides better QoS is 
identified, then the process of changing edge providers must be started. 

 EdgeSecurityPolicyRespected: each edge provider has his own security policy, that must be 
propagated to the platoon vehicles to allow them to communicate with the new edge, 
including firewall reconfigurations.  

 EdgeProviderChanged: Once the new security policy is known it must be communicated to 
the platoon vehicles so that firewalls can be reconfigured.  

 CommunicationEstablishedWithAuthorisedEdge: Once firewalls are reconfigured with the 
security policies for the new edge provider, vehicle to edge communication can resume. 
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Figure 42: Firewall reconfiguration main obstacles 

Figure 42 shows an attack tree on the goal “CommunicationEstablishedWithAuthorizedEdge”. It 
details several threats to firewalls if the firewall is compromised. This includes unauthorized 
reconfigurations of the firewall allowing providing unauthorized accesses, modifying audit traces, or 
saturating the firewall (DDoS). The figure also shows countermeasures to these threats that rely on 
monitoring of the firewall configuration. 

Analysis of Firewall update Scenario 

 

Figure 43: Firewall update main goals 

In the V2I firewall update scenario, a new version of the firewall is available and needs to be deployed 
on customer vehicles. The above goal model shows the update process: 

 NewVersionAvailable: the availability of a new version of the firewall triggers an update 
process. 
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 NewVersionVerified: the new version of the firewall is verified with respect to firewall 
requirements, and especially any certified requirements. 

 NewVersionCertified: if some certified requirements are impacted then the new version must 
be re-certified 

 NewVersionDeployed: once the new firewall version has been certified if necessary, it can 
be deployed on the target vehicles. 

 NewVersionInOperation: once new firewall versions have been deployed, they can be put 
into operation 

 UpdateProtected: the firewall updates must be protected during the whole process. 

 

 

Figure 44: Firewall update main obstacles and attacker capabilities 

 

Figure 44 shows an attack tree on the goal “UpdateProtected”. The attack tree lists some attacks on 
firewall updated:  

 UpdatesKnown: Attackers gain unauthorized access to software updates in order to reverse-
engineer software firmware and steal intellectual property from the vehicle manufacturer. 

 UpdatesDenied: Attackers aim ro prevent updates so that can exploit existing vulnerabilities. 

 FunctionalityDenied: By compromising updates attackers aim to prevent firewalls from 
functioning correctly. 

 UnauthorizedControl: By compromisiung updates, attackers want to modify platoon 
behaviour.  

5.3.3 Trade-off Analysis 

Our vision is to build an incremental development process for system safety and security assurance 
cases using automated methods that incorporate safety and security reasoning principles. We 
provide safety reasoning principles with safety patterns used during the definition of system 
architecture for embedded systems. We specify these principles using logic and logic programming 
as they are suitable frameworks for the specification of reasoning principles as knowledge bases 
and using them for automated reasoning [70]. 

Our main contributions are threefold: 

 Domain-Specific Language (DSL): We propose a DSL for safety reasoning with safety 
patterns. Our DSL includes (1) architectural elements, both functional components and 
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logical communication channels; (2) safety hazards including guidewords used in typical 
analysis, e.g., erroneous or loss of function; and (3) a number of safety patterns including n-
version programming, safety monitors, and watchdogs. 

 Reasoning Principles: We specify key reasoning principles for determining when a hazard 
can be controlled or not, including reasoning principles used to decide when a safety pattern 
can be used to control a hazard. These reasoning principles are specified as Disjunctive 
Logic Programs [71] based on the DSL proposed. 

 Automation: We illustrate the increased automation enabled by the specified reasoning 
principles using the logic programming engine DLV [76]. Our machinery enables two types 
of automated reasoning: (1) Controllability: which hazards can be controlled by the given 
deployed safety patterns and which hazards cannot be controlled; (2) Safety Pattern 
Recommendation: which safety patterns can be used and where exactly they should be 
deployed to control hazards that have not yet been controlled. 

We validate our machinery with two examples of safety-critical embedded systems taken from the 
connected car example. The first example is an Adaptive Cruise Control (ACC) system installed in 
a vehicle to adapt its speed in an automated fashion without crashing into objects in front and at the 
same time trying to maintain a given speed. The second example is a Battery Management System 
[4] responsible for ensuring that a vehicle battery is charged without risking it to explode by, e.g., 
overheating. Our machinery infers a number of possible solutions involving different safety patterns 
that can be used to control identified hazards.  

While the details of our approach can be found in our papers [74][75], we illustrate with the Battery 
Management System (BMS) the types of trade off analysis reasoning that can be performed with our 
machinery. 

Consider the BMS system architecture depicted in Figure 45 responsible for controlling a 
rechargeable electric car battery [76]. 

 

Figure 45: Battery Management System (BMS) functional architecture 

The BMS is a critical system as harm, e.g., battery explosions, may occur if it does not compute the 
charging state of the battery correctly. The BMS's main functions are the charging interface (CI) that 
represents the interface at the charging car station. This interface is triggered while recharging the 
battery (BAT) of the car. BMS receives relevant information (e.g., voltage and temperature values) 
from BAT so that it can compute the charging state of BAT. Depending on the state of BAT, BMS 
sends signals of activation or deactivation of the external changer to CI. These signals are sent 
though a can bus. 

To address the safety of the BMS, safety analyses are carried out to determine main hazards. The 
main hazard is: 

HM: The BAT is overcharged leading to its explosion. 

We identify one erroneous hazard H1 that may lead to HM. The word erroneous is used by safety 
engineers to describe hazards: erroneous is used when a function is working but not correctly. 

 H1: The CI sends charging signals when BAT is fully charged 

The following faults may lead to H1: 
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 H1.1: Erroneous BMS: The BMS sends wrong signals to CI 

 H1.2: Erroneous CAN: The can bus sends wrong signals to CI 

Moreover, a main threat to the BMS is that an attacker uses the public interfaces of the BMS, namely 
the CI, to trigger a battery explosion. For example, since the CI has access to the can bus, an 
attacker may inject a message in the can bus through the CI to "start charging". Since the can bus 
delivers messages to all connected components, including the CI, the CI receives back this message 
and starts/continues to recharge, although it may have received previously a message from the BMS 
to stop doing so. 

To control the hazards above and mitigate the attack just mentioned, safety and security engineers 

place safety and security architectural patterns, such as safety monitors and firewalls. The placement 

of such patterns can be inferred by our machinery. In particular, it infers the placement of patterns, 

a safety monitor and a firewall as depicted in Figure 46. 

 

Figure 46: BMS architecture with a safety monitor and a firewall 

However, our machinery is also able to infer that the main hazard HM is not yet controlled. This is 
because the firewall placed by the security reasoning has an impact on safety. If the firewall wrongly 
omits a message sent by the BMS to stop recharging, the hazard HM may still occur (with an 
unreasonable probability). 

We can use our machinery to infer ways to correct this problem by placing additional patterns. Our 
machinery infers the architecture depicted in Figure 47 that adds a Voter. The Voter serves the 
purpose of creating a redundant path in the architecture that is used to ensure that the message 
from the BMS to stop the charging of the battery is enforced. 

 

Figure 47: BMS architecture with an additional Voter 

5.3.4 Requirements Engineering 

In the context of the Platooning scenario (Vertical 1), we have defined the safety and security 
requirements of the scenario in the same Common Criteria protection profile. A protection profile 
(PP) is an implementation-independent statement of security needs for a TOE type [17]. 
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The TOE, Safety and Security Platooning Management Module (SafSecPMM), is used to ensure 
the safe and secure operation of vehicle platoons, e.g., to avoid vehicle collisions leading to human 
and material damages. The TOE has an interface towards the Vehicle Communication Device 
(VCS), the Hardware Security Modules (HSM), if HSM is available and is not directly integrated in 
VCS, and the Vehicle Control Module (VCM).   

The TOE receives data from the VCS, using HSM to decrypt any encrypted message, or to check 
the integrity of messages. The TOE also uses sensing data available in the VCM, such as information 
about the distance to any object, speed and localization. The sensor information from the VCM may 
be signed by HSM to guarantee communication integrity.  

Moreover, based on the data collected, the TOE communicates necessary data to other vehicles 
and stationary deployments through the VCS. Communication may be signed/encrypted using HSM. 
The TOE also sends commands to the VCM actuators, to guarantee the safe and secure operation 
of the vehicle and the platoon, such as commands setting the speed and the direction vector. Figure 
48 illustrates the interface of the TOE with the VCS, HMS and VCM.  

 

Figure 48: TOE Interfaces 

Chapter 12 (Annex B) includes the full contents of the PP for a Safety and Security Platooning 
Management Module (SafSecPMM). This module addresses cyber-attacks on a formed platoon that 
exploit the communication and sensing interfaces of a vehicle by sending incorrect information about 
the state of the world, e.g., wrong speed, position of vehicles in the platoon. Such attacks can lead 
to honest vehicles to potentially make wrong decisions that may affect the safety of passengers, e.g., 
accelerate when it should not, thus placing the platoon in an unsafe state. 

The PP of the SafSecPMM incorporates security countermeasures and other security features to 
increase the robustness of the platooning behaviour, provides accountability information for this 
behaviour, and contains security measures to protect its own assets.  

As platooning security is a relatively new subject, the PP document shall be considered as a “living 
document” that shall be extended in future version to consider other types of vulnerabilities and 
threats, specifying other requirements to SafSecPMM to address these vulnerabilities and threats. 

In the next sections we provide an overview of the main contents of the PP. For more details on the 
document, we refer the interested reader to Chapter 12. 

 Threats 

Table 6 shows the threats have been identified against the TOE. 

Name Threat against TOE 

Communication Data 
Spoofing (T.COM_SPF) 

The attacker may inject data in the communication channel by, for example, 
carrying out replay attacks. For another example, if the attacker possesses 
valid secret encryption keys, then Sybil attacks can cause the vehicle to infer 
that there is a vehicle that does not actually exists. 
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Name Threat against TOE 

VCM Data Spoofing 
(T.SEN_SPF) 

The attacker can carry environmental attacks that may confuse sensors 
causing the vehicle to perform incorrectly, e.g., accelerate the vehicle placing 
its passengers in danger. 

Communication DoS 
(T.COM_DOS) 

The attacker can carry out denial of service attacks on the communication 
channels used.  

VCM DoS (T.VCM_DOS) The attacker may deny the service of a sensor by, for example, covering the 
lenses of a camera/lidar used to infer objects.  

SafSecPMM Software 
Tamper 

(T.SW_TAMPER) 

The attacker may tamper the software installed in the TOE causing the 
attacker to control the vehicle. 

Exploit Service Defects 

(T.SW_DEFECTS) 

The attacker may take advantage of a TOE malfunction/defect of the 
Platooning Management Service.  

Tamper Accountability Data 
(T.ACC_TAMPER) 

The attacker may tamper the accountability data, thus avoiding attacks that 
have being carried to be accounted for. 

Attack Software Update 
Mechanism 
(T.SW_UPDATE) 

The attacker may attack the mechanisms used by vehicles to update the TOE 
software to install malwares or other malicious software.  

Attack system access 

(T.ECU_ACCESS) 

The attacker may get unauthorized access to the vehicle ECU via network 
getting the control of the vehicle, e.g., Brute-force password attack. 

Table 6: Threats against TOE 

 

 Security Objectives 

Table 7 shows the set of security objectives that the TOE should achieve in order to solve its part of 
the problem. 

Security Objective Description 

OT.VCS_DATA The TOE shall provide periodically to the VCS data about the vehicle, e.g., 
speed, direction, position. This data shall reflect the actual state of the 
vehicle. 

OT.INCORRECT_VCM_DATA The TOE shall be able to detect when data incoming from the VCM is 
incorrect, i.e., it differs from the actual state of the world. 

OT.INCORRECT_VCS_DATA The TOE shall be able to detect when data incoming from the VCS is 
incorrect, i.e., it differs from the actual state of the world. 

OT.SENSOR_FAIL The TOE shall be able to guarantee the safety of the vehicle even if a sensor 
fails, either due to an attack or due to some component failure. 

OT.COMM_FAIL The TOE shall be able to guarantee the safety of the vehicle even if a 
communication channel fails, either due to a DoS attack or due to some 
component failure, e.g., by going to a safe-mode and informing the driver. 

OT.VCM_DATA The TOE shall provide periodically to the VCM data to be consumed by the 
VCM actuators. The data shall be used to ensure the safety of the vehicle, 
e.g., keep the platoon lane and a safe distance to all other vehicles. 

OT.TOE_SELF-
PROTECTION 

The TOE shall be able to protect itself and its assets from manipulation 
including physical and software tampering. 

Moreover, the following is assumed by the TOE: 

 Messages outgoing from the VCS shall be digitally signed by the HSM. 

 The digital certificate of messages in incoming flows from the VCS 
shall be checked by the HSM. 
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OT.ACCOUNTABILITY The TOE shall provide accountability for all the decisions made that affect 
the behaviour of the vehicle. The TOE shall provide proof of the integrity 
and origin in order any message stored in the memory can be said to be 
genuine with high confidence. 

Table 7: Security Objectives for the TOE 

Table 8 shows the security objectives for Operational Environment, i.e. the set of statements 
describing the goals that the operational environment should achieve. 

Security Objective Description 

OE.SECURE_COMM The TOE operational environment shall implement protections for the integrity, 
authenticity and confidentiality of the data exchanged between vehicles and 
between vehicles and stationary deployments.  

OE.CORRECT_IMP The TOE operational environment shall ensure that the TOE software does not 
have defects, such as, software bugs that can be exploited by the attacker, e.g., to 
carry-out buffer overflows, badly configured access control. 

OE.INTEGRATION  Appropriate technical and/or organisational security measures shall be in place 
during platform integration phase. 

OE.TOE_ACCESS The TOE environment shall implement security measures to ensure that the TOE 
is only accessible from the VCS and the VCM by deploying measures for 
authenticity and access control. 

OE.VCM_SEN_FAIL The VCM must be able to detect when a sensor has failed and inform the sensor 
fail to the TOE whenever this occurs. 

OE.VCS_CMM_FAIL The VCS must be able to detect when a communication link to other 
vehicles/infrastructure stations fails and inform which link failed to the TOE 
whenever this occurs. 

Table 8: Security Objectives for the Operational Environment 

 Security Functional Requirements 

Table 9 shows a summary of the SFRs that have been elicited for the TOE. The development of 
Coonected Car vertical must comply with all of them. For more details on the definition of the security 
requirements, we refer the interested reader to Chapter 12. 

Functional Class Security Functional Requirements 

Platoon 
Management 
Module (PMM) 

Information Flow (PMM_IF): 

PMM_IF.1.1 Maintain heart-beat data (vehicle identifier, speed, direction, geo-position, 
timestamp) to VCS 

PMM_IF.2.1 Maintain heart-beat data from VCS 

PMM_IF.3.1 Maintain incoming emergency brake 

PMM_IF.4.1 Maintain outgoing emergency brake 

PMM_IF.5.1 Maintain data from VCM 

PMM_IF.6.1 Maintain data to VCM 

Plausibility Checks (PMM_PC): 

PMM_PC.1.1 Data passes all VCS plausibility checks 

PMM_PC.2.1 Data passes all VCM plausibility checks 

PMM_PC.3.1 Inform on failed plausibility checks 

VCS History-based Plausibility Checks (PMM_VCS-HPC): 

PMM_VCS-HPC.1.1 Maintain heart-beat data history 

PMM_VCS-HPC.2.1 Heart-beat message consistent to the history 

PMM_VCS-HPC.3.1 Emergency brake consistent to the history 
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VCS Sensor-based Plausibility Checks (PMM_VCS-SPC): 

PMM_VCS-SPC.1.1 Maintain distances history 

PMM_VCS_SPC.2.1 VCS message consistent to distances history 

PMM_VCS_SPC.3.1 Emergency brake consistent to distances history 

VCS Timestamp-based Plausibility Checks (PMM_VCS-TPC): 

PMM_VCS-TPC.1.1 Consult the TOE vehicle internal clock 

PMM_VCS-TPC.2.1 Message freshness 

VCM History-based Plausibility Checks (PMM_VCM-HPC): 

PMM_VCM-HPC.1.1 Maintain sensor data history 

PMM_VCM-HPC.2.1 Sensor message consistent to the history 

VCM Timestamp-based Plausibility Checks (PMM_VCM-TPC): 

PMM_VCM-TPC.1.1 Consult the TOE vehicle internal clock 

PMM_VCM-TPC.2.1 Message freshness 

Protection of 
the TSF (FPT) 

Availability of exported TSF data (FPT_ITA): 

FPT_ITA.1.1 Inter-TSF availability within a defined availability metric 

Confidentiality of exported TSF data (FPT_ITC) 

FPT_ITC.1.1 Inter-TSF confidentiality during transmission 

Integrity of exported TSF data (FPT_ITI) 

FPT_ITI.1.1 Inter-TSF detection of modification 

FPT_ITI.1.2 Inter-TSF verify integrity 

Fail secure (FPT_FLS) 

FPT_FLS.1.1 Failure with preservation of secure state 

Communication 
(FCO) 

Non-repudiation of origin (FCO_NRO): 

FCO_NRO.1.1 Generate evidence of the origin of the data 

FCO_NRO.1.2 Relate the evidence of origin with the originator 

FCO_NRO.1.3 Verify the origin of the data 

Identification 
and 
Authentication 
(FIA) 

User authentication (FIA_UAU) 

FIA_UAU.2.1 User authentication before any action 

FIA_UAU.3.1 Detect use of authentication data that has been forged 

FIA_UAU.3.2 Detect use of authentication data that has been copied 

FIA_UAU.6.1 Re-authenticating 

User identification (FIA_UID) 

FIA_UID.1.1 No action allow before the user is identified. 

FIA_UID.1.2 Successful user identification before any action 

Resource 
Utilization (FRU) 

Fault tolerance (FRU_FLT) 

FRU_FLT.1.1 Degraded fault tolerance 

Table 9: TOE Security Functional Requirements 

 

 Security Assurance Requirements 

The Security Assurance Requirements (SARs) are a description in a standardized language of how 
the TOE is to be evaluated. Table 10 shows the security assurance requirements that have been 
chosen for the TOE. They comprise the ATE and the AVA classes. 

Assurance Class Assurance Component Name Rationale 

ATE:Tests Analysis of coverage ATE_COV.1 

Testing: basic design ATE_DPT.1 

Functional testing ATE_FUN.1 
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Assurance Class Assurance Component Name Rationale 

Independent testing – sample ATE_IND.1 

AVA: Vulnerability assessment Focused vulnerability analysis AVA_VAN.1 

Table 10: Security Assurance Requirements 

 

5.3.5 Security/Safety by Design 

We have applied the methodology described in Section 3.2.6 for the Basic Scenario of the 
Connected Car Vertical enabling the security and safety by design of platoon scenarios. We detail 
in the following section the formal specification framework enabling engineers to use program 
precise mathematical models about the behaviour of vehicles in platoons and evaluate whether they 
possess enough mechanisms to perform safely, even in the presence of intruders. 

 Formal Specification Framework for Vehicle Platooning using C-ACC 

In this section we specify a formal model that can be used for the safety and security analysis of 
scenarios considered for Vertical 1. Our framework is constructed on the soft-agents model [76] 
which is rewriting a logic framework for the specification and verification of (autonomous) cyber-
physical systems. The framework, which can be found at [76], is implemented in the rewriting logic 
language Maude [77]. It provides the general machinery (data-structures, functions, sorts) for the 
specification of the behaviour of agents, e.g., agent capabilities and effects of actions. The semantics 
of how the system evolves is specified by a small number of rewrite rules defined in terms of the 
general machinery. 

Figure 49 depicts the general architecture of a soft-agent, or simply agent. An agent has its own 

local knowledge base that contains, e.g., its current perceived speed, position, and direction of the 

other agents. Further data may be obtained by sensing the environment or by sharing of information 

between agents through communication channels. Using its local knowledge base, the agent 

decides which action (α) to perform according to its different concerns specified as a soft constraint 

(optimization) problem. For example, if the distance to the vehicle in front is too great, the fuel 

consumption concern kicks in and attempts to reduce it by accelerating. Similarly, if the distance is 

dangerously short, then the safety concern kicks in and attempts to increase it by decelerating. As 

soft constraints subsume other constraint systems, e.g., classical, fuzzy and probabilistic, it is 

possible to formally specify a wide range of decision algorithms. 

 

Figure 49: Soft-Agent Architecture 



D5.2 - Demonstrators specifications  

SPARTA D5.2  Public Page 62 of 170 

We instantiated the general framework (data structures, sorts, types, soft constraints) provided by 

the Soft Agents framework for specifying platoon scenarios, enabling their formal verification. While 

the complete implementation can be found at [78], we describe some of this machinery below. 

Knowledge Base: Vehicles have a local knowledge base (lkb). It represents the vehicle’s view of 

the world, e.g., the speed and position of itself and of the other vehicles. Formally, a vehicle 

knowledge base is composed by a set of grounded facts, p, i.e., facts not containing variable 

symbols, of the form p, or associated with a timestamp, p@t, where t is natural number. We list the 

main facts below. We assume that each vehicle has a unique identifier written id. 

 clock(t) denotes that the current time is t. 

 atloc(id,pos) @ t denotes that the vehicle id has at time t the position of value pos. We 
assume that vehicles navigate on a straight road. Therefore, pos is a value representing the 
position on this road. 

 speed(id,spd) @ t denotes that the vehicle id has at time t the speed of value spd. 

 maxAcc(id,acc) denotes that the vehicle id can accelerate (and for simplicity also decelerate) 
at any time with value acc. 

 platoon(idL,[id1,...,idn]) @ t denotes that at time t, the platoon led by idL has the sequence 
of follower vehicles id1,...,idn. 

 mode(id,md) @ t denotes that the vehicle id at time t is in mode md which include:  

o nonplatoon when all the vehicle’s platooning functionalities are not active, i.e., the 
vehicle is driven by a human driver 

o leading() when the vehicle leads a platoon 

o following(idL) when id is following the platoon led by idL 

o emergency() when id is in emergency brake mode 

o fuseRear(idL,idB) when id is in the process of joining platoon led by idL and shall join 
be behind vehicle idB. 

Sensors: A vehicle is equipped with three sensors locS, speedS and gapS. They measure, 

respectively, the vehicle’s location, speed and the gap to the vehicle immediately ahead. As we 

illustrate below, at each tick, vehicles use these sensors to query the environment knowledge base 

and update the vehicle’s local knowledge base. While it is not the focus of this work, it is possible to 

evaluate the robustness of agents with respect to sensor faults as described in [79]. 

Communication Channels and Protocols: We assume that vehicles may communicate using 

peer-to-peer connections or by broadcasting messages. Based on this assumption, we have 

implemented several protocols for platooning including: 

 Heartbeat from Follower to Leader (HFL): A follower vehicle sends periodically a (time-
stamped) message to the leader with information such as its current speed and position. 

 Heartbeat from Leader to Follower (HLF): The platoon leader sends periodically a message 
to each follower with information of all vehicles in the platoon such as their speeds and 
positions. 

 Emergency Brake: Any vehicle in the platoon may broadcast an emergency brake message 
informing that it is activating its emergency brakes. 

 Heartbeat from Joining Vehicle to Leader (HJL): A vehicle that wants to join a platoon sends 
a heartbeat to the platoon leader, such as its current position and speed. 

 Heartbeat from Leader to Joining Vehicle (HLJ): The platoon leader sends to the vehicle that 
is joining the platoon information, such as the position and speed of the last vehicle in the 
platoon. 

Actions: Vehicles decide to accelerate or decelerate. Since there may be infinitely many possibilities 

of acceptable speeds (for safety and fuel efficiency), we abstract actions by using facts of the form 
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act(id,vmin,vmax) denoting a set of actions of changing id’s speed to values between vmin and vmax. 

Actions are evaluated with a value that is the result of a soft constraint problem specification 

described next. 

Soft Constraints: The evaluation of possible actions is done by taking into account the vehicle’s 

concerns specified as a soft constraint problem. To evaluate our verification machinery, we 

implemented a strategy that depends on the vehicle’s mode. 

 When in following mode, a vehicle has two main concerns: Fuel-Saving and Safety. The 
former attempts to close the gap to the vehicle immediately in front, while the latter attempts 
to keep a safe distance to the vehicle immediately in front. These are specified by the 
knowledge items safe and fuel. Our machinery uses these two parameters to determine 
which (set of) actions are the most highly ranked. This is accomplished by attempting to 
satisfy both concerns, safety and fuel-saving. If this is not possible, then safety is given 
priority over fuel-saving.  

 When in emergency mode, the vehicle has only the concern of stopping the vehicle. 

Intruder Model: An intruder can impersonate an honest vehicle, listening to messages, injecting 

messages, and blocking message from communication channels between vehicles. These 

capabilities enable us to carry out similar verification done for safety, but now considering a malicious 

intruder, i.e. an attacker entering into the system. Our intruder model is similar to [80], for the security 

verification of Industry 4.0 applications, in that the intruder model is parametrized by its capabilities. 

Here we consider two capabilities: injecting messages signed by honest participants and blocking 

specific messages from communication channels (see Figure 22): 

 Message Injection (INJ): The intruder may choose at any moment of a system execution to 
inject the first message, msg, in its list of messages msgList. This results in the injection of 
msg to its destination in the system configuration system, and the list msgList is updated by 
deleting msg. 

 Blocking (BLK): The vehicles in ids are jammed during the whole attack execution. This 
means that all outgoing messages of a vehicle ids are blocked. 

Our model is parametric w.r.t. the intruder capabilities. It requires little effort to include other 

capabilities to the intruder model. For example, it is possible to add capabilities where the intruder 

tampers, i.e., modifies messages sent by vehicles; or periodically sends messages from a set of 

messages, instead of in a list; or only starts blocking a message after some particular time has 

elapsed. 

We have applied this model for the verification of some of the vehicle platooning scenarios. These 

are detailed in D5.3 [2]. 

5.4 Assessment tools pipeline 

For each demonstration scenario, we have identified the V-model steps (security/safety/certification) 

that will be covered by the continuous assessment pipeline, and which tool intervenes in each step. 

Figure 50 illustrates an example continuous assessment pipeline using CAPE tools in the context of 

the Connected Car vertical. 
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Figure 50: A sample CAPE continuous assessment process for the Connected Car vertical 

 

The following tables describe the various assessment pipelines that have been developed in the 
context of the demonstration scenarios for the CACC vertical. They provide a summary of the 
integration between the various tools in each scenario by detailing the relevant V-Model step for 
each tool and the associated inputs and outputs. 

Scenario title Connected Car Vertical 

Description Evaluate the process, from security analysis, requirements to implementation 
and verification and validation, for increasing the security of vehicle platooning 
when assuming a malicious intruder that can manipulate the communication 
channels 

V-Model step:  

SW design, SW 
development 

 Tool name: AutoFOCUS3 

 Input: AF3 model (incl. logical architecture and behaviour) for the Platooning 
scenario  

 Output: C code for the architecture and behaviour specified in the AF3 
model   

V-Model step:  

Development, Unit testing 

 Tool name: Frama C 

 Input: AF3 models of the Platooning scenario 

 Output: SARIF report for the analysed code 

V-Model step:  

Verification and Validation  

 Tool name: Maude 

 Input: AF3 model  for the Platooning scenario. capabilities of intruder. 

 Output: Evidence supporting the security of the AF3 model with respect to 
the intruder model. 

V-Model step:  

Technical safety concept 
and verification design 

 Tool name: Sabotage  

 Input: Mathematical model in Matlab/Simulink (external Tool); Fault List. 

 Output: Report of the simulation results 

V-Model step:  

All V-Model 

 

 Tool name: OpenCert 

 Input:  AF3 models of the Platooning scenario, SARIF report for the 
analysed code; Safety & Security standards (ISO26262, SAE J3061); 
Protection Profile; Report of the simulation results from Sabotage. 

 Output: Assurance Case, including Safety and Security arguments. 

Table 11: Connected Car vertical pipeline 

 

PP

SAST Report

Security
Assets

VaCSIne

Sandbox

Platoon

DAST Report Monitoring Remediations

SARIF

SARIF

J3061

ISO26262

Maude

SABOTAGE
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Scenario title Connected Car Vertical - Scenario 2 - Firewall update 

Description Orchestration and validation of the adaptive security response to changing 
security requirements.  

V-Model step:  

SW and HW component 
design, secure design 

 Tool name: SCAP workbench 

 Input: Protection profile 

 Output: SCAP policy 

V-Model step:  

Acceptance testing, 
function verification, CS 
assessment 

 Tool name: OpenSCAP Base 

 Input: SCAP policy 

 Output: SCAP report 

V-Model step:  

Operations, CS 
assessment 

 Tool name - VaCSIne 

 Input: SCAP policy, SCAP report, operation logs 

 Output: Remediation orchestration logs 

Table 12: Connected Car vertical, scenario 2 pipeline 

 

Scenario title Connected Car Vertical - Scenario 3 – Verification tooling 

Description Penetration testing tools and methods to perform vulnerability assessment of 
the Fortiss and Tecnalia Rovers.  

V-Model step:  

Architecture and System 
Design, Security by 
design 

 Tool name: Set of HW tools, scripts and exploration 

 Input: Output of AVA_VAN report (iteration loop) 

 Output: System Design, Security by Design (iteration loop) 

V-Model step: 

SW and HW 
development, CS 
assessment 

 Tool name: Set of HW tools, scripts and exploration 

 Input: Output of AVA_VAN report (iteration loop) 

 Output: System Design, Security by Design (iteration loop) 

V-Model step:  

Acceptance testing, 
function verification, CS 
assessment 

 Tool name: Set of HW tools, scripts and exploration 

 Input: Protection profile, AF3, Maude 

 Output: AVA_VAN report 

V-Model step: 
Operations, CS 
assessment 

 Tool name: Set of HW tools, scripts and exploration 

 Input: Protection profile, AF3, Maude 

 Output: AVA_VAN report 

Table 13: Connected Car scenario vertical, scenario 3 pipeline 

 

5.5 Adoptability 

In the context of the Connected Car Platooning scenario, we have developed assets that will be 
made publicly available, and thus may be used by users such as industry partners. These assets 
are:  

 Protection profile: We have written a protection profile document for a safety and security 
platooning management module. This document includes a list of requirements that shall be 
implemented by platoon members. This document can serve as a starting point for users 
interested in the safety and security of CACC platoons.  
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 Model: We have specified executable models for CACC platoons. These models include: (a) 
CACC functionalities, e.g., that maintain distance between vehicles that are both safe and 
fuel-efficient; (b) communication protocol between platoon members, i.e., how platoon 
members exchange messages between each other; and (c) defences based on plausibility 
checks to mitigate injection attacks. From our models, one can automatically generate C code 
using AutoFOCUS3. 

In addition, our labs (FTS and TEC) may serve as transfer institutes for users. That is, we can offer 
technical consultation on all issues relating to the assets mentioned above, including consultation 
on how to adapt the elements specified in the model as well as on how to deploy the generated C 
code into rovers. We may also offer research consultation on such assets, e.g., future research 
directions on how to improve the assets developed in this project. 
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 e-Government Services Vertical Technical 
Specifications (Vertical 2) 

6.1 Context and Background 

The “Complex System Assessment Including Large Software and Open-Source Environments, 
Targeting e-Government Services” vertical (a.k.a. e-Government services vertical) has as goal to 
improve the cyber-security of the innovative authentication solutions based on the usage of the 
Italian national electronic identity card (CIE). The (cryptographic capabilities of the) CIE ensures a 
high level of assurance of the resulting authentication. This vertical leverages the collaboration in 
the context of a Joint Lab between Fondazione Bruno Kessler (one of the institutions part of the 
SPARTA partner CINI) and Instituto Poligrafico e Zecca dello Stato (IPZS), the Italian State Mint and 
Polygraphic Institute. Indeed, IPZS handles the production of the identity cards in Italy and the 
shipment of the CIE to the Municipalities. 

As detailed in D5.1 [1], the CIE-based Italian Identification Scheme for accessing services envisages 
two mutual authentication use cases: a so-called “desktop” use case, in which the user uses his/her 
CIE with a workstation equipped with a RF smart card reader and the so-called “Middleware CIE”, 
and a “mobile” use case. As just mentioned, the desktop use case requires citizens to own an 
external RF smart card reader, bring it with them at every authentication, and install the middleware. 
To avoid this burden, another use case, called “hybrid”, has been recently proposed. In the “hybrid” 
use case, citizens use the CIE to authenticate themselves onto an online service from their personal 
computer’s browser, by using a “companion app” (say CIE ID APP) on their smartphone as a card 
reader. A QR-code shown in the browser allows the CIE ID APP to collect the authentication 
information from the browser. Given that we expect that the “desktop” use case based on the 
middleware is going to be progressively dismissed, being replaced by the “hybrid” use case based 
on the CIE ID APP, the role of the CIE ID APP will be more and more central. For this reason, in the 
context of SPARTA, we currently focus on the “mobile” use case, and we will evaluate in the next 
future whether the “desktop” use case deserves further security analyses. 

The “mobile” use case, shown in the diagram in Figure 51, is based on the use of a smartphone to 
interact with the CIE (through the NFC interface) as an authentication tool to gain access to a service 
of the Public Administration. In detail, this identification scheme envisages that the user accesses a 
service provided by a service provider through the browser of his/her smartphone and selects the 
mode of access via CIE. When authenticating using the CIE, he/she is then redirected to the CIE ID 
APP, that performs the authentication mechanism through the CIE with the CIE ID SERVER 
component, hosted by the Italian Ministry of Interior.  

 

Figure 51: The mobile use case of Vertical 2 

The detailed steps of the procedure shown in the diagram in Figure 51 are described below: 

1. To be able to access the services of the Public Administration, the user needs to be 
authenticated. To this purpose, the service provider sends a SAML authentication request 
(through the construct <AuthnRequest>) to the component CIE ID SERVER. 
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2. The CIE ID SERVER component requests the user to use his/her CIE to authenticate 
him/herself and sends a notification to the mobile terminal which triggers the launch of the 
CIE ID APP. 

3. By following the instructions shown on the app, the user presents the CIE to the smartphone’s 
NFC reader and enters his/her PIN. 

4. Having verified the correctness of the PIN, a secure HTTPS/TLS channel is created between 
the CIE ID APP and the component CIE ID SERVER. 

5. From the secure session the latter verifies the validity of the digital certificate associated with 
the user by contacting the Authentication CA of the Ministry of the Interior and retrieves the 
minimal attributes relative to the user from the certificate. 

6. On the CIE ID APP the user views the attributes that will be sent to the service provider. 

7. The user authorises the transmission of the attributes displayed. 

8. The component CIE ID SERVER redirects the user to the service provider by sending an 
assertion of successful authentication, including attributes, to the latter. 

9. The service provider grants access to the service which takes place through the browser of 
the mobile terminal used in step 1.  

6.2 Scenarios 

The main goal of these demonstration scenarios is to show how the cutting-edge security analysis 
tools developed in the context of SPARTA and the novel paradigms for continuous security 
assessment (DevSecOps) in the context of task 5.3 will contribute to increase the overall security of 
the e-government service. The mobile use case includes several components. Each software 
component must be carefully implemented in order to avoid security issues. For the demonstration 
of vertical 2 we identified two main components, depicted in Figure 52. 

 CIE ID App, and 

 SAML IdP on the CIE ID SERVER. 

 

Figure 52: Components in the scope of the demonstrations 

In both demonstration scenarios two main actors are involved: the developer of each component 
and the security analyst.  

The developer is expected to push a commit on the code repository that contains the source of the 
component (either the CIE ID APP or the CIE ID SERVER) and is connected to the DevSecOps 
pipeline. This operation must trigger the proper CAPE assessment tools involved in the scenario and 
return the feedback concerning the security assessment to the developer. This feedback might be 
different according to the peculiarities of each tool. For instance, the developer could find the list of 
security vulnerabilities in the issue tracker or receive a complete report. 

At the same time, the security analyst should be notified about the vulnerabilities introduced by the 
developer, being able to access the security report of each CAPE assessment tool. Some tools 
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should provide a GUI which allows the security analyst to properly analyse the issues and receive 
support in their mitigation. In some cases, security issues in the scenarios are not introduced by a 
change in the source code, but they are simply due to the discovery of novel vulnerabilities in the 
existing code. It is thus expected that the vulnerability databases used by the tools are kept up to 
date, and the execution of the tools is triggered on a periodic basis. 

As already mentioned in D5.1, the current software development process involves four main 
environments: 

 a development environment and a testing environment hosted by FBK (part of the SPARTA 
partner CINI); and 

 pre-production and production environments hosted by the Italian Ministry of the Interior. 

The demonstration scenarios of the vertical 2 involve the development and testing environments, 
where the preliminary versions of the components are developed and tested (before being migrated 
on the Italian Ministry of the Interior servers). 

The development and testing environments consist of a Gitlab platform hosted by FBK, and cloud-
hosted Azure virtual machines. 

Gitlab provides: 

 a version control system (Git-repository), storing the source code of CIE ID APP and SAML 
IdP; and 

 issues tracking and continuous integration and deployment pipeline. 

The Azure virtual machines, running Linux distributions (Ubuntu) and supporting the Docker 
technology, are used to:  

 host the deployed services for functional and security testing purposes, and 

 run some of the CAPE assessment tools.  

The technical details on how we integrated the CAPE assessment tools in the aforementioned 
development and testing environments, by following a continuous integration and DevSecOps 
approach, are provided in D5.3 [2]. In the next sections we provide more details about the 
demonstration scenarios for the CIE ID APP, and the SAML IdP. 

6.2.1 Scenario for the CIE ID App 

The user uses his/her CIE with an Android smartphone equipped with NFC interface alongside the 
CIE ID APP to authenticate with the CIE ID SERVER. It is thus extremely important to leverage 
methodologies and techniques for the automatic security analysis and risk evaluation of the CIE ID 
APP. A security flaw in the authentication App could lead to severe security issues, allowing a 
malicious user to authenticate on behalf of the victim. 

For instance, to enhance the usability and the security of the solution, FBK has recently extended 
the app to support biometric authentication based on fingerprint recognition. The proper usage of 
the libraries offered by Android is a key requirement to ensure the proper level of security. 

The CIE ID APP is an Android app developed in Kotlin. The source code is stored in Gitlab. In the 
context of the SPARTA project, CINI has extended the Gitlab environment in such a way to use the 
continuous integration functionalities offered by Gitlab to automatically build the apk file. 

The details about this extension and the integration with the CAPE assessment tools are provided 
in D5.3 [2]. 
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6.2.2 Scenario for the SAML IdP 

The SAML IdP is deployed leveraging Shibboleth10. Shibboleth is among the world’s most widely 
deployed federated identity solutions, connecting users to applications both within and between 
organizations. Shibboleth provides several software components, each of them is open source. 

In the context of Vertical 2, the basic version provided by Shibboleth has been customized to support 
the interaction between the SAML IdP and the mobile application which communicates with the CIE. 

The SAML IdP source code is stored in Gitlab. FBK has recently extended the Gitlab environment 
in such a way to use the continuous integration functionalities offered by Gitlab. Every time a git 
commit is pushed on the repository, the source code is automatically built and deployed (using 
Apache Maven) on an Azure virtual machine. It provides a running version of CIE ID SERVER, which 
is accessible for functional and security testing. 

6.3 Technical Specifications 

In the following sections we describe the Security Analysis requirements that are relevant for the 
security analysis of the CIE ID APP and he SAML IdP provider. To cope with the specific security 
requirement of both the CIE ID APP and SAML IdP server, we relied on the state-of-the-art standards 
and frameworks, like the NIST SP 800 series11 and the OWASP ASVS12, that were specifically 
tailored on the mobile and web domains. 

6.3.1 Security Analysis of the CIE ID App 

 Vulnerability and Risk Assessment of the CIE ID App 

The security evaluation of the CIE ID APP involves the verification of a set of security requirements 
that enable the assessment of the security posture of the mobile app. In the context of Vertical 2 we 
relied on the OWASP Mobile Application Security Verification Standard (OWASP MASVS) and the 
OWASP Mobile Security Testing Guide13 (MSTG) to identify the security requirements shown in 
Table 9.  

ID 
OWASP 

MOBILE TOP 
10 

Description 

SecR1 M3 
Data is encrypted on the network using TLS. The secure channel is used 
consistently throughout the app. 

SecR2 M7 
The app is signed and provisioned with a valid certificate, of which the private key is 
properly protected. 

SecR3 M7 
The app has been built in release mode, with settings appropriate for a release build 
(e.g., non-debuggable). 

SecR4 M7 
Debugging code and developer assistance code (e.g., test code, backdoors, hidden 
settings) have been removed. The app does not log verbose errors or debugging 
messages. 

SecR5 M7 Debugging symbols have been removed from native binaries. 

SecR6 M7 The app only requests the minimum set of permissions necessary. 

                                                
10 https://www.shibboleth.net/  

11 https://csrc.nist.gov/publications/sp800  

12 https://owasp.org/www-project-application-security-verification-standard/  

13 https://github.com/OWASP/owasp-mstg  

https://www.shibboleth.net/
https://csrc.nist.gov/publications/sp800
https://owasp.org/www-project-application-security-verification-standard/
https://github.com/OWASP/owasp-mstg
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ID 
OWASP 

MOBILE TOP 
10 

Description 

SecR7 
M2 
M5 
M7 

The app uses cryptographic primitives that are appropriate for the particular use-
case, configured with parameters that adhere to industry best practices. 

SecR8 M2 The app removes sensitive data from views when moved to the background. 

SecR9 M7 
The app detects, and responds to, the presence of a rooted or jailbroken device 
either by alerting the user or terminating the app. 

SecR10 M3 
The TLS settings are in line with current best practices, or as close as possible if the 
mobile operating system does not support the recommended standards. 

SecR11 M7 JavaScript is disabled in WebViews unless explicitly required. 

SecR12 
M3 
M7 

The app verifies the X.509 certificate of the remote endpoint when the secure 
channel is established. Only certificates signed by a trusted CA are accepted. 

SecR13 
M3 
M7 

The app only depends on up-to-date connectivity and security libraries. 

SecR14 
M2 
M7 

No sensitive data is shared with third parties unless it is a necessary part of the 
architecture. 

SecR15 
M2 
M7 

No sensitive data should be stored outside of the app container or system credential 
storage facilities. 

SecR16 M7 
The app does not export sensitive functionality through IPC facilities, unless these 
mechanisms are properly protected. 

SecR17 M7 No sensitive data is included in backups generated by the mobile operating system. 

SecR18 M7 
A WebView's cache, storage, and loaded resources (JavaScript, etc.) should be 
cleared before the WebView is destroyed. 

SecR19 M3 
The app either uses its own certificate store, or pins the endpoint certificate or public 
key, and subsequently does not establish connections with endpoints that offer a 
different certificate or key, even if signed by a trusted CA. 

SecR20 
M7 
M9 

Obfuscation is applied to programmatic defenses, which in turn impede de-
obfuscation via dynamic analysis. 

SecR21 M3 
A WebView's cache, storage, and loaded resources (JavaScript, etc.) should be 
cleared before the WebView is destroyed. 

Table 14: CIE ID App Security Requirements 

To evaluate the aforementioned security requirements, we will rely on the tools Approver (see 
Section 7.1) and TSOpen (see Section 7.6) by implementing the DevSecOps pipeline that will be 
described in the Deliverable 5.3 [2].  

Approver will check all the vulnerabilities listed in Table 14. Regarding TSOpen, the tool aims at 
detecting logic bombs in Android apps. However, in the context of this scenario, TSOpen will 
particularly take care of the dependencies leveraged by the app. In other words, TSOpen will be 
used to detect logic bombs in the app, including the dependencies used by the app. We remind that 
logic bombs are mechanisms used by malicious apps to evade detection techniques. Typically, an 
attacker uses logic bomb to trigger the malicious code only under certain chosen circumstances 
(e.g., only at a given date) to avoid being detected by the Security Analysis of the CIE ID APP. 

6.3.2 Security Analysis of the SAML IdP 

 Software Verification Methods and Vulnerability Assessment for the SAML IdP  

Eclipse Steady (see Section 7.15) will be used to assess the presence of known security 
vulnerabilities affecting any of the dependencies of the specific version of Shibboleth integrated in 
the scenario. In addition, Eclipse Steady will be used to detect whether the code implemented to 
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customize the solution depends on open-source components with known vulnerabilities, to collect 
evidence regarding the execution of vulnerable code, and to provide update recommendations. 

Eclipse Steady addresses one of the OWASP Top 10 security risks for Web applications, namely 
the use of components with known vulnerabilities14, which has the characteristics detailed in Figure 
73. 

 

Figure 53: Characteristics of A9:2017 - Using Components with known Vulnerabilities (from OWASP) 

 

Due to its code-centric approach, Eclipse Steady can provide the following security functionalities: 

 It detects constructs, e.g., methods and constructors of a Java classes that have been subject 
to known vulnerabilities, no matter through which Java archive those constructs are 
distributed, provided their signature remains unchanged. 

 It detects whether the construct body is equal (or closer) to the vulnerable or the fixed version, 
according to the commit(s) that were used to fix the respective vulnerability, and which are 
maintained in Steady’s vulnerability database (directly or through Project KB). 

 It detects if such constructs are invoked during the execution of automated unit and 
integration tests or manual tests. 

 It detects whether such constructs are part of the call graph that is built starting from the 
constructs of the application under analysis or starting from the traces collected during test 
execution. 

The latter two analyses are part of the so-called reachability analysis, which is used to prioritize 
findings. The reachability analysis is necessary, as not all code of all open source dependencies is 
used in a given application context, a phenomenon often called software bloat. 

Eclipse Steady is going to be integrated in the development process of the SAML IdP, leveraging 
the continuous integration techniques developed in the context of task 5.3. 

To complement Eclipse Steady, the SafeCommit tool, also called Commit Classifier, (see Section 
7.13) will be used to automatically detect vulnerability introducing commits (also referred as patches 
for sake of simplification) in Continuous Integration Ecosystem. SafeCommit is built on top of AI 
techniques relying on innovative features and advanced patch representation learning. 

Systematically and automatically identifying commits that introduce a vulnerability once a commit is 
contributed to a code base is of the utmost importance: (1) To reduce the number of vulnerabilities 
in a software code base; and (2) To incite maintainers to quickly reject the relevant changes. The 
proposed tool aims at being integrated into real-world software maintenance and usage workflows. 
The objective is to carry out a live study in order to collect practitioner feedback for iteratively 
improving the tuning of the research output, towards an effective technology transfer. 

                                                
14 https://owasp.org/www-project-top-ten/2017/A9_2017-Using_Components_with_Known_Vulnerabilities   

https://owasp.org/www-project-top-ten/2017/A9_2017-Using_Components_with_Known_Vulnerabilities
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 Mitigating Software Supply Chain Attacks against SAML IdP 

The Buildwatch tool (see Section 7.3) will be used to analyse Shibboleth that serves as basis of 
SAML IdP for possible software supply chain attacks. To this end, multiple versions of Shibboleth 
will be run through the dynamic analysis to determine a common base line. Subsequently, newer 
versions of Shibboleth can be compared to this base line in order detect unusual changes in 
behaviour. It will be evaluated how much manual effort remains after the analysis. 

 Risk Assessment of the SAML IdP 

The NeSSoS risk assessment tool (see Section 7.8) will be used to ensure that all relevant threats 
affecting the SAML IdP are covered. The main advantage of applying NeSSoS tool is that it provides 
a holistic evaluation of the network (i.e., considers all aspects of cyber protection), helps to identify 
the areas which lack security, and provides an instrument to justify investments in the implemented 
security controls. This tool complements the other tools, focussing on specific security aspects, by 
providing, though high level, but a holistic overview of cyber security of the considered target.  

In scope of this scenario, we will comprehensively analyse the security practices and controls 
implemented to protect the server, estimate losses for possible threat occurrences, and suggest 
security controls which can be strengthened to improve protection.  

6.4 Assessment tools pipeline 

To assess the security of the CIE ID APP and the SAML IdP, we deployed two DevSecOps pipelines. 
In Figure 54 and Figure 55, we report the DevSecOps pipelines for the CIE ID APP and the SAML 
IdP, respectively.  

The first DevSecOps pipeline relies on Approver (CINI) and TSOpen (UNILU) to evaluate the security 
and risk requirements for the CIE ID mobile app.  

The second DevSecOps pipeline relies on Eclipse Steady and Project KB (SAP), SafeCommit 
(UNILU), Buildwatch (UBO), NeSSoS (CNR), and VI (UKON) to evaluate the security and risk 
requirements of the SAML IdP. The details concerning the integration of the tools will be provided in 
D5.3 [2]. 

 

Figure 54: E-gov DevSecOps pipeline CIE ID App 
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Scenario title EGovernment – Mobile 

Description Demo for the CIE ID APP 

V-Model step:  
Design (from unit testing to 
acceptance testing) 

 Tool name: TSOpen 

 Input: the APK file built from the CIE ID APP source code 

 Output: an HTML report with the vulnerability assessment and a list of 
security issues in the GitLab repository. 

See Section 7.6.4 

V-Model step:  
Development Process 

 Tool name: Approver 

 Input: the APK file built from the CIE ID APP source code 

 Output: a PDF report with the vulnerability assessment and a list of 
security issues in the GitLab repository. 

See Section 7.6.4 

Table 15: E-gov DevSecOps pipeline CIE ID App 

 

Figure 55: E-gov DevSecOps pipeline SAML IdP Server 

Scenario title EGovernment – Mobile 

Description Demo for the SAML IdP 

V-Model step:  
Design (from component 
design to deployment) and 
Operations 
 

 Tool name: Eclipse Steady 

 Input: a clone of the Git source code repository of the SAML IdP 

 Output: an HTML report highlighting open-source dependencies with 
known vulnerabilities (if any), including a reachability assessment used 
for issue prioritization 

See Section 7.15.4 

 Tool name: Project KB 

 Input: YAML statement for a demo vulnerability in one of SAML IdP’s 
dependencies, available in a public or private Git repository 

 Output: an entry in Steady’s vulnerability database that can be used for 
actual repository scans 

See Section 7.10.4 
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V-Model step:  
Application Development 
 

 Tool name: BuildWatch 

 Input: the list of used packages in the server code 

 Output: the report with Cyber observables of all packages 

See Section 7.3.4 

V-Model step:  
Security Analysis, 
Verification and Validation 

 Tool name: Visual investigation of security information (VI) 

 Input:  security vulnerabilities discovered by Steady and Project KB 

 Output: user feedback from domain experts about the usability and 
usefulness of the design. The demonstrator is used to confirm the 
applicability of the design. 

See Section 7.18.4 

V-Model step:  
Risk Management process at 
the global level 

 Tool name: NeSSoS 

 Input: input of the Security Analyst 

 Output: an HTML report with the simulation results 

See Section  7.8.4 

V-Model step:  
Software Development (of 
the libraries used by the 
application) 

 Tool name: SafeCommit 

 Input: source code of the SAML IdP Server 

 Output: assessment report containing security vulnerabilities introduced 
in the security commit 

See Section 7.13.4 

Table 16: E-gov DevSecOps pipeline SAML IdP Server 

6.5 Adoptability 

The two DevSecOps scenarios we deployed for vertical 2 are representative instances of complex 
systems. Thus, the assets we have developed will be made publicly available and may be used by 
end-users willing to include the CAPE assessment tools in their pipeline and perform a security 
assessment of their complex systems. The assets we provide include mainly documentation, 
software, and services. 

Concerning the Documentation, we provide the instructions to: 

 install and configure the open-source tools; 

 include all the selected tools in the DevSecOps; and 

 interact with the tools (e.g., through a GUI) to retrieve the information about vulnerabilities 
and use them as a support to mitigate the issues. 

The tools included in the DevSecOps are heterogeneous. The software we provide is aimed at   
simplifying the integration and the interaction among the tools. It mainly includes: 

 the source code of the open-source tools; 

 the tools developed as microservices using Docker technology; and 

 the scripts we used to integrate each tool in the DevSecOps (both the tools installed locally, 
and the ones offered as online services). These scripts are specific for the environment of 
the vertical (based on Gitlab) but can be used as references and are easily adapted to other 
environments. 

Finally, we provide some services and support, namely: 

 the tools that are not free are offered as a service and can be invoked through APIs; and 

 we share our expertise acquired during the deployment of the vertical. This experience can 
be also a topic for future research directions on how to improve the assets.  
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 Technical Specifications of the CAPE Assessment 
Tools 

This Chapter includes the technical specifications related to the implementation of the tool prototypes 
that have developed in the context of the tasks T5.1 (see Chapter 2), T5.2 (see Chapter 3) and T5.3 
(see Chapter 4), and will be validated in T5.4 by their integration in the CAPE vertical use cases: 
Connected Car (see Chapter 5) or e-Government (see Chapter 6).  

Table 1 gives and overview of the complete list of tools. The descriptions of the tools have been 
significantly improved and expanded from D5.1[1], while keeping a similar formalism to facilitate their 
understanding.  

Each of the tools provides a detailed technical specification, describing the internal functions of the 
tool, and including the following subsections: 

 Requirements description 

o Use cases: description of the use cases in the relevant case studies. 

o User requirements: description of the certification requirements, and when possible 
related to a compliance standard. 

o Software requirements: list of software requirements of the tool. 

 Functional Specifications 

o Description of the components that the tool consists of. 

o Description of the tool architecture where components are presented, in order to 
define a detailed tool roadmap. 

 Development roadmap 

o The roadmap relates to the use cases and the architecture, it also describes how the 
proposed architecture will be realized. 

o The development activities identified in the roadmap will be reported in D5.3 [2]. 

 Software verification and validation plan 

o List of methods for verifying the software requirements.  

o The verification of requirements will be reported in deliverable D5.3 [2] and 
demonstrated upon their completion in D5.4 [3]. 

7.1 Approver (RAA) – CINI 

Approver is an automatic toolkit for the in-depth, fully automatic security analysis of mobile 
applications. Approver automatically detects, evaluates and provides comprehensive reports 
explaining the security risks hidden in the mobile applications. The key features include, but are not 
limited to: 

 Advanced Application Analysis based on state-of-the art static analysis techniques 

 Automated Security Policy Verification, ensuring that mobile apps comply with security 
requirements and regulations 

 Risk Score and Reports. Detailed, per-app risk reports that summarize the security concerns 
of the analysed applications. 

The state of the art of security application analysis comprises several research tools to analyze 
Android applications (e.g., SCanDroid [81], CHEX [82], DroidChecker [83], DroidSafe [84], AppAudit 
[85], VanDroid [86]) or to monitor applications behavior (e.g., ProfileDroid [87], CopperDroid [88], 
Intellidroid [89]). However, these tools have some limitations, they have been built in order to perform 
a single type of analysis, they do not provide any type of app aggregation and they generally lack 
comprehensive reporting capabilities. 

More information about Approver is available at: https://approver.talos-sec.com 

https://approver.talos-sec.com/
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7.1.1 Requirements Description 

 Use cases 

Table 17 shows an update of the Use Cases that were defined for the Approver tool in D5.1. 

Use Cases No change 

UC1 Detect security vulnerabilities in Android applications packages X 

UC2 Detect security vulnerabilities in Android applications during development and suggest 
mitigations 

X 

Table 17: Approver - Update of Use Cases specifications 

  

 User Requirements 

Table 18 and Table 19 show an update of the User Requirements that were defined for the Approver 
tool in D5.1. 

User Requirements Add Comments 

UR1.1 Detailed Security Report of the application package X Missing in D5.1 

UR2.1 Security issues in the DevSecOps pipeline  X Missing in D5.1 

Table 18: Approver - Update of User Requirements specifications 

UR1.1 Detailed Security Report of the application package 

Description 
The tool needs to provide a detailed security evaluation report of the Android application 
package under test. To this aim, the security analyst needs to access to a detailed security 
report that describes the overall security risk score, and the detected security vulnerabilities. 

Actors Security Analyst 

UR2.1 Security issues in the DevSecOps pipeline  

Description 

During the development phase, both security analysts and developers need to have an 
overview of the security posture of the application under development. To this aim, the 
Approver tool needs to provide a DevOps plugin that can be triggered during the development 
phase and that can provide a detailed list of security vulnerabilities identified in the source 
code. 

Actors Security Analyst, Developer 

Table 19: Approver – Changes in User Requirements specifications 

 

 Software Requirements 

Table 20 and Table 21 show an update of the SW Requirements that were defined for the Approver 
tool in D5.1. 

Software Requirements No change Add Comments 

SR1.1 Implementation of Approver CI Plugins X   

SR1.2 Enhancement of the SAST vulnerability module  X Missing in D5.1 

Table 20: Approver - Update of SW Requirements specifications 
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SR1.2 Enhancement of the SAST vulnerability module 

Description 

The Approver tool contains modules to detect security vulnerabilities in the application source 
code or in the application binaries. However, the rise of new vulnerabilities and technologies 
poses a great importance in the accuracy and the customizability of a vulnerability analysis 
module. To this aim, during the project we will develop a brand new SAST vulnerability analysis 
module that seamlessly support the addition of new vulnerabilities as security plugin, thus 
facilitating the constant update of the overall tool. 

Actors Security Analysts, Developers 

Basic Flow 
The SAST vulnerability module is triggered once an application is submitted to the Approver 
system. The module computes the list of vulnerabilities, its severity and the suggested 
countermeasures.  

Table 21: Approver – Changes in SW requirements specifications 

7.1.2 Functional Specifications 

At high-level, Approver is composed of a set of modules for both Static Analysis (SAST) (see Figure 
56) and Dynamic Analysis (DAST) (see Figure 57). 

Each module, developed as a microservice using Docker technology, enables a different security 
analysis and is managed by an orchestration layer. Besides, each module exposes a set of RESTful 
APIs.  The modules for SAST are in charge of analysing the application package according to its 
content. Examples of implemented SAST analysis include vulnerability analysis, permission analysis, 
and string analysis. Instead, the DAST modules aim to install the application package in a testing 
environment and evaluate the security of the application during the execution. Examples of DAST 
analysis include network analysis, API monitoring and filesystem monitoring. 

Finally, Approver provides a web front-end that allows to i) view the detailed results of each 
application analysed, ii) download all the artefacts produced during the analysis, and iii) download 
a security report which contains all the identified issue. 

 

Figure 56: Approver - SAST Modules 
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Figure 57: Approver - DAST Modules 

 

7.1.3 Development roadmap 

The high-level development roadmap of Approver is to implement the software requirement SR1 
within 2020-21 such that it can be demonstrated at project end, as explained in Table 23. 

Use Case Architecture components Realisation Involved partners 

UC1 Approver RAA 
Enhancement of the tool security analysis 
capabilities 

CINI 

UC2 Approver RAA Implementation of the DevSecOps plugins CINI 

Table 22: Approver– Development Roadmap  

 

We will develop the following functionalities: 

 An enhancement of the SAST Vulnerability Analysis module. In details, the new module will 
support the addition of new vulnerability patterns using a plug-n-play approach. The core 
module collects all the vulnerability patterns and executes the corresponding checks to 
provide the overall report of the findings. Each vulnerability will include a CVSSv3 score, a 
description, an OWASP Top 10 risk category, and suggestion for the remediation. 

 A set of plugins for the integration of the Approver tool with DevSecOps pipelines to 
automatically analyse apps during the development process. The first plugin will allow the 
integration of Approver with the Gitlab CI/CD process.  
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7.1.4 Software verification and validation plan 

SR id Description Verification method Demonstration scenario 

SR1.1 
Submit the app source to 
the DevSecOps plugin 

Check if scans succeed and the 
tool successfully reports the security 
vulnerabilities to the issue tracker 

e-Government (Vertical 2) 

SR1.2 
Scan a mobile app 
package 

Check if scans succeed and 
findings are correct 

e-Government (Vertical 2) 

Table 23: Approver - Demo scenarios and verification methods 

Submit the app source to the DevSecOps plugin 

Input: The source code of an Android application package. 

Output: A list of security vulnerabilities in the issue tracker of the DevSecOps pipeline. 

Test Procedure: 

To test the plugin, the developer is expected to push a commit on the code repository that contains 
the application source and is connected to the DevSecOps pipeline. The Approver plugin is expected 
to build the app package and to send it to the analysis backend. 

After the analysis is completed, the developer can check in the issue tracker a list of issues that 
represent the security vulnerabilities contained in the app. At the same time, the security analysis 
can access to the same report on the Approver web interface. 

Scan a mobile app package 

Input: An Android application package (APK). 

Output: A per-app security report. 

Test Procedure: 

To test the new SAST vulnerability analysis module, the Security Analyst is expected to submit an 
Android application package through the Approver web interface. The new SAST module is expected 
to analyse the binaries of the app and send the result to the backend collector to generate the 
security report. 

After the analysis is completed, the Security Analyst can access to the security report on the 
Approver frontend and download a PDF version of the report. 

7.2 AutoFOCUS3 (AF3) – FTS 

AutoFOCUS3 is a Model-Based Engineering Tool that supports Safety Analysis using Goal Structure 
Notation Models; Security Analysis using Attack Defense Tree Models; Textual and Structured 
Requirements Engineering; Architecture modelling using hierarchical component structure; Design 
Exploration Methods; Requirements traceability; Executable semantics; Automatic Code 
Generation; Hardware Deployment Mapping; and Code deployment. 

AutoFOCUS3 provides features that cover most of the phases of the V-model for the development 
of safety-critical embedded systems: Safety cases as GSN [94], security analysis as attack defence 
trees, requirements engineering and traceability, design-space exploration, formal verification, 
automatic code-generation and deployment. In particular, AutoFOCUS 3 enables the use of the most 
efficient solver (e.g., SMT) for model-based design-space exploration techniques that scale in 
realistic use cases. Indeed, a state-of-the-art satisfiability modulo theories (SMT) solver, namely Z3 
[91], is used to compute such solutions [90]. While other tools such as Papyrus [92] with Moka allow 
the execution of models based on the fUML [93] Semantics, AUTOFOCUS3 integrates all the 
modules into a unified software. This has a significant impact on the verification for either testing or 
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formal verification [90]. AutoFOCUS can be downloaded as a stand-alone application. It is part of 
Eclipse Foundation. More information about AutoFOCUS is available at: https://af3.fortiss.org/ 

7.2.1 Requirements Description 

 Use cases 

Table 24 shows an update of the Use Cases that were defined for the AF3 tool in D5.1. 

Use Cases No change 

UC1 Support the Safety and Security compliance assessment and certification of the 
platooning scenario 

X 

UC2 Architecture Modelling for Vertical 1 X 

Table 24: AF3 - Update of Use Cases specifications 

 User Requirements 

Table 25 shows an update of the User Requirements that were defined for the AF3 tool in D5.1. 

User Requirements No change 

UR1 Certifications, such as those used by the automotive industry, e.g., ISO 26262, have 
been taken into account in several projects involving AutoFOCUS. 

X 

Table 25: AF3 - Update of User Requirements specifications 

 

 Software Requirements 

Table 26 and Table 27 show an update of the SW requirements that were defined for the AF3 tool 
in D5.1. 

Software Requirements Add Comments 

SR1.1 C-ACC Safety and Security Co-Validation X Missing in D5.1 

SR1.2 TARA and HARA modelling X Missing in D5.1 

Table 26: AF3 - Update of SW Requirements specifications 

SR1.1 C-ACC Safety and Security Co-Validation 

Description 

Cooperative Adaptive Cruise Control (C-ACC) is used by vehicles to improve safety and fuel-
efficiency in vehicle platoon. This is because C-ACC enables the safe reduction of the gap 
between vehicles as vehicles can quickly adapt their state and react to emergency by relying 
on the information communicated through the communication channels. However, attackers 
can also exploit these communication channels to cause harm, such as vehicle crashes. We 
have proposed adequate countermeasures based on plausibility checks.  

We are developing in the Model-Based Tool AF3 the implementation of C-ACC behaviour. 
Our starting point is an existing model for platooning using only ACC and extending it to 
support C-ACC. We are also implementing plausibility checks.  

We validate using AF3's simulation machinery the impact of the introduction of security 
countermeasures to safety.  

The behaviour is also being implemented in the formal verification tool Maude (see Section 
7.7) to enable the verification of security properties. This means that after the safety and 
security of C-ACC is evaluated using simulation, one can also use formal verification 
techniques to provide further evidence about the safety and security of C-ACC. 

https://af3.fortiss.org/
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Actors AF3, Maude 

Basic Flow 
AF3 implementation -> AF3 Simulation -> Maude Formal Verification -> AF3 Code 
Generation 

SR1.2 TARA and HARA modelling 

Description 

TARA and HARA are used to guide the generation of evidence supporting the safety and 
security of systems. Moreover, safety and security attempt to control threats and hazards by 
implementing countermeasures and control mechanisms. It is important to understand how 
these activities impact the general safety and security.  However, typical textual descriptions 
do not enable the automation required to build this understanding.  

Models, such as Attack Defence Trees and Goal Structure Notation (GSN) Models, provide 
structure to these analyses that enable automation. For example, it is possible to extract 
information contained in GSN models and extract Attack Trees. Similarly, it is possible to 
understand the impact of security countermeasures in the safety arguments built.  

We are extending AF3 with the machinery enabling users to create models for TARA and 
HARA, including attack defence trees and goal structured notation.  

On a second direction, we are developing a domain specific language for the specification of 
safety and security analysis, which is used by logic programming engines to enable further 
automation, such as to determine whether all hazards and threats are adequately handled, 
automatically suggest solutions for any pending hazard or threat, and automatically carry out 
trade-off analysis. 

Actors AF3, Logic Programming 

Basic Flow AF3 -> Logic Programming  

Table 27: AF3 – Changes in SW requirements specifications 

 

7.2.2 Functional Specifications 

AF3 is organized into several Java Plug-ins (more than 20). Each plug-in is responsible for some 
particular feature. For the SPARTA project, we are developing the AF3 Security plug-in. It contains 
features, such as threat analyses using Attack Defence Trees, and algorithms for extracting security 
relevant information from safety analysis. 

Table 28 depicts the key developments to be carried out in SPARTA: 

 Modelling HARA and TARA of the platooning scenarios using, respectively, Attack Trees and 
GSN models. This is done by relying on the existing machinery in AF3, namely the 
Safetycases Plug-In. However, we also extend existing Attack Trees by using the developed 
algorithms for extracting security relevant information from GSN Models. Finally, we infer the 
confidence on the combined safety and security assessments based on the trade-off 
analyses. 

 The AF3 Security plug-in has been developed to enable the modelling of attack defence 
trees, algorithms for the co-analysis of safety and security, and includes domain specific 
language for security and safety.  

 Moreover, the security plug-in uses directly machinery developed in the AF3 Component 
plug-in, implementing the component model elements available in AF3, and with the 
SafetyCases plug-in, implementing the machinery for specifying Goal Structure Notation 
Models.  

 Finally, the machinery implemented in the Security plug-in enables the use of the formal 
verification tool Maude (see Section 7.7) and Logic programming engines to carry out further 
analysis. This integration is not automatic, however, denoted by the dashed arrows. 
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Figure 58: AF3 Security Plug-In and its interaction with other AF3 Plug-Ins and external tools 

AF3 has also been used for modelling the logic used by the fortiss Rovers (in Vertical 1, see Chapter 
5). We are currently refining these models to accommodate countermeasures that have been 
proposed in SPARTA. We are implementing the plausibility checks described in Section 5.3.4.3. 

7.2.3 Development roadmap 

Use Case Architecture components Realisation Involved partners 

UC2 AF3 

Based on the models available for the fortiss 
rovers, we are currently implementing in AF3 the 
countermeasures proposed for Vertical 1 (Demo 
1) with the Connected Car. 

FTS 

UC1 
AF3, Logic 

Programming 

Implementation of knowledge bases with safety 
and security co-analysis techniques as logic 
programs. 

FTS 

UC1 AF3 
Implementation of quantitative evaluation of 
safety models written in Goal Structured Notation 
and Attack Defence Trees. 

FTS 

Table 28: AF3 – Development Roadmap  

We will develop the following functionalities: 

 Algorithms for the automated construction of Attack Defence Trees from GSN Models. 

 Methodologies for safety and security trade-off analyses. We are implementing two different 
methods: 

o The first one is based on the architecture of the solution. We will develop a domain 
specific language with the key aspects to consider in both safety and security, including 
architectural information, such as components, communication channels, typical safety 
and security architectural patterns. These are then fed to a logic programming engine 
together with general reasoning principles. The logic programming engine returns 
results, such as analysis on which hazards and threats are controlled and mitigated, 
which patterns could be used to improve the design, and the trade-offs of the proposed 
safety and security measures. 

o The second type of analysis goes into the behaviour of components. We take as input 
the behaviour specification expressed as AF3 specification, and feed it to Maude, a 
formal verification tool (see Section 7.7). We have implemented several intruder models 
for the evaluation of the security of platoon vehicles. Maude then searches whether 
intruders can attack communication channels to cause safety problems. 
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7.2.4 Software verification and validation plan 

SR id Description Verification method Demonstration scenario 

SR1.1 
We use the machinery developed to evaluate 
safety and security of the architectures used for 
Cooperative Adaptive Cruise Control 

Simulations-Based, 

Formal Verification-
Based 

Connected Car 
(Vertical 1) 

SR1.2 

We use models in Goal Structure Notation 
(GSN) and Attack Defence Trees for modelling, 
respectively, the safety and security analysis of 
the Platooning scenario 

Safety and Security 

Co-Validation 
Connected Car 

(Vertical 1) 

Table 29: AF3 – Demo scenarios and verification methods 

Simulation-Based verification process 

Input: AF3 model with the implementation of C-ACC, the Maude specification corresponding to the 
AF3 model, and Test-Scenarios. The test scenarios have been selected to cover all the implemented 
features. 

Output: Simulation Results. 

Test Procedure: 

For each input scenario, we proceed as follows: 

1. We configure the parameters of the scenario by configuring the parameters of the AF3 model. 

2. We execute the simulation machinery in AF3 with the AF3 model configured to reflect the 
given scenario. 

3. We evaluate the simulation by checking whether the simulation results correspond to the 
results expected by the scenario. 

4. If so, then the scenario verification is considered a success, otherwise a failure. 

Formal Verification-Based verification process 

Input: AF3 model with the implementation of C-ACC, the Maude specification corresponding to the 
AF3 model, and Test-Scenarios. The test scenarios have been selected to cover all the implemented 
features. 

Output: Formal Verification Results. 

Test Procedure: 

For each input scenario, we proceed as follows: 

1. We configure the Maude implementation with the parameters provided by the scenario. 

2. We use Maude to search for undesired states that would disagree with the expected results 
in the scenario. 

3. We carry out search until a timeout is reached.  

4. If an undesired state is reached, then the scenario verification is considered a failure; 
otherwise it is considered a success. 

Verification of C-ACC Safety and Security Co-Validation 

The validation procedure is done by the implementation of different features for the modelling of 
attack defence trees and goal structured notation. These features are to be tested using as input the 
analysis carried out for the Platooning scenario. 

We consider the modelling successful if all the safety and security analysis can be modelled using 
the Attack Defence Trees and Goal Structure Notation implemented. 
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Input: Safety and security analysis. 

Output: Attack Defence Trees and GSN Models. 

Test Procedure: 

1. For each safety analysis, we model it as a safety case in the form of a GSN model. 

2. We extract an attack tree from the GSN model constructed in the previous step. 

3. We complement the attack tree with the security analysis provided as input. 

4. The co-validation is considered successful if all the provided safety and security analysis can 
be modelled as Attack Defence Trees and GSN models. 

7.3 Buildwatch (BW) – UBO 

Buildwatch is a tool to monitor the interaction of a software with the host operating system during the 
development phase of a software project. This comprises forensic artifacts, e.g., files created/read 
or network connections established. It does so by providing a virtual environment, a sandbox, for 
tasks occurring during development of a software project. Based on the emitted artifacts, an 
assessment for changed behaviour is possible. Analysis may be conducted within a Continuous 
Integration process. 

The use of Continuous Integration (CI) is a common practice now. Automated security testing of 
software is considered state of the art and bundled under the principle of “DevSecOps”. Buildwatch 
can extend this by leveraging well-established state of the art techniques of dynamic analysis used 
for malware analysis. In the field of malicious open-source software components only a few methods 
based on anomaly detection using dynamic analysis exists. Most often a heuristic check is carried 
out to detect suspicious characteristics. 

More information about Buildwatch is available at: https://dl.acm.org/doi/10.1145/3407023.3409183 

7.3.1 Requirements Description 

 Use cases 

Table 30 shows an update of the Use Cases that were defined for the BW tool in D5.1.  

Use Cases No change 

UC1 Build Host State Introspection X 

Table 30: Buildwatch - Update of Use Cases specifications 

 User Requirements 

Table 31 and Table 32 show an update of the User Requirements that were defined for the BW tool 
in D5.1. 

User Requirements Add Comments 

UR1.1 Integration X Missing in D5.1 

UR1.2 Review X Missing in D5.1 

Table 31: Buildwatch - Update of User Requirements specifications 

UR1.1 Integration 

Description 

Buildwatch needs to be integrated into a CI platform. Hence, the sandbox environment needs 
to be set up and a custom job must be implemented in the specific continuous integration 
platform, used during development. If a custom dependency format is used (e.g. Docker) the 
Differ needs to be calibrated. 

https://dl.acm.org/doi/10.1145/3407023.3409183
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Actors Software developers & testers 

UR1.2 Review 

Description After each build, a set of forensic artifacts is presented to the user, to be reviewed. 

Actors Software developers & testers 

Table 32: Buildwatch – Changes in User Requirements specifications 

 Software Requirements 

Table 33 shows an update of the SW requirements that were defined for the BW tool in D5.1.  

Software Requirements No change 

SR1 Process Automation X 

SR2 Version Control X 

Table 33: Buildwatch - Update of SW Requirements specifications 

 

7.3.2 Functional Specifications 

The Buildwatch system consist of three Parts (depicted in Figure 59): 

 The Monitor 

 The Reporting Module 

 The Diff Tool 

The Buildwatch Sandbox is based on the Cuckoo Sandbox [95] which has experimental support 
for Linux-based guest systems. Hence, the monitor is based on the Cuckoo agent. A software 
repository, including a build job description, is submitted to the sandboxed environment. The job 
is executed and resulting system calls are captured using the systap interface of the Linux kernel. 

Recorded system calls are passed to the reporting module for interpretation. The reporting module 
computes an abstraction based on cyber observable objects [96]. 

The diff tool allows the computation of differences between two of these reports. The comparison 
must be conducted in an object position (in terms of order) independent manner. Further is must 
filter observables which will be emitted and show differences during every change. These may 
include temporary files or files whose name include the version number string in their name. 

In order to use the Buildwatch Sandbox in a continuous integration pipeline supported development 
process, the required interfaces must be added. 

 

Figure 59: Architecture of Buildwatch, a CI extension for dynamic analysis 
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7.3.3 Development roadmap 

Use Case Architecture components Realisation Involved partners 

UC1 Monitor Extend Cuckoo monitoring capabilities for Linux-
based guests. 

UBO 

UC1 Reporting Module Implement a custom reporting module that 
ingests the Cuckoo reported data and aggregates 
them to cyber observable objects. 

UBO 

UC1 Diff tool Implement a script that computes the differences 
between two Buildwatch reports. 

UBO 

UC1 Integration Implementation of the interfaces to ingest a CI  
job and report the result. 

UBO 

Table 34: Buildwatch – Development Roadmap  

We will develop a security tool for software development which is independent of the actual CI tool 
employed. To this end, we will leverage Cuckoo, a popular automated sandbox for dynamic analysis 
of potential malicious software. Most often, build processes are run on Linux. Cuckoo, however, is 
optimized towards Microsoft Windows and hence certain extensions are required to support Linux 
(Component: Monitor). 

Furthermore, we will create a reporting module that summarises recorded artifacts during the build 
process of the software (Component: Reporting Module). In order to reduce manual inspection of 
artefacts, we will (1) store previously encountered artifacts that already have been accepted as 
benign and (2) are statistically common for the currently analysed software project (Component: Diff 
Tool). These will be removed from the report that is presented to the developer by the CI job. 

To ease integration, we will decouple Buildwatch from the actual employed CI tool by providing an 
API the CI job can communicate with (Component: Integration). It will accept the source code 
together with build instructions. After automated analysis and selection of relevant atifacts the CI job 
can pull the results of Buildwatch and present them to the developer. 

7.3.4 Software verification and validation plan 

SR id Description Verification method Demonstration scenario 

SR1 Ingest a common 
build dependency 

Check that a report comprises all cyber observable 
objects created or modified by the build process of 
the software 

e-Government  

(Vertical 2) 

SR2 Compute difference 
between two 
versions 

Two Versions are built in the Buildwatch Sandbox 
two times each. The differences are computed 
between all four reports.  The computation yields 
no result between builds of the same version but 
computes the same differences on reports of 
different versions. 

e-Government  

(Vertical 2) 

Table 35: Buildwatch – Demo scenarios and verification methods 

Ingest a common build dependency 

This test will show that malicious packages are detectable using this method. 

Input: Known malicious packages that show their behaviour during installation and two prior benign 
versions as their counterparts. 

Output: Cyber observables of all packages. 

Test Procedure: 
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1. For each package the observable sets emitted during installation are recorded by Buildwatch. 

2. Differences between the two prior benign packages are compared. 

3. Differences between the last prior package and the malicious package are compared. 

The test is successful if there is a noticeable difference in observables in the second comparison. 

Compute difference between two versions 

This test will reduce the number of observables that have to be reviewed. 

Input: Packages form PyPi and npm. 

Output: Diff of the cyber observables of the packages. 

Test Procedure: 

1. Submit a package to Buildwatch two times. 

2. Use the Diff Tool to compute the difference between the two analysis runs of the same 
package. The test is successful if the comparison yields the result of equivalency of these 
runs. 

7.4 Frama-C (FC) – CEA 

Frama-C is a platform for C code analysis based on formal methods. It is collaborative and open 
source. The tool is comprised of several modular parts capable of performing code transformations, 
safety and security analyses, and program proofs. A common specification language (ACSL) allows 
the exchange of results. 

One of the main analysers provided by Frama-C is the Eva plug-in, based on abstract interpretation, 
which enables proving the absence of certain classes of runtime errors such as buffer overflows, 
invalid pointer dereferencing, and arithmetic errors, all of which may lead to security vulnerabilities. 

Open standards such as SARIF15 (Static Analysis Results Interchange Format) are essential to 
maximize cooperation and reuse between code analysis tools, and between code analysis and other 
parts of the development cycle. For instance, the static analysis tool evaluation (SATE)16 proposed 
by NIST accepts (and will recommend in future editions) the SARIF format. Collaborative code 
analysis tools are strongly encouraged to support this format to help leverage evidence gathered at 
the code level to other parts of the development and validation cycle. Being an offline text format 
(produced at the end of an analysis), SARIF is also useful as artifact produced in a continuous 
integration process. 

Considering the assessment of code analyses based on formal methods, [97] reported on studies 
indicating the difficulty of communication between those writing the code and those verifying it. [98] 
also reported about the importance of communication between different roles; formal methods rely 
on very specific assumptions and hypotheses concerning the code, and it is fairly easy to overlook 
them during repeated iterations of the development cycle. Providing explicitly means for stating these 
assumptions and an automatic means of enforcing them is necessary to avoid gaps in the process. 
An audit mode tailored for this purpose is useful for both manual and automatic assessments of the 
security-related properties which the system must preserve, and therefore a useful feature in the 
context of SPARTA. 

More information about Frama-C is available at: https://frama-c.com 

                                                
15 https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html  

16 https://samate.nist.gov/SATE6ClassicTrack.html  

https://frama-c.com/
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://samate.nist.gov/SATE6ClassicTrack.html
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7.4.1 Requirements Description 

 Use cases 

Table 36 shows an update of the Use Cases that were defined for the Frama-C tool in D5.1. 

Use Cases No change 

UC1 Runtime errors and vulnerability identification via static analysis X 

UC2 Code audit accelerated by a value analysis X 

Table 36: Frama-C - Update of Use Cases specifications 

 User Requirements 

Table 37 shows an update of the User Requirements that were defined for the Frama-C tool in D5.1. 

User Requirements No change 

UR1.1 Quasi-automatic analysis configuration X 

UR1.2 Exchangeable analysis results X 

UR2 Audit-centred analysis exploration and report X 

Table 37: Frama-C - Update of User Requirements specifications 

 Software Requirements 

Table 38 shows an update of the SW Requirements that were defined for the Frame-C tool in D5.1. 

Software Requirements No change 

SR1.1 CI-based set of parametrization options + example use cases X 

SR1.2 Standardized output format X 

SR2 ”Audit” mode X 

Table 38: Frama-C - Update of SW Requirements specifications 

7.4.2 Functional Specifications 

Frama-C is a platform for C code analysis based on formal methods. It is comprised of several 
modular parts, which include code transformations, safety and security analyses, and a graphical 
interface to explore results and perform semi-interactive proofs. 

In CAPE, CEA’s focus is to improve one of the main analysers of the Frama-C platform, called Eva, 
a value analysis based on abstract interpretation. It performs an automatic, whole-program static 
analysis which outputs an extensive list of possible runtime errors.  Eva also provides information 
about each program variable at each statement, for all possible executions, easily accessible via a 
graphical interface. The current architecture of Frama-C/Eva is presented in Figure 60. 

 

Figure 60: Frama-C/Eva’s current architecture 
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Given the two use cases related to Frama-C/Eva, there are two main modes of usage of the analyser: 

 CI mode (automatic): Eva is used as a static analysis tool, similarly to a code sanitizer, 
during a build process. A fast, automatic analysis is required, outputting data for a continuous 
integration process. 

 Audit mode (interactive): Eva is used to augment the auditor’s understanding of the code, 
complementing but not replacing human expertise during an assessment. Frama-C’s 
graphical interface provides the set of all possible variable values, plus code navigation 
possibilities, providing points-to and aliasing information, and evaluation of arbitrary 
expressions. 

Concerning the automatic use mode, Frama-C/Eva has been historically developed for in-depth 
analyses of safety-critical code bases developed using a traditional process, with few revisions and 
a long assessment period. In CAPE, the transition to a CI-based analysis with rapid assessments 
imposes changes to its architecture, as illustrated in Figure 61. 

 

 

Figure 61: Frama-C/Eva’s architecture for CI builds 

For the audit mode, the goal is to complement automatic analysis and to support external 
assessments taking into account the environment, subject to changes. Figure 62 highlights the 
differences with respect to the existing architecture. 

 

Figure 62: Frama-C/Eva’s architecture for audits 

7.4.3 Development roadmap 

Use Case Architecture components Realisation Involved partners 

UC1 Frama-C kernel Simplify/automate parsing and initial setup CEA 

UC1 Markdown-Report plug-in Produce outputs in standardized format 
(SARIF) 

CEA 

UC2 Frama-C kernel and GUI Produce environment summaries and 
check their conformance 

CEA 

Table 39: Frama-C – Development Roadmap  

For UC1, there are two distinct developments: the first part consists in the streamlining of the initial 
usage of Frama-C which, due to the complexities of the C language, requires a substantial amount 
of information and setup. The development and improvement of analysis templates, as well as a 
standardization of defaults, allows for a simpler process based on examples. The introduction of new 
Frama-C options and helper scripts will further help this process. 

For the second part of UC1, the generation of up to date SARIF reports will enable tools conforming 
to this standard to read the output of Frama-C. This development requires updating the format 
produced by Frama-C to the latest standard version, then adjusting the output to make it 
deterministic and as complete as possible. Some new Frama-C features are required to provide 
necessary data for SARIF reports, such as the full set of command-line options used in the analysis. 
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For the second use case, UC2, the main features are the sets of environment information, and 
programmatic reports of the analysis itself. Once these are made available to the user by 
implementing new runtime options, they will be output as extra analysis results. The final steps of 
the development consist in incorporating, either in the command-line or in the graphical interface, 
validators for this information which will allow auditors (and users alike) to quickly identify unusual 
parametrizations. 

7.4.4 Software verification and validation plan 

SR id Description Verification method Demonstration scenario 

SR1.1 
CI-based configuration 
and use cases 

Check applicability and usability 
on a set of existing code bases 

Set of open-source code bases in the 
Connected Car scenario (Vertical 1) 

SR1.2 
Standardized output 
format (SARIF) 

Feed output to other tools 
compatible with SARIF 

Integration in the CI pipeline 
produced in T5.3 in the Connected 
Car scenario (Vertical 1) 

SR2 
Audit-mode outputs 
and validation as inputs 

Modify outputs and re-feed them 
as inputs to check conformance 

Set of open-source code bases in the 
Connected Car scenario (Vertical 1) 

Table 40: Frama-C – Demo scenarios and verification methods 

Check applicability and usability on a set of existing code bases 

Input: Open-Source-Case-Studies Git repository, Frama-C Docker image for CI. 

Output: CI artifacts and reports after each build. 

Test Procedure: For each open source case study in the OSCS Git repository, we add a CI 
configuration file, following the documented convention, and taking into account special behaviour 
as needed for each case. 

Then, we run the CI tool, which uses the Frama-C Docker image, to check that Frama-C is able to 
run the analysis and produce the required artifacts and reports. 

Feed output to other tools compatible with SARIF 

Input: SARIF reports produced by Frama-C on a few different sample programs. 

Output: Manual inspection of format acceptance by SARIF-compatible tools. 

Test Procedure: We run Frama-C on some sample programs (short and large code bases, with 
different kinds of properties) and output SARIF reports for the analysis. 

Then, we feed these reports into the SARIF-multitool (a command line-based tool) and check that it 
validates them as syntactically correct. We then import the reports with the SARIF Viewer plug-in of 
VS Code, which performs a similar syntactic validation, but also allows checking the usable output: 
whether messages are informative, locations are correctly mapped, and alarms are signalled as 
expected. 

Modify outputs and re-feed them as inputs to check conformance 

Input: Textual result of audit-related Frama-C options. 

Output: Pass/fail result based on Frama-C audit options. 

Test Procedure: We run the Frama-C tool on the test cases from Open-Source-Case-Studies Git 
repository, adding audit-related options which produce textual information related to the audit 
process, such as the implicit hypotheses of an analysis which could lead to an incomplete 
verification. These options produce some machine-readable output intended for an auditor. We then 
re-run Frama-C under the “auditor mode”, using the provided input, to verify that the tool reports the 
expected information. We also try modifying the tool options to “conceal” some important information, 
and check that the tool reports the discrepancy. 
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7.5 Legitimate Traffic Generation system (LTGen) – IMT 

LTGen (Legitimate Traffic Generation system) is an unreleased network traffic generation and 
network environment construction system. It relies on a feature-based model extracted from a 
captured traffic to generate an arbitrary network topology including agents mimicking application 
clients that will reproduce a background traffic similar to the capture, as realistically as possible. 

LTGen has the ability to successfully reproduce traffic captures from well-known traffic dataset 
sources (e.g., MAWILab), and overwhelm intrusion detection systems under test, so as to elicit false 
positives or system failures. 

Assessing the performance of intrusion detection systems has often been performed by measuring 
the attack detection accuracy, i.e., the ability of the detector to correctly classify in the presence of 
both legitimate and malicious data. Many approaches even only test the attack coverage, that the 
ability of the classifer to recognize attacks in the sole presence of malicious data [99].  

In the case of network intrusion detection, datasets are made of network traffic captures, which were 
generated in a more or less automated way. Sadly, the number of datasets is quite low, making their 
diversity questionable and their ageing quite problematic [100]. Thus, instead of relying on a small 
number of static datasets, practictioners may resort to dynamically generating more diverse datasets 
for assessment purposes.  

Traffic data generation has been extensively studied in the literature, following 3 main methods, 
namely (i) traffic replay, (ii) traffic modelling, and (iii) user behaviour modelling. The first approach 
often leverages the above-mentioned ageing datasets and requires adapting the replayed captures 
to the assessment environment. The second models traffic from existing traces by leveraging 
statistical distributions, such as IP spatial distribution, inter-session start times and session duration 
for D-ITG [101] or file sizes, inter-connection times and the number of active flows for Harpoon [102].  

Our work actually falls into the third category where behaviour patterns of actual users are mimicked 
to generate background traffic using real services and protocols, as it was the case for constituting 
the infamous DARPA datasets. 

It extends this approach by combining the real generation of traffic with the modelling of previous 
traces as a way to define a reference model.  

Data-driven generation is re-emerging with the advent of machine- and deep-learning where neural 
networks, such as autoencoders [103] or generative adversarial networks [104], have demonstrated 
their ability to generate convincing models. While these works are quite promising, they do not 
generate traffic traces but only feature vectors. Our approach will merge both efforts in features 
generation and traffic generation to provide traffic traces that look similar to real network captures. 
Additionally, we will investigate how these new generative methods could be used for adversarial 
training, by generating new malicious traces from existing ones. 

7.5.1 Requirements Description 

 User Cases 

Table 41 shows an update of the Use Cases that were defined for the LTGen tool in D5.1.  

Use Cases No change 

UC1 Synthetic traffic generation from existing traces X 

UC2 Attack traffic mutation X 

Table 41: LTGen - Update of Use Cases specifications 
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 User Requirements 

Table 42 shows an update of the User Requirements that were defined for the LTGen tool in D5.1. 

User Requirements No change 

UR1.1 Availability of network traffic trace X 

UR1.2 Privacy-preserving traffic generation X 

UR2.1 Availability of network intrusion traffic X 

UR2.2 Interpretability of results X 

Table 42: LTGen - Update of User Requirements specifications 

 Software Requirements 

Table 43 shows an update of the SW Requirements that were defined for the LTGen tool in D5.1.  

Software Requirements No change 

SR1.1 Metrics to measure realism X 

SR1.2 Anonymization functions X 

SR2.1 Metrics to measure malice X 

SR2.2 Mutation functions X 

Table 43: LTGen - Update of SW Requirements specifications 

7.5.2 Functional Specifications 

The proposed tool, LTGen, is constituted of two main modules: 

 a network traffic parser to process captured traffic inputs, and 

 a network traffic generator to generate traces for IDS/SIEM evaluation. 

In CAPE, IMT aims at improving the parser to extract new features that will enable a more faithful 
modelling of traffic traces.  By reliably modelling real traffic traces, we believe that we will be able to 
generate more realistic network traffic. The models learned from a single traffic trace allow the 
generator to reproduce traffic for this particular trace. One particular challenge is the feasibility of 
producing full-fledged traffic traces from a few model features. Future developments aim at using an 
autoencoder to learn the traffic features found in traffic captures. 

 

Figure 63: Architecture of LTGen generation module 

The traffic generator of LTGen takes two inputs as shown in Figure 63: (1) the model features learned 
from the parser and (2) a network topology description (also called scenario). The network 
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description is written in YAML, a text-file format, to be consumed by the Heat17 orchestration engine 
of the OpenStack virtualization platform. This description includes a section for each subnet, and 
lists the hosts within the subnet, along with their IP addresses. This file is currently obtained manually 
from a quick analysis of the traces. One improvement could be to have the parser generate it 
automatically. 

The second input, the list of model features, is generated by the parser and supports the following 
features: 

 Time interval. Indicates the period during which a specific flow is generated at a specified 
throughput 

 Average throughput. Indicates the amount of traffic data, in terms of bytes per second, for 
a flow generated in the network 

 Distribution of services. Lists the main application protocols and their corresponding 
weights, that is the ratio of the traffic volume (in terms of bytes) over the total amount of traffic. 

LTGen currently supports four main protocols, namely HTTP(S), IMAP, SMTP, and FTP. From these 
inputs, the LTGen generator launches a network construction module to create an environment with 
the topology specified in the description. As show in Figure 64, after confirming that the environment 
has been constructed successfully (steps 1 and 2), it processes the traffic features and triggers the 
generation of the synthetic flows through scripts orchestrating the launched hosts (see Figure 63). 
At the same time, it records the generated traffic at the switches (step 5). When the generation is 
complete, the records are processed, and the extracted traffic features are reported back to the user 
(steps 6 and 7). Finally, it cleans up the environment, to be available for the next run (steps 8 and 
9). 

 

Figure 64: LTGen Workflow 

A second objective of our approach is to generate malicious vectors able to challenge the systems 
under evaluation (IDS, SIEM). IMT will develop a generative adversarial network-based (GAN) 
approach. Using a GAN, we aim at improving concurrently two aspects of the generated traffic: its 
realism and its malice, so that it becomes difficult for the system under evaluation to discriminate 
real, legitimate traffic from the malicious, synthetic one. 

Finally, a human interface module should summarize the results of the test and assist the tester in 
identifying the weaknesses of the system under evaluation to make recommendations on how to 
improve it. 

7.5.3 Development roadmap 

Use Case Architecture components Realisation Involved partners 

UC1 Parser Design new features set to extract IMT 

UC1 Generator Design and implement autoencoder-based feature 
generator and translator 

IMT 

                                                
17 https://docs.openstack.org/heat/latest/ 

https://docs.openstack.org/heat/latest/
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Use Case Architecture components Realisation Involved partners 

UC1 User interface Produce explainable outputs for IDS/SIEM 
evaluation 

IMT 

UC2 Generator Design and implement a GAN-based attack traffic 
generator 

IMT 

UC2 User interface Produce explainable outputs for IDS/SIEM 
evaluation 

IMT 

Table 44: LTGen – Development Roadmap  

The first use case (UC1) will require a couple of developments to improve the state of the art. First, 
we need to design a set of features able to capture dynamically network traffic behaviours and 
develop the according collection tools to extract them. It will enable to break away from the statistical 
approach currently employed, which is unable to capture the changes of network behaviours over 
time. To achieve the dynamic learning of the network traffic behaviours, an autoencoder-based 
approach will be developed to support the generation of new traffic features. Such features are not 
sufficient for traffic generation, and will therefore be translated using a new component, the 
translator, that takes as input a learned model and outputs a traffic generator configuration. The 
current traffic generator has been described previously in Section 7.5.2. Finally, the user interface 
should integrate additional information in order to highlight the results of the evaluation of the 
IDS/SIEM, with respect to the generated traffic, in particular, false positives. 

The second use case (UC2) will develop a new component as an adversarial generator, able to 
evade intrusion detection. The design will need to consider how the malice can be adequately 
represented in the generation model, and how to concretely generate it, which is an emerging 
research issue. The GAN-based approach will complement the legitimate traffic generation in 
constituting a mixed dataset, necessary to a complete intrusion detection evaluation. Similarly to the 
UC1, UC2 requires that the evaluation results be highlighted in the user interface, with respects to 
false negatives. 

7.5.4 Software verification and validation plan 

LTGen is being developed as a standalone tool within CAPE, and hence does not interact with other 
components during verification and validation. 

SR id Description Verification method Demonstration scenario 

SR1.1 Metrics to measure 
realism 

Check the metrics against real traffic 
traces 

Test set of real traffic traces 

SR1.2 Anonymization 
functions 

Assess the privacy of pro- cessed 
traces 

Privacy impact assessment (PIA) 

SR2.1 Metrics to measure 
malice 

Check the potential damage to a 
target system 

Set of target systems 

SR2.2 Mutation functions Measure mutation ratio State-of-the-art mutation metrics 

Table 45: LTGen – Demo scenarios and verification methods 

Testbed-Based verification process 

Input: Real traffic traces, target deployment scenario (topology). A set of diverse traffic traces and 
deployment scenarios should demonstrate the ability of the tool to reproduce traffic realistically, and 
to tailor it to different environments. 

Output: Generated traffic, evaluation results, Privacy Impact Assessment. 

Test Procedure: For each input scenario, we proceed as follows: 



D5.2 - Demonstrators specifications   

SPARTA D5.2 Public Page 96 of 170 

1. We build a scenario file (topology description) for OpenStack Heat and pre-process the traffic 
capture. 

2. We execute LTGen over these inputs which will launch the deployment of the scenario and 
trigger traffic generation. 

3. We record the generated traffic. 

4. We compute several metrics to assess (1) the realism of the synthetic traffic, and (2) the 
privacy impact with respect to the original trace. 

5. If the traffic is deemed realistic AND does not harm privacy, then the generation is considered 
to be successful. 

7.6 Logic Bomb Detection (TSOpen) – UNILU 

TSOpen is an open-source tool able to statically detect logic bombs mechanisms in Android 
applications. Logic bombs are mechanisms used by malicious apps to evade detection techniques. 
Typically, an attacker uses logic bomb to trigger the malicious code only under certain chosen 
circumstances (e.g. only at a given date) to avoid being detected by the analysis. The goal of 
TSOpen is to detect such logic bombs. The approach used to perform the detection is fully static and 
combine multiple techniques such as symbolic execution, path predicate reconstruction, path 
predicate minimization, and inter-procedural control-dependency analysis. In a first version, TSOpen 
will focus on detecting triggers related to time, location and SMS. 

From a more technical point of view, TSOpen is developed over Flowdroid, a static analysis tool, 
which provides a useful model of the Android Framework on which one can easily apply algorithms.  

Researchers have been fighting against logic bombs for decades on desktop applications. However, 
not much work has been provided in the literature to cope with the logic bomb problem in the Android 
ecosystem. Mainly, related-works provide approaches able to detect sensitive triggers [105] [106]. 
Besides, triggering code under certain circumstances can also be used for good. Indeed, Zeng et al. 
[107] have presented an approach to detect app repackaging using special triggers. 

TriggerScope [105] is a fully static analysis tool that relies on symbolic execution and path predicate 
recovery to automatically reveal certain types of sensitive triggers. More recently, Dark hazard was 
presented as a hybrid approach combining static analysis to find trigger of interest as well machine 
learning techniques to detect Hidden Sensitive Operations using not an SVM classifier. They do not 
focus on malicious behaviour but are able to reveal sensitive behaviour triggered under specific 
circumstances. 

Our prototype, TSOpen is, likewise TriggerScope, a fully static analysis tool built on the idea of 
tweaking some parameters of the analysis to make it more efficient. 

More information about TSOpen is available at: https://github.com/JordanSamhi/TSOpen 

7.6.1 Requirements Description 

 Use cases 

Table 46 shows an update of the Use Cases that were defined for the TSOpen tool in D5.1.  

Use Cases No change 

UC1 Detecting hidden malicious code X 

Table 46: TSOpen - Update of Use Cases specifications 

 User Requirements 

Table 47 and Table 48 show an update of the User Requirements that were defined for the TSopen 
tool in D5.1. 

https://github.com/JordanSamhi/TSOpen
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User Requirements Add Comments 

UR1 Security report on the presence of logic bomb mechanism X Missing in D5.1 

Table 47: TSOpen - Update of User Requirements specifications 

UR1 Security report on the presence of logic bomb mechanism 
 

Description 
The tool provides a detailed security report on the presence of logic bombs in an Android 
application under test. In the best case, the tool is also able to pinpoint the malicious piece 
of code which is “protected” by the logic bomb.   

Actors Security Analyst 

Table 48: TSOpen – Changes in User Requirements specifications 

 Software Requirements 

Table 49 and Table 50 show an update of the SW Requirements that were defined for the  TSOpen 
tool in D5.1.  

Software Requirements No change Add Comments 

SR1 A standalone command line tool X   

SR2 Trigger database X   

SR3 Precise Data Flow tracking  X Missing in D5.1 

Table 49: TSOpen - Update of SW Requirements specifications 

SR3  Precise Data Flow tracking 

Description 

To detect logic bomb, the tool needs to perform data-flow tracking in order to follow sensitive 

information flow. This task is challenging, especially in the Android ecosystem where 

communication between components are performed via intent and specific ICC methods 

(e.g., startActivity).   

Actors TSOpen Users 

Basic Flow 

 Download TSOpen from: https://github.com/JordanSamhi/TSOpen 

 Follow the instructions in the README file to build it 

 Run the tool with the options available 

 Analyse the results 

Table 50: TSOpen – Changes on SW requirements specifications 

7.6.2 Functional Specifications 

TSOpen is developed over Flowdroid which provides a useful model of the Android Framework on 

which one can easily apply algorithms. Figure 65 provides an overview of the tool. First, an inter-

procedural control flow graph from Flowdroid is retrieved on which TSOpen applies a symbolic 

execution in order to retrieve the semantic of objects of interest. Then simple predicates are retrieved 

during the block predicate recovery to annotate the Inter-Procedural Control-Flow graph (ICFG). 

The annotated ICFG is then used to retrieve the full path predicate of every instruction. A predicate 

minimization algorithm is then applied in order to rule out false dependencies. Afterwards, a first 

decision is taken during the predicate classification step to get suspicious predicates. Finally, a 

control dependency step is applied in order to take the decision regarding the suspiciousness of 

the potential logic bomb under study.  

https://github.com/JordanSamhi/TSOpen
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The TSOpen tool consists of a standalone executable Java archive file (jar). It has to be executed 

with the command line or in scripts. 

Dataflow in Android application is challenging due to its inner functioning. Indeed, Android apps rely 
on Inter-component communication (ICC) to share data, switch from one User Interface to another, 
perform background tasks or start other applications. Those behaviours can be performed thanks to 
special ICC methods (e.g. startActivity, etc.). Then, for precise dataflow tracking it must be taken into 
account to have a precise model, the state-of-the-art got interesting and developed many tools 
(IccTA, Amandroid, Droidsafe, etc.) to overcome this limitation. 

However, ICC can also be performed with non-standard (atypical) methods that are not modelled by 
the state-of-the-art, e.g. sendTextMessage which can trigger another component with the help of 
PendingIntent Objects. We then propose a tool called RAICC (Revealing Atypical Inter-Component 
communication) which is able to overcome this limitation by modelling 111 methods systematically 
gathered in the Android Framework. 

 

Figure 65: Overview of Logic Bomb Detection (TSOpen) 

7.6.3 Development roadmap 

Use Case Architecture components Realisation Involved partners 

UC1 Detection of hidden malicious code Build the prototype to detect 
logic bombs 

UNILU 

Table 51: TSOpen – Development Roadmap  

TSOpen is a tool that is composed of several modules that need to be developed separately, 
therefore we will follow the following approach for the development of the logic bomb detector in 
Android apps: 

1. We will first set up the environment with Soot and Flowdroid which are responsible for the 
data-flow model generation and the Inter-Procedural Control Flow Graph generation (ICFG). 

2. We will then develop the symbolic execution engine and log the values modelled to test the 
prototype. 

3. The ICFG will then be annotated by tagging the statements with simple block predicates that 
need to be passed to reach a specific statement. 

4. Each statement will then be annotated by the full path-predicate (entire formula) to reach it 
and this formula will be minimized applying well-known Boolean algorithms to remove false 
dependencies on guarded blocks. 

5. The predicate will be classified according to the symbolic execution output and the tag given 
for the variables in the formula. 

6. Finally, we will perform a control dependency step that checks if the blocks dominated by a 
potential sensitive predicate contain a call to a sensitive API. 

Once the prototype is fully developed, we will test it and evaluate the results. Eventually we will 
perform large-scale study to assess the tool in the wild. 
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The approach is fully static, which means it is prone to high false-positive rates, therefore next year 
we plan to address the challenge by improving the current approach to reduce the false-positive rate. 
More specifically, we plan to implement precise taint analysis to find potential entry-point to logic 
bombs. Also, as detecting malicious behaviour in the code guarded by an “if” statement reduces to 
detection malicious code in the entire applications, we plan to test an anomaly detection scheme to 
detect potential logic bombs. 

7.6.4 Software verification and validation plan 

SR id Description Verification method Demonstration scenario 

SR1 Standalone 

command line tool 

Check if the tool works properly with right 

dependencies 

Use the tool with the 

command line 

SR2 Trigger database Check if the database contains correct 

triggers 

Connect to the database 

(e-Government scenario) 

SR3 Precise Data Flow 

tracking 

Manually check reported data flow paths 

on sample data 

Use a benchmark (e-

Government scenario) 

Table 52: Logic Bomb Detection – Demo scenarios and verification methods 

Command line tool 

Input: Android app. 

Output: Result of logic bomb detection. 

Test Procedure: For each input scenario, we proceed as follows: 

 We package the TSOpen tool 

 We set all the parameters needed to run it on specific app 

 We execute the detection 

 Given the output, we verify if it runs correctly or if a further dependency is needed 

  If it runs correctly, we verify the result: presence of logic bomb or not 

 It not, we resolve the dependency. 

Trigger database 

Input: Trigger database. 

Output: Clean database or not. 

Test Procedure: For each input scenario, we proceed as follows: 

  We connect to the database 

  We manually verify if the triggers in the database are correct 

   If it is the case, the database is clean 

   If not, we have to correct it. 

The database entries are given after manual verification of output of logic bomb detection. 

Precise Data Flow tracking 

Input: Android app 

Output: Dataflow path 

Test Procedure: For each input scenario, we proceed as follows: 

We execute RAICC base on arbitrary sources and sinks and we manually verify its output. If the app 
contained a data flow path using an atypical method, the flow should be found from a source to a 
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sink. If the data flow path does not use an atypical method, it should not detect it. Therefore, we 
developed 20 benchmark apps to verify its precision, each app being an input. 

7.7 Maude (MAU) – FTS 

Maude is a formal verification tool based on Rewriting Logic, a language for distributed systems. 
Maude can be used to formally verify distributed systems by using its search engine. A number of 
frameworks have been developed over Maude. For example, the framework Soft-Agents enables 
the specification and verification of robust autonomous agents. Other frameworks have been built 
for security verification of industry 4.0 applications [108]. These models enable the symbolic 
verification of systems using symbolic intruder models. In SPARTA, we are developing models in 
Maude for the specification and verification of platooning scenarios, in particular, countermeasures 
and intruder models that can enable the verification of such systems using Maude. 

Maude is a high-performance reflective language and system supporting both equational and 
rewriting logic specification and programming for a wide range of applications [109]. The key novelty 
of Maude is that it supports rewriting logic computation, besides supporting equational specification 
and programming. Another key distinguishing feature of Maude in comparison to other languages 
like CafeOBJ [112] and ELAN [111] is its systematic and efficient use of reflection, a feature that 
makes Maude remarkably extensible and powerful, and that allows many advanced 
metaprogramming and metalanguage applications [110]. 

More information about Maude is available at: 
http://maude.cs.illinois.edu/w/index.php/The_Maude_System 

7.7.1 Requirements Description 

 Use cases 

Table 53 and Table 54 show an update of the Use Cases that were defined for the Maude tool in 
D5.1. 

Use Cases Add Comments 

UC1 Formal Security Verification of platooning SafeSec module X Missing in D5.1 

Table 53: Maude - Update of Use Cases specifications 

UC1 Formal Security Verification of platooning SafeSec module 

Description 
By modifying or spoofing messages, an intruder can confuse vehicles' embedded systems 
and cause accidents. We propose the specification and formal verification of 
countermeasures proposed to mitigate attacks.  

Actors Security and Verification Engineer  

Basic Flow 

 Modelling of platooning in Maude 

 Propose Intruder Models 

 Use Maude to verify proposed countermeasures 

Table 54: Maude – Changes in Use Cases specifications 

 User Requirements 

Table 55 and Table 56 show an update of the User Requirements that were defined for the Maude 
tool in D5.1. 

User Requirements Add Comments 

UR1.1 Automated Formal Security Assessment of Cyber-Physical Agents X Missing in D5.1 

Table 55: Maude - Update of User Requirements specifications 

http://maude.cs.illinois.edu/w/index.php/The_Maude_System
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UR1.1 Automated Formal Security Assessment of Cyber-Physical Agents 

Description Specification of countermeasures and intruder model capabilities. 

Actors Security and Verification Engineer 

Table 56: Maude – Changes in User Requirements specifications 

 Software Requirements 

Table 57 and Table 58 show an update of the SW Requirements that were defined for the Maude 
tool in D5.1. 

Software Requirements Add Comments 

SR1 Maude Software X Missing in D5.1 

Table 57: Maude - Update of SW Requirements specifications 

SR1 Maude Software 

Description Maude software 

Actors Security and Verification Engineer 

Basic Flow 

 Install Maude (available from 
http://maude.cs.illinois.edu/w/index.php/The_Maude_System#General_Maude_Informati
on) 

 Download the specification of the platooning scenario 

 Execute Maude with a given security query 

Table 58: Maude – Changes in SW requirements specifications 

7.7.2 Functional Specifications 

Maude is formal framework for the modelling of distributed systems and the verification of its 

properties. Currently it is in version 3.0. It uses as underlying foundations Rewriting Logic. It is a 

logic that is suitable for the specification of concurrent systems, as it can express stateless behaviour 

in the form of equational theory, and stateful behaviour in the form of rewriting rules. A number of 

systems are based on Maude, including systems for the formal verification of security protocols, real-

time systems, biological systems.  

For an overview of the Maude tool, we refer the reader to the Maude home page18.  

In particular, Maude has been used to specify the framework Soft-Agents [113] which is a framework 
for the specification and verification of Cyber-Physical systems.  

                                                
18 http://maude.cs.illinois.edu/w/index.php/The_Maude_System  

http://maude.cs.illinois.edu/w/index.php/The_Maude_System#General_Maude_Information
http://maude.cs.illinois.edu/w/index.php/The_Maude_System#General_Maude_Information
http://maude.cs.illinois.edu/w/index.php/The_Maude_System
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Figure 66: Soft-Agent Framework Architecture in Maude 

Figure 66 depicts the general architecture of a soft-agent, or simply agent. An agent has its own 
local knowledge base that contains, e.g., its current perceived speed, position, and direction of the 
other agents. Further data may be obtained by sensing the environment or by sharing of information 
between agents through communication channels. Using its local knowledge base, the agent 
decides which action to perform according to its different concerns specified as a soft constraint 
(optimization) problem [114].  For example, if the distance to the vehicle in front is too great, the fuel 
consumption concern kicks in and attempts to reduce it by accelerating. Similarly, if the distance is 
dangerously short, then the safety concern kicks in and attempts to increase it by decelerating. As 
soft constraints subsume other constraint systems, e.g., classical, fuzzy and probabilistic, it is 
possible to formally specify a wide range of decision algorithms. 

7.7.3 Development roadmap 

Use Case Architecture components Realisation Involved partners 

UC1 
Maude specifications for 
the Platooning scenario 

Maude specification based on the 
framework Soft-Agents [115] 

FTS 

Table 59: Maude Tool – Development Roadmap  

We will take the following steps for the development of a verification framework for Vertical 1 
(Platooning) using Maude and the existing Soft-Agent architecture. 

 We will develop a domain specific language with the alphabet specific to Vertical 1. 

 We will specify in Maude the soft constraints used for governing the behaviour of vehicles in 
a platoon. This means that vehicles consider at least two concerns, the reduction of fuel 
consumption and safety.  

 We will implement intruder models specifying the intruder's capabilities that include the 
injection of messages in the vehicle communication channels and the jamming of 
communication channels. 

 We will implement countermeasures, e.g., plausibility checks. 

 We will implement evaluation scenarios and verification problems, such as, determining 
whether an intruder can cause vehicles to crash. 
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7.7.4 Software verification and validation plan 

SR id Description Verification method Demonstration scenario 

SR1 
Use Maude to formally verify 
platooning modules 

 Discover an attack 

 Evaluate countermeasure 
Connected Car (Vertical 1) 

Table 60: Maude Tool – Demo scenarios and verification methods 

Maude will be evaluated in its capacity to automatically find attacks and its capacity in providing 
evidence on the security of systems, in particular, the security of platooning systems.  

Verification method 

Input: The model of the platoon behaviour specified in Maude, including countermeasures. The 
capabilities of intruders. The scenarios to be verified.  

 Some scenarios are taken from the literature with attacks that have been found. The intention 
is to validate whether the Maude machinery can discover these attacks in an automated 
fashion. Moreover, we also consider scenarios that implement countermeasures. 

Output: Evidence supporting the security of the given models with respect to the specified intruder 
models.  

Test Procedure: For each test scenario, 

 We configure the Maude model to correspond to the scenario and configure the intruder to 
possess the specified capabilities. 

 For a given timeout, we search using Maude's search engine for a bad situation, e.g., a 
vehicle crash that can be caused by the intruder by bypassing existing countermeasures. 

 If an attack is found that is expected, then we say that Maude succeeded to discover an 
attack. Otherwise, we consider it to have failed. 

 

7.8 NeSSoS Risk Asessment tool (RA) – CNR 

NeSSoS Risk assessment tool is a free to use on-line service with the main goal to provide a simple 
and quick facility for cyber risk self-assessment. The tool requires two types of input: information 
about security measures and information about key assets of the enterprise. When all inputs are 
provided, the tool estimates the expected annual losses for every relevant threat and a total one. 
The output is to be available when the input information is correctly provided. 

Risk assessment is an essential and well-recognised practice to ensure that all security risks are 
taken into account and adequate treatments are implemented. There are a number of approaches 
to risk assessment [116] [117] [118] [119] [120] and they often require significant time and effort (as 
well as knowledge) to conduct risk assessment properly. This is especially challenging for SMEs 
which are often short in resources and cyber security knowledge. The NeSSoS tool (provided as a 
free service) simplifies the process allowing the users to conduct basic risk self-assessment (without 
relying on external cyber risk experts). The tool realises quantitative risk assessment, in contrast to 
the majority of other risk assessment methods using qualitative analysis, which helps to roughly 
estimate expected losses due to cyber events. Another advantage of the tool is that it also helps to 
optimise future expenditure using the cost-benefit facility of the tool.  

More information about NeSSoS is available at: 
https://www.cybersecurityosservatorio.it/en/Services/survey.jsp    

https://www.cybersecurityosservatorio.it/en/Services/survey.jsp
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7.8.1 Requirements Description 

 Use cases 

Table 61 shows an update of the Use Cases that were defined for the NeSSoS tool in D5.1. 

Use Cases No change 

UC1 Evaluation of e-government risks X 

Table 61: NeSSoS - Update of Use Cases specifications 

 User Requirements 

Table 62 shows an update of the User Requirements that were defined for the NeSSoS tool in D5.1. 

User Requirements No change 

UR1.1 Identification of risks and relevant security controls X 

UR1.2 Continuous risk assessment/certification X 

Table 62: NeSSoS – Update of User Requirements specifications 

 Software Requirements 

Table 63 and Table 64 show an update of the SW Requirements that were defined for the NeSSoS 
tool in D5.1. 

Software Requirements No change Add Comments 

SR1 A stand-alone on-line tool X   

SR2 Identification of (additional) countermeasures  X Missing in D5.1 

SR3 Continuous assessment  X Missing in D5.1 

Table 63: NeSSoS - Update of SW Requirements specifications 

SR2 Identification of (additional) countermeasures 

Description 
The tool is able to propose additional countermeasures to strengthen the security. The 
selection of these countermeasures is performed in a cost-efficient way. 

Actors Analyst, system owner 

Basic Flow 

First, risk assessment is performed with NeSSoS tool.  

Then, the analyst provides the cost limit and adjust the input values for the algorithm (if 
required). 

The tool evaluates various options and proposes a list of suggested security controls. 

SR3 Continuous assessment 

Description 
Risk is re-assessed on the fly once objective information on the system settings is provided 
from verification/monitoring module. 

Actors The system, verification/monitoring tool. 

Basic Flow 

After risk assessment with the tool, NeSSoS is set to wait for updates. 

A verification/monitoring tool performs its analysis and sends the result to the NeSSoS tool. 

The NeSSoS tool “translates” the results of the analysis into values for risk assessment (e.g., 
attack probabilities) and re-evaluates the risk assessment results. 

The results are provided to the interested entity. 

Table 64: NeSSoS – Changes in SW requirements specifications 
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The NeSSoS tool has been upgraded with the possibility of selecting additional countermeasures. 
Now, not only can a client evaluate its risks, but also look for possible improvements to increase its 
protection and decrease risks. 

The work is currently on the integration of the risk assessment tool with real-time information coming 
from some verification modules. Once this information is added to the tool, the risk, previously 
computed only using the inputs from the client, is re-evaluated taking into account the monitored 
information. 

7.8.2 Functional Specifications 

The NeSSoS tool consists of the following components: 

 User interface. A web-based GUI for the user to insert the information about the system, 
as well as for receiving the results of risk assessment. 

 Risk computation unit. The core unit which computes (and re-computes) the risks and 
identifies suggested countermeasures. 

 Communication unit. A unit that manages communication of machine-readable 
information (e.g., receiving it from a monitoring module and sending it to a risk consumer 
module). 

 Database. A database with the expert knowledge stored and used for simplifying the analysis. 

In short, the tool is to work as follows (see Figure 67). A user (e.g., Risk Analyst) enters the required 

data (the information about available security controls, key cyber assets and expected impact). The 

user interface passes this information to the risk computation unit, which, with the help of the 

knowledge stored in the database, identifies relevant threats and compute risk levels. This 

information is provided to the user through the user interface. If the tool is to be used for continuous 

assessment, the risk computation unit triggers the communication unit to send the aggregated 

risk information in a machine-readable format to any risk consumer module (e.g., a tool working 

on behalf of risk analyser). At this point, a monitoring module must be set up (based on the 

information previously generated by the NeSSoS tool (e.g., credentials and tokens for access, the 

ID for the system under evaluation, etc.).  Once the monitoring module provides the up to date 

information about the state of security practices to the communication unit, risk is re-computed and 

the updated risk results are provided to the risk consumer module. 

 

Figure 67: NeSSoS - Risk Assessment Architecture 
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7.8.3 Development roadmap 

Use Case Architecture components Realisation Involved partners 

UC1 NeSSoS tool We are implementing the NeSSoS tool to 

evaluate cyber security risks of the system 

and propose additional security controls. 

CNR 

Table 65: NeSSoS – Development Roadmap  

The tool will provide the following functionality: 

 Calculation of risks per threats using the input provided by the user (i.e., information about 
assets and security controls implemented) 

o The user is asked to answer a questionnaire containing questions on various aspects 
of security (based on ISO 27002 standard) The user should also provide the list of 
the key assets, their amount and expected loss in case of confidentiality, integrity or 
availability loss.  

 Selection of the set of additional controls which more effectively reduce the overall risk and 
fit the budget limit. 

o The user is asked to provide the budget limit to be spent on additional security 
controls. The tool will automatically select the set of additional controls which once 
installed will reduce the risk better than any other set. This is a type of the cost-benefit 
analysis provided by the tool. The cost of controls is pre-defined but could be adjusted 
by the user if needed. 

 Monitoring the correctness of the declared input (with external tools) and updating risk values 
according to the objective information 

o Risk computation is based on the information provided by the user. This information 
could be wrong, imprecise or not up to date. Monitoring tools installed in the assessed 
system should provide the objective information to the NeSSoS tool about the current 
state of security controls, and the corresponding measures in the risk assessment will 
be made. 

7.8.4 Software verification and validation plan 

SR id Description Verification method Demonstration scenario 

SR1 We develop the tool as an on-line 
service available through human-
friendly GUI.  

Simulation-based e-Government (Vertical 2) 

SR2 We develop a functionality based on 
security configuration optimisation by a 
Genetic Algorithm.  

Random (Monte-Carlo) 

verification 

Simulation-based 

e-Government (Vertical 2) 

SR3 We implement machine-accessible 

interfaces which allow accessing and 

receiving (also at run-time) risk values. 

Machine accessibility 

simulation 

e-Government (Vertical 2) 

Table 66: NeSSoS Tool – Demo scenarios and verification methods 

Simulation-Based verification process 

Input: The input is to be provided by the system owner (or by an analyst on behalf of the system 
owner). The input includes: the detailed information about implemented security controls and the 
parametrised list of assets. 

Output: Simulation Results. 
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Test Procedure: The procedure is as follows: 

1. We provide the parameters required by the NeSSoS tool. 

2. We execute the NeSSoS tool to compute risk values. 

3. We evaluate the results by checking if the results correspond to the expected ones by the 
scenario. 

4. If the values are considered acceptable this is counted as success, otherwise we investigate 
the problem and adjust the weights accordingly. 

Random (Monte-Carlo) verification process 

Input: In addition to the parameters required for risk computation, the budget limit is provided, as 
well as the costs of controls are verified and updated by the user.  

Output: Simulation Results. 

Test Procedure: The procedure is as follows: 

1. We insert budget limit to the tool. 

2. The tool generates a set of additional controls, which are considered as the “best” now. 

3. We select several other sets of controls withing the provided budget  

4. The risk assessment is performed with the NeSSoS tool to compute risk values. 

5. If the result (the overall risk + the overall cost of controls) is lower than the one predicted for 
the “best” set previously, the tool fails to detect the optimal set. Otherwise, we count this as 
success. 

6. The procedure is repeated more than 20 times. If the failure rate is less than 1 out of 10 the 
tool passes the test. 

a. The GA algorithm is an approximate method, i.e., it may fail to find the global 
minimum. 

Machine-accessibility simulation verification process 

Input: This test will focus on machine-to-machine interaction. For this testing some modules 
simulating monitoring results flow are to be developed. First the user provides the data to set up the 
risk assessment practices. Then, the monitoring tool starts providing generated “monitoring results”. 
Another simulated module is required to receive updated risk levels. 

Output: Simulation Results. 

Test Procedure: The procedure is as follows: 

1. We provide input data to the NeSSoS tool to conduct risk assessment. 

2. Several sequences of monitored data are pre-set, which can be split into the following two 
sets: 

a. “Good” sequence: consisting of the monitored values corresponding to the input data 
from step 1 (or better). 

b. Bad sequence: consisting of the monitored values which provide the evidence that 
some of the controls from the input from step 1 are not in place (or do not function as 
declared). 

3. The module simulating a monitoring engine starts providing data through the available 
interface.  

4. Risk level is re-computed and sent to a simulated receiving module. 

5. The risk assessment is performed with the NeSSoS tool to compute risk values. 

6. The test is considered to be passed if: 

a. The NeSSoS tool provides the updates to the simulated receiving module as specified 
(e.g., once in an hour). 
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b. The risk values do not change if the “good” sequence of inputs is provided. 

c. The risk values worsen if the “bad” sequence of inputs is provided. 

The result returned by the tool should be evaluated by the system owners whether they see them as 
valid predictions or not. 

7.9 OpenCert (OC) – TEC 

There have been several attempts to synergise safety and security as assurance qualities for 
mission-critical cyber-physical systems.  Several models exist, which seek to demonstrate the 
extensibility of the “failure engineering” approach which underpins system safety assurance to a 
“threat engineering” approach for assuring security. Work undertaken at the US Software 
Engineering Institute, Carnegie-Mellon University [121] proposed a model of conceptual 
commonalities between safety and security.  The SAFSEC model [122] proposed a similar series of 
commonalities. The principal driver here is to support the reuse of evidence produced for the 
assurance of the system in terms of one of the criteria– perhaps with minimal changes – to support 
an assurance claim relating to the other criterion. For example, both safety and security rely on 
cause-effect models, such as fault trees or attack trees.  Such reuse offers considerable cost-time 
benefits, if successfully achieved. OpenCert includes a Common Assurance & Certification 
Metamodel (CACM) [123] to resolve the inconsistencies in terminology across the target domains, 
to facilitate mappings – where possible – between assurance concepts across standards and to 
support informed reuse of safety/security assets within and across domains. 

OpenCert is an open product and process assurance/certification management tool to support the 
compliance assessment and certification of Cyber- Physical Systems (CPS) spanning the largest 
safety and security-critical industrial markets, such as aerospace, space, railway, manufacturing, 
energy and health. OpenCert supports a number of features, including Standards & Regulations 
Information Management, Assurance Project Management concerned with the development of 
assurance cases and evidence management, Cross/intra-domain Reuse of assurance assets, 
Compliance Management, and Modular and Incremental Certification. 

OpenCert can be downloaded as a stand-alone application. It is part of the Eclipse Foundation. 

More information about OpenCert is available at: https://www.eclipse.org/opencert/   

7.9.1 Requirements Description 

 Use cases 

Table 67 shows an update of the Use Cases that were defined for the OpenCert tool in D5.1. 

Use Cases No change 

UC1 Support the Safety and Security compliance assessment and certification of the 
platooning scenario 

X 

Table 67: OpenCert tool - Update of Use Cases specifications 

 User Requirements 

Table 68 and Table 69 show an update of the User Requirements that were defined for OpenCert in 
D5.1. 

User Requirements Add Comments 

UR1.1 Digitalization of the standards X Missing in D5.1 

UR1.2 Application of the standards X Missing in D5.1 

UR1.3 Addition of evidences and Safety/Security trade-off X Missing in D5.1 

Table 68: OpenCert - Update of User Requirements specifications 

https://www.eclipse.org/opencert/
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UR1.1 Digitalization of the standards 

Description Digitalization of Safety and Security standards in a graphical way. 

Actors Safety and Security Engineer 

UR1.2 Application of the standards 

Description Compliance with the standard in all phases of the life cycle  

Actors Safety and Security Engineer 

UR1.3 Addition of evidences and Safety/Security trade-off  

Description 
Inclusion of the results of standards requirements and comparison between safety and 
security on these results 

Actors Safety Engineer, Security Engineer 

Table 69: OpenCert – Changes in User Requirements specifications 

 Software Requirements 

Table 70 and Table 71 show an update of the SW Requirements that were defined for OpenCert in 
D5.1. 

Software Requirements Add Comments 

SR1 Create a Reference Framework for the ISO 26262 Safety standard 
and the SAE J3061 Security standard 

X Missing in D5.1 

SR2 Create an Assurance Project X Missing in D5.1 

SR3 Add evidences to the Assurance Project X Missing in D5.1 

SR4 Create Assurance Case (trade-off Safety/Security) X Missing in D5.1 

Table 70: OpenCert - Update of SW Requirements specifications 

SR1 Create a Reference Framework for the ISO 26262 Safety standard and the SAE J3061 
Security standard 

Description Digitalization of the ISO 26262 Safety standard and the SAE J3061 Security standard. 

Actors Safety Engineer and Security Engineer 

Basic Flow - 

SR2 Create an Assurance Project 

Description 
The engineer selects the relevant parts of a standard depending on the criticality level 
or applicability level. 

Actors Safety Engineer, Security Engineer 

Basic Flow SR1SR2 

SR3 Add evidences to the Assurance Project 

Description 
The engineer can manage all the evidences in an Assurance Project by doing traceability 
management and impact analysis. 

Actors Safety Engineer, Security Engineer 

Basic Flow SR2SR3 

SR4 Create Assurance Case 

Description 
The engineer arguments, supported by evidences, that a system is acceptable safe 
and/or secure for a specific application in diverse scenarios, thus, the Safety Case will 
allow to perform co-assessment between safety and security. 
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Actors Safety Engineer, Security Engineer 

Basic Flow SR2SR4 

Table 71: OpenCert – Changes in SW requirements specifications 

 

7.9.2 Functional Specifications 

At high-level, OpenCert is divided in 8 functional groups, as shown in Figure 68, where the functional 
groups that are involved in the Connected Car Platooning scenario (Vertical 1) are marked with the 
SPARTA’s project logo. 

 

Figure 68: Functional decomposition for the OpenCert platform 

Table 72 summarizes the definition of each of the OpenCert functional groups: 

Functionality Group Description 

Prescriptive 
Knowledge 
Management 

Functionality related to the management (edition, search, transfer, etc.) of 
standards information as well as any other information derived from them, such 
as interpretations about intents, mapping between standards, etc. This functional 
group maintains a knowledge database about “standards & understandings”, 
which can be consulted by other OpenCert functionalities. 

Assurance Project 
Lifecycle 
Management 

This functionality factorizes aspects such as the creation of safety assurance 
projects locally in OpenCert and any project baseline information that may be 
shared by the different functional modules. This module manages a “project 
repository”, which can be accessed by the other OpenCert modules. 

Safety 
Argumentation 
Management 

This group manages argumentation information in a modular fashion. It also 
includes mechanisms to support compositional safety assurance, and assurance 
patterns management. 

Process Assurance 
Management 

This functionality group handles every activity related to the specification, 
execution and validation of safety assurance processes in connection with 
engineering processes. It also manages compliance information related to 
functional safety standards. This module should be integrated with process-
related tools managed by companies (ALM/PLMs, process workflows, etc.) 
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Functionality Group Description 

Evidence 
Management 

This module manages the full life-cycle of evidences and evidence chains. This 
includes evidence traceability management and impact analysis. In addition, this 
module is in charge of communicating with external engineering tools 
(requirements management, implementation, V&V, etc.) 

Measurement and 
Transparency 

This is an infrastructure functional module. It supports metrics and estimation 
management related to information from the other modules. 

Assurance 
Configuration 
Management 

This is an infrastructure functional module. This includes functionality for 
traceability management, change management and impact analysis. 

System Management Includes generic functionality for security, permissions, reports, etc. 

Table 72: OpenCert Functional groups 

 

7.9.3 Development roadmap 

OpenCert will be applied in its current version and with its current functionalities in the Connected 
Car Platooning use case, specifically in scenario 4 (see Section 5.2.4).  

OpenCert will be used on the whole life cycle to help comply with the two standards (ISO 26262 and 
SAE J3061), including the evidences that will be collected and stored in a structured way. Finally, 
based on the evidence stored, it will be verified through arguments that the system is acceptable 
from both a Safety and Security perspective. 

Use Case Architecture components Realisation Involved partners 

UC1 OpenCert 

Connected Car vertical, scenario 4. Based on the 
digitalization of the standards proposed for Vertical 
1 and the creation of Assurance projects with 
evidence management and Assurance cases.  

TEC 

Table 73: OpenCert – Development Roadmap  

 

7.9.4 Software verification and validation plan 

SR id Description Verification method Demonstration scenario 

SR1  
Use OpenCert to create an 

Assurance Case that presents 

safety and security arguments.  

Verification by means of the scenario 

defined in Section 5.2.4 and in D5.3, 

and also by the CAPE tools 

integration pipeline (Section 5.4) 

Connected Car 

(Vertical 1), scenario 4 

SR2 

SR3 

SR4 

Table 74: OpenCert – Demo scenarios and verification methods 

Scenario-based verification process 

Input: Digitalization of the Safety/Security standards, Assurance project with evidences. 

Output: Assurance Case. 

Test Procedure: The verification process will check that an Assurance Case is created by adding 
argumentations using the Goal Structuring Notation (GSN) in a graphical notation for presenting the 
structure of. The Assurance Case acts primarily as a communication means to describe how a 
particular claim has been shown to be true by means of evidence. 
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7.10 Project KB (KB) – SAP 

Project KB represents an open and collaborative knowledge base with code-level information about 
security vulnerabilities in open source projects. It comprises a human- and machine-readable data 
format to express so-called statements, a dataset of several hundreds of statements for known 
vulnerabilities as well as the necessary tooling to create, publish and consume those statements 
to/from one or multiple dataset. 

The overall motivation for Project KB has been sketched in deliverable D5.1 [1] as part of Eclipse 
Steady. In summary, Project KB addresses the problem that there are no public databases with 
code-level information about open source vulnerabilities. Existing vulnerability databases are either 
proprietary with limited access, or do not contain information required to link vulnerabilities to the 
actual code base of the affected project. 

In contrast to private datasets, public ones available to the computer science and computer security 
research community can broadly foster the development of innovative solutions. This particularly 
applies to the domain of machine learning and is underlined by the increased recognition of such 
datasets by top research conferences such as the IEEE/ACM International Conference on Mining 
Software Repositories (MSR), which offer dedicated dataset tracks. 

In comparison to previous work on public vulnerability databases [124] [125], Project KB adopts 
PURL19 as a means to uniquely identify (non-)affected component versions, introduces the notion of 
conflicts that inevitably occur in distributed maintenance scenarios and offers a tool to facilitate the 
creation, publication and consumption of vulnerability information. Similarly to [126], Project KB links 
vulnerabilities to the actual code of the affected open source component in order to support 
automated program analyses. While Project KB has been introduced in D5.1 in the context of Eclipse 
Steady, it became clear during the development of the fundamental concepts related to an open and 
distributed vulnerability database, that it makes sense to continue this effort independently. Eclipse 
Steady is just one of many potential downstream users of such a database with security-related 
information about open source software. 

Accordingly, Project KB is now described in a dedicated section of this deliverable. What remains in 
the section of Eclipse Steady is the development of a component consuming the information from 
Project KB. 

Note that Project KB comprises the definition of a human- and machine-readable plain-text format 
to express so-called vulnerability statements, a tool called kaybee to create, publish and consume 
such statements, and a dataset with hundreds of statements for known vulnerabilities in open source 
projects. 

Project KB has been open sourced itself and is maintained at: https://github.com/sap/project-kb. 

7.10.1 Requirements Description 

 Use cases 

Table 75 and Table 76 show an update of the Use Cases that were defined for the KB tool in D5.1. 

Use Cases Add Comments 

UC1 Create and share vulnerability information about an open source project X Missing in D5.1 

UC2 Consume vulnerability information about one or more open source 
projects 

X 
Missing in D5.1 

Table 75: Project KB – Update of Use Cases specifications 

 

                                                
19 https://github.com/package-url/purl-spec 

https://github.com/sap/project-kb
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UC1 Create and share vulnerability information about an open source project 

Description 
Actors with code-level information about open source vulnerabilities, thus, fix commits or 
(non)affected library identifiers, share this information in the form of statements with other 
interested parties (public or private). 

Actors Security researcher, Maintainer of open source project 

Basic Flow 
Actors create statements, manually or with help of the tool, and publish it to a public or 
private Git repository.  

UC2 Consume vulnerability information about one or more open source projects 

Description Actors download statements from one or more public or private repositories and, if there are 
multiple statements for the same vulnerability, merge them into a consolidated statement. 

Actors Security researcher, developer 

Basic Flow Actors use the tool to consume download (clone) statements, and to merge them in their 
local file system. 

Table 76: ProjectKB – Changes in Use Cases specifications 

 User Requirements 

Table 77 and Table 78 show an update of the user requirements that were defined for the KB tool in 
D5.1. 

User Requirements Add Comments 

UR1.1 Create statements with security information in a standardized format X Missing in D5.1 

UR1.2 Publish statements to a public or private repository X Missing in D5.1 

UR2.1 Download and merge statements from one or multiple repositories X Missing in D5.1 

UR2.2 Transform statements into other formats required by downstream users X Missing in D5.1 

Table 77: Project KB - Update of User Requirements specifications 

UR1.1 Create statements with security information in a standardized format 

Description 

The tool must support a standardized, human-readable format for security information 
about open source projects, so-called statements. To avoid overlap with existing 
standards and databases, the focus is on information about fix commits and affected 
libraries. The tool must support the creation and validation of such statements. 

Actors Security researcher, Maintainer of open source project 

UR1.2 Publish statements to a public or private repository 

Description 
The tool must allow the upload and sharing of statements to public or private repositories 
such that other people can consume the information manually or programmatically. 

Actors Security researcher, Maintainer of open source project 

UR2.1 Download and merge statements from one or multiple repositories 

Description 
The tool must support the download of statements from one or multiple, public or private 
repositories. If statements from different repositories have the same identifier, it must be 
possible to define a merge strategy. 

Actors Developer, Operator of Eclipse Steady 

UR2.2 Transform statements into other formats required by downstream users 

Description 
It must be possible to transform downloaded (and potentially merged) statements into 
other formats, e.g., XML, in order to facilitate the consumption of security information by 
downstream users such as Eclipse Steady. 

Actors Developer, Operator of Eclipse Steady 

Table 78: Project KB – Changes in User Requirements specifications 



D5.2 - Demonstrators specifications   

SPARTA D5.2 Public Page 114 of 170 

 Software Requirements 

Table 79 and Table 80 show an update of the SW requirements that were defined for the KB tool in 
D5.1. 

Software Requirements Add Comments 

SR1 Human-and machine-readable plain-text format X Missing in D5.1 

SR2 Digital signature X Missing in D5.1 

SR3 Public and private repositories X Missing in D5.1 

SR4 Versioning X Missing in D5.1 

Table 79: Project KB - Update of SW Requirements specifications 

 

SR1 Human-and machine-readable plain-text format 

Description 
Statements must be human-and machine readable. It must be possible to create and 
modify statements using standard text editors. 

Actors Consumers and producers of statements 

Basic Flow 
Producers use standard text editors to create or modify statements, consumers read 
through statements in the browser and locally (after cloning repositories to the local file 
system) 

SR2 Digital Signature 

Description It must be possible to sign changes to statements (creation/modification/deletion) such 
that consumers get assurance about the authorship of changes. 

Actors Consumers and producers 

Basic Flow Statement producers sign modifications using their private key. 

Statement consumers verify statement signatures using public key certificates. Potentially, 
statement consumers can skip the processing of statements that cannot be verified, or 
which come from unknown authors.  

SR3 Public and Private Repositories 

Description To implement a distributed database with vulnerability information, it must be possible to 
publish to (and consume from) multiple statement repositories. Moreover, it must be 
possible to have public repositories, whose content is accessible to everyone, and private 
repositories, whose content is only accessible to a limited audience. 

Actors Consumers and producers 

Basic Flow Producers publish statements to one or more public and private repositories. Consumers 
read statements from one or more public and private repositories. 

SR4 Versioning 

Description Statements must be versioned such that dates and authors of initial contributions and 
subsequent changes can be tracked. 

Actors Consumers and producers 

Basic Flow Producers and consumers consult the version history of statements in order to understand 
who created and modified statements and what exactly has been changed, e.g., the list of 
fix commits or the list of affected packages 

Table 80: Project KB – Changes in SW requirements specifications 
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7.10.2 Functional Specifications 

So-called statements express the knowledge (belief) of the issuer about a particular vulnerability in 
an open source project. Each statement issuer can maintain their own repository of statements, of 
which they keep full control. Alternatively, multiple issuers can share repositories. Consumers decide 
which issuers to trust and how to reconcile potential conflicts that can arise from consuming 
statements with identical identifiers from multiple sources. 

Requirement SR1 has been implemented by defining a YAML format to store the following 
vulnerability information about open source projects: 

 One or more textual descriptions (node text), similar to the description of CVE/NVD 

vulnerabilities 

 One or more links to Web pages with additional information (node links) 

 Fix commits through the reference of commit hashes in given source code repositories (node 
fixes), including the possibility to group commits, e.g., for different release branches. 

 Vulnerable and non-vulnerable artefacts (node artifacts and its subnodes id, reason, 

affected). Note that it is possible to make positive and negative assertions about the 

affectedness of artefacts, thus, it is possible to state that given artefacts are not vulnerable. 
This is different from other standards such as the NVD, which only enumerates affected 
versions. The artefacts are identified using the PURL specification20, which gains traction in 
open source ecosystems. The advantage of using PURL, in contrast to CPE identifiers used 
in CVEs, is that they map unambiguously to package identifiers in different open source 
package repositories such as npm or PyPI. 

Note that the primary focus of this format is on fixing commits and affected artefacts, which are not 
at all or insufficiently covered by existing vulnerability databases such as the NVD. This focus allows 
to link vulnerabilities to the respective source code and the standards and formats used by 
developers to identify open source packages. 

On the other side, the format does not include information that is well-covered already, e.g., CVSS 
severity ratings. 

The following YAML statement illustrates the format at the example of vulnerability CVE-2014-0054 
(additional affected artefacts have been omitted): 

vulnerability_id: CVE-2014-0054 

notes: 

- text: 'The Jaxb2RootElementHttpMessageConverter in Spring MVC in Spring Framework before 3.2.8 
and 4.0.0 before 4.0.2 does not disable external entity resolution, which allows remote attackers 
to read arbitrary files, cause a denial of service, and conduct CSRF attacks via crafted XML, aka 
an XML External Entity (XXE) issue.  NOTE: this vulnerability exists because of an incomplete fix 
for CVE-2013-4152, CVE-2013-7315, and CVE-2013-6429.' 

fixes: 

- id: DEFAULT_BRANCH 

  commits: 

  - id: 1c5cab2a4069ec3239c531d741aeb07a434f521b 

    repository: https://github.com/spring-projects/spring-framework.git 

  - id: edba32b3093703d5e9ed42b5b8ec23ecc1998398 

    repository: https://github.com/spring-projects/spring-framework.git 

artifacts: 

- id: pkg:maven/org.springframework/spring-web@4.3.0.RELEASE 

                                                
20 https://github.com/package-url/purl-spec  

https://github.com/package-url/purl-spec
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  reason: Reviewed manually 

  affected: false 

- id: pkg:maven/org.springframework/spring-oxm@3.1.2.RELEASE 

  reason: Assessed with Eclipse Steady (AST_EQUALITY) 

  affected: true 

Requirements SR2-SR4 have been implemented by relying on the Git versioning control system.  

As of version v1.7.9, Git can be used to GPG sign individual commits (SR2), which is important to 
ensure the identity of statement contributors. Note that the creation and verification of signatures is 
only optional. 

Git repositories can be public or private (SR3), depending on where the Git server is hosted and how 
access is managed. Public repositories can be used to share vulnerability information with the 
general public. Private repositories can be used either to store complementary private information 
about public statements, e.g., descriptions or affected packages, or to store private statements about 
internal, non-public components. 

The use of Git as underlying infrastructure also supports the versioning of statements (SR4). 
Changes to YAML statements are recorded with timestamp and author, and version differences can 
be analysed using Git’s convenient diff functionality. 

With the YAML format briefly described above and Git as underlying infrastructure, the kaybee tool 
will support the publication and consumption of security statements as illustrated in Figure 69. 

Security researchers or project maintainers can create YAML statements and publish them to public 
or private Git repositories (kaybee create and git add/commit/push). Multiple contributors can 

use the same or different repositories. 

Consumers need to configure the kaybee tool in order to specify and prioritize one or multiple 
sources (Git repositories) containing YAML statements. With kaybee pull, statements of all sources 

are copied to local replicas such that they can be merged using different conflict resolution strategies, 
e.g., considering the priority of the respective source or the digital signature of the statement author. 
Finally, the aggregated and potentially reconciled statements reside in a local folder. 

Those statements can be exported to other formats, e.g., XML or Steady (kaybee export). The 

export is based on a simple templating mechanism such that the consideration of new target formats 
does not require any coding. The export to Steady, for instance, results in a bash script that checks-
out all fix commits, creates some metadata data and, eventually, calls the kb-importer component 
developed as explained in Section 7.15. 
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Figure 69: Project KB: Use-cases 

7.10.3 Development roadmap 

The format and the kaybee tool have already been implemented and open-sourced on GitHub21. 
Moreover, several hundreds of YAML statements have been published in a dedicated branch22. 

The verification of digital signatures and the use of signatures for content selection will be 
implemented in 2021 (SR2). Finally, the dataset with known supply chain attacks23, maintained by 
the University of Bonn and SAP, will be used to generate corresponding YAML statements in Q1 
2021. 

7.10.4 Software verification validation plan 

Integration tests will be done in the context of the e-Government use-case (on top of automated unit 
tests part of the actual tool). A test scenario and a test environment (comprising one or more Git 
repositories with test statements) must be created such that statements can be pulled from sources, 
merged, exported and loaded in the Steady database, which will be invoked during the CI/CD 
pipelines. 

SR id Description Verification method Demonstration scenario 

SR1 Plain-text format Integration test according to 
defined scenario 

e-Government (Vertical 2) 

SR2 Digital Signature 

SR3 Public and private repositories 

SR4 Versioning 

Table 81: Project KB – Demo scenarios and verification methods  

                                                
21 https://sap.github.io/project-kb/  

22 https://github.com/SAP/project-kb/tree/vulnerability-data  

23 https://github.com/dasfreak/Backstabbers-Knife-Collection  

https://sap.github.io/project-kb/
https://github.com/SAP/project-kb/tree/vulnerability-data
https://github.com/dasfreak/Backstabbers-Knife-Collection
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SR1-SR4 – Statement Publication and Consumption 

Input: Commit in the source code repository of one of the dependencies of the SAML IdP, e.g., the 
GitHub repository of the Bouncycastle Java Cryptographic APIs24. 

Output: Aggregated statement in the local file system.  

Test Procedure: 

A random commit in the source code repository of one of the dependencies of the SAML IdP will be 
used to create a sample YAML statement. This YAML file will be signed and pushed to a test branch 
of some private Git repository (SR1-SR3). 

Then, taking the perspective of a consumer, the statement will be pulled from this Git repository, the 
signature will be verified and the statement will be merged using the Project KB tool such that it is 
contained in the set of aggregated statements, which then can be exported into other formats. 

During statement creation, different versions can be created and compared using the Git diff 
functionality (SR4). 

7.11 Risk Assessment for Cyberphysical interconnected infrastructures 
(MRA) – NCSR 

MRA is a stand-alone tool to introduce the cyber-physical elements in the critical infrastructure risk 
assessment. It can be used as a continuous high-level risk identification and appraisal on how 
systemic and cyber related risks can have an impact of the infrastructure’s operation and service 
levels. MRA has been conceived as a flexible and customizable approach that is applicable on single 
infrastructure components and assets and also expandable to include the impacts on interconnected 
assets and domino effects. 

Cyber Security Risk Assessment (CSRA) framework have main a mainstream practice ever since 
the exponential introduction of the cyber world in critical infrastructures. (CSRA) is the cornerstone 
element for risk-informed policies in CI [127], usually trying to provide evidence based responses to 
the following questions: a) Where is the origin and characteristics of threat, and how this may evolve 
over time?, b) What is the time and place and magnitude of occurrence of a cyber/physical event? 
d) What are systemic vulnerabilities across different dimensions (including governance and 
insiders)? e) What is the likelihood of a cyber / physical event? f) What are the expected or estimated 
service disruptions? g) How to establish risk-based defences? 

Several existing frameworks and standards exist in the field such as the National Institute of 
Standards and Technology (NIST) Cybersecurity Framework (CSF), Cyber Security Evaluation Tool 
(CSET®), Cybersecurity Capability Maturity Model (C2M2), International Organization for 
Standardization and the International Electrotechnical Commission (ISO/IEC) Standard 31010.  
[128] documented cyber threats to smart grid domains (e.g., distribution grid management, advanced 
metering infrastructure, demand response, etc.). In 2017, European standardization bodies 
published a report that identified the information assets and considered them in the risk assessment 
as part of mapping dependencies to vulnerabilities [129]. In the report, smart grid asset management 
is mapped based on domain (e.g., generation, transmission) and zone (e.g., process, field, station, 
etc.). In another report [130] the expert group categorized the assets based on their protection needs 
and classified them into two groups: smart cyber assets (e.g., advanced metering infrastructure or 
AMI, intelligent electronics devices or IED, supervisory control and data acquisition or SCADA, etc.) 
and grid cyber assets (energy management system or EMS, distribution management system or 
DMS, communication link, etc.). 

                                                
24 https://github.com/bcgit/bc-java  

https://github.com/bcgit/bc-java


D5.2 - Demonstrators specifications   

SPARTA D5.2 Public Page 119 of 170 

7.11.1 Requirements Description 

 Use cases 

Table 82 and Table 83 show an update of the Use Cases that were defined for the MRA tool in D5.1.  

Use Cases No change Modify Comments 

UC1 Cyber-attack with 
cascade impacts 

X  
The work has been focused on the impacts from the 
cyber to the physical domain with focus on the 
impacts on the service levels of the infrastructure 

UC2 Continuous risk 
quantification 

 X Added UC3 (below) 

Table 82: MRA - Update of Use Cases specifications 

UC3 Assets Attractiveness Assessment 

Description 
This module adds the assets attractiveness as a component of the cyber-physical risk 
assessment. Attractiveness is used to de-compose the likelihood element of risk. 

Actors Risk Managers / Security Officials 

Basic Flow 

The module takes elements from the profile of the case study and, specifically the identified 
assets and potential vulnerabilities. It proceeds with the estimation on the “attractiveness” of 
the identified assets as potential sites of attack, cumulatively accounting for possible different 
types 

Table 83: MRA – Changes in Use Cases specifications 

 User Requirements 

Table 84 shows an update of the User Requirements that were defined for the MRA tool in D5.1.  

User Requirements No change 

UR1 Security profile of domain X 

Table 84: MRA - Update on User Requirements specifications 

 Software Requirements 

Table 85 shows an update of the SW Requirements that were defined for the MRA tool in D5.1.  

Software Requirements No change Comments 

SR1 MRA stand-alone tool X Scripts presently in python language 

Table 85: MRA - Update on SW Requirements specifications 

7.11.2 Functional Specifications 

The MRA tool is built by the following components (see Figure 69): 

 A user interface that allows user to input information about the infrastructure, its assets and 
interconnections, their properties and potential vulnerabilities and other needed ancillary 
input. 

 A modelling component that performs a cascade analysis of the assets and estimates risk. 

 A display element that transfer outputs to users. 

 A database storing all required / processed / produced information. 
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In brief, the tool works as described in the following lines. Users enter the required inputs 
(infrastructure assets, properties, interconnections, safeguards, potential impacts), which are stored 
in the database. The software passes the data to the modelling component and identifies:  

 MRA.ID1. Identification of Potential threats. 

 MRA.ID2. Determination of Attractive assets/processes 

 MRA.ID3 Vulnerability Assessment 

 MRA.ID4 Interconnections and potential cascade effects 

 MRA.ID5 Analysis of Impacts (in the cyber and physical domains), including cascading 
effects  

 MRA.ID6 Risk Assessment 

This information is fed back to the user through the display element. If the tool can be extended for 
continuous risk assessment, the interfaces need to be customized to allow inputs from a machine- 
readable format. 

 

Figure 70: MRA domain elements 

 

7.11.3 Development roadmap 

The design, implementation and preliminary validation have been implemented. Initially NCSRD 
efforts has been placed on transforming the existing multi-hazard risk assessment framework of 
NCSRD to include the cyber-physical domain. Secondly, the development focus of the framework 
has been shifted to establish the asset attractiveness as a way of identifying the most “juicy” target 
in infrastructure assets. The attractiveness element has been selected as a simple, yet highly 
effective indicator of prioritizing assets at risk in highly dynamic environments. 

The development phase included several different evaluations of potential indicators that are under 
consideration still to-date. Specific asset attributes linked to information from global vulnerabilities 
databases (e.g. Common Vulnerabilities and Exposures - CVE®) and infrastructures properties are 
tested. 

A theoretical framework has been established, which is followed by programming in different 
platforms (python and initial version in Excel). The first version will be presented in python code in 
Q2 of 2021.     
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Use Case Architecture components Realisation Involved partners 

UC1 Interface, database, modelling 
component, display 

Use the tool to define risks in cyber-
physical systems 

NCSRD 

UC2 Infrastructure risk attractiveness 
modelling component 

Use the tool and define infrastructure 
attractive assets as targets 

NCSRD 

Table 86: MRA – Development Roadmap  

7.11.4 Software verification and validation plan 

The MRA verification method within SPARTA will be conducted as a two-step process, involving the 
stand-alone version. The utilised data will come from existing datasets within NCSRD augmented 
with the Security profile of the project verticals.  

Step1: Use data of NCSRD infrastructure assets, from the ongoing NCSRD internal security 
vulnerability assessment process, that expand in the cyber-physical domain. Check that the 
developed software when fed with reference NCSRD internal data properly assigns the identified 
attractiveness level.   

Step2: Expand attractiveness definition to capture the unique challenges of "vertical 1 (platooning)” 
using the established security profile (D5.1). Provide first internal validation with subject matter 
experts from NCSRD and then second verification with external experts (e.g. project partners, 
national cybersecurity experts). 

 SR id Description Verification method Demonstration scenario 

SR1 Stand-alone 
tool 

Check if the MRA tool provides the risk levels as 
identified. Use the tool through the web interface. 

Connected Car (vertical 1) 

- security profile 

Table 87: MRA Tool – Demo scenarios and verification methods 

7.12 Sabotage (SB) – TEC 

Sabotage is a model-driven and simulation-based fault injection tool built upon the FARM model 
[131] that allows to accomplish an early evaluation dependability evaluation of safety-critical 
systems. The FARM model is an effective way to characterize a fault injection environment. The 
FARM sets constitute the major attributes that can be used to fully characterized fault-injection (faults 
F, activations A, readouts R and derived measures M). Given the FARM model, a fault injection 
campaign is a collection of experiments, each requiring the injection of a fault f from the set F while 
the system is exercised with an activation trajectory a selected from A in a workload w from W. The 
set of measures M is obtained elaborating the set of readouts R gathered during each experiment. 

One of the techniques with more relevant benefits is the so-called Simulation-based Fault Injection 
which allows full observability and controllability. To get meaningful and accurate FI experiment 
results, a representative fault model is required. Different types of faults can appear depending on 
its nature during the system design process or during its operational life. 

This technique is novel technique where hardly any research has been done. It is beneficial to use 
simulation technologies before the construction of physical models, as the build-up of virtual model 
concepts need fewer resources than the preparation of a physical prototype. These techniques also 
highly recommended across the verification and validation phases of the V-Cycle development 
process. 

The Sabotage tool is based on Eclipse combined with Matlab/Simulink and can be used in an early 
assessment of safety-critical in different areas such as automotive or robotics. The integrated 
Simulation fault injection technique allows the construction of a simulation model of the system under 
analysis. Thanks to this simulated system the verification and validation is achieved during its early 
development phases. The framework sets up, configures, executes and analyses the simulation 
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results. The tool includes a fault model library and it is possible to connect to virtual environments 
such as a virtual vehicle or a robot.   

More information about Sabotage is available at: https://www.cyberssbytecnalia.com/node/271  

7.12.1 Requirements Description 

 Use cases 

Table 88 and Table 89 show an update of the Use Cases that were defined for Sabotage in D5.1. 

Use Cases Modify 

UC1 Fault-injection and analysis of faulty scenarios with simulation X 

Table 88: Sabotage - Update of Use Cases specifications 

The definition of the UC1 has been updated as follows: 

UC1 Fault-injection and analysis of faulty scenarios with simulation 

Description 

The Sabotage tool will be applied in the Platooning scenario (see Section 5.2.5). It will be 
used to simulate how a fault, originated from a random hardware fault or cyber-attack, can 
affect the vehicle behaviour by changing the velocity to an abnormal value. Each vehicle has 
integrated different measures, e.g. plausibility checks, thus, Sabotage will verify those 
requirements and measures to ensure the system implements appropriate mechanisms to 
prevent the violation of the safety properties. The effectiveness (detection and/or recovery of 
errors) of the measures can be analysed by injecting different faults in the developed 
plausibility checks. 

Actors Safety Engineer 

Basic Flow 

The following steps would be followed: 

 Model the countermeasure, e.g. plausibility check 

 Define the different faulty scenarios 

 Perform Simulation-based Fault Injection 

 Verify if the mechanisms are correctly implemented and if enough level of safety has been 
achieved. If not, do the necessary model modifications and perform the simulation again 
as many times as needed. 

Table 89: Sabotage – Changes in Use Cases specifications 

 User Requirements 

Table 90 and Table 91 show an update of the User Requirements that were defined for Sabotage in 
D5.1.  

User Requirements Add Comments 

UR1.1 Define the different faulty scenarios X Missing in D5.1 

UR1.2 Perform Simulation-based Fault Injection X Missing in D5.1 

UR1.3 Verification and Validation X Missing in D5.1 

Table 90: Sabotage - Update on User Requirements specifications 

UR1.1 Define the different faulty scenarios 

Description 
The engineer can define different test cases with one or more faults in each of them 
specifying the trigger time, duration and value of every single fault. 

Actors Safety Engineer 

https://www.cyberssbytecnalia.com/node/271
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UR1.2 Perform Simulation-based Fault Injection 

Description Once the test cases are filled, the safety engineer runs the simulations. 

Actors Safety Engineer 

UR1.3 Verification and Validation 

Description 
The engineer can visualize all the simulations and compare to each other to analyse the 
behaviour of the safety mechanisms and/or secure countermeasures. 

Actors Safety Engineer 

Table 91: Sabotage – Changes in User Requirements specifications 

 Software Requirements 

Table 92 and Table 93 show an update of the SW Requirements that were defined for Sabotage in 
D5.1. 

Software Requirements Add Comments 

SR1 Configuration of fault injection experiments X Missing in D5.1 

SR2 Automation of the experiments X Missing in D5.1 

Table 92: Sabotage - Update of SW Requirements specifications 

SR1 Configuration of fault injection experiments 

Description 

Sabotage helps to specify different failures within a model-based system design performed 
in Eclipse environment using the Eclipse modelling framework (EMF) in combination with 
Massif25, which converts MathLab Simulink models to EMF, and supports the specification 
of failures with an intuitive fault list. 

Actors EMF, Massif 

Basic Flow - 

SR2 Automation of the experiments 

Description 

The template language Xtend is applied to generate Matlab and C code. Xtend technology 
includes a template language to generate code. As explained in D5.1 [1], Sabotage creates 
the fault-free simulation and one or more faulty simulations. The Xtend technology is 
employed to export the resulting C code that generates each fault, Matlab code to create a 
fault-free and a faulty system, and Matlab code to execute the experiments and visualise 
the results. Xtend allows the creation of code replacing the dynamic areas of the template 
with information from a metamodel. 

Actors EMF, Xtend 

Basic Flow SR1SR2 

Table 93: Sabotage – Changes in SW requirements specifications 

 

7.12.2 Functional Specifications 

At high-level, Sabotage is divided into three functional groups: Workload Generator, Fault Injector 
and Monitor (see Figure 71).  

                                                
25 https://github.com/viatra/massif  

https://github.com/viatra/massif
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Figure 71: Sabotage functional groups 

 

Table 94 summarizes the definition of each of the Sabotage functional groups. 

Functionality Group Description 

Workload 
Generator 

This block selects the system, chooses the most appropriate scenario, which 
represents the operational situation, and configures fault injection experiments. The 
basis for specifying the operational situations are driven by safety analysis. Afterwards, 
the fault injection experiments configuration gives the designer the possibility of 
creating the fault list and selecting where to monitor fault injection experiments by 
including signal monitors or readout blocks. The main strategy is to identify a 
representative and optimal fault subset to reproduce target system malfunctions or 
failure modes. 

Fault Injector The fault list is used to produce a Faulty system only in terms of reproducible and 
prearranged fault models by including saboteur blocks. Fault models are characterised 
by a type (e.g. omission, frozen, delay, invert, oscillation or random), target location, 
injection triggering (e.g. time), and duration. In order to create a Faulty system, the 
Fault Injector injects an additional saboteur model block per fault entry from the Fault 
List. Moreover, the injected block is fulfilled with information coming from a fault model 
template library. Saboteurs are extra components added as part of the model-based 
design for the sole purpose of Fault Injection experiments. 

Monitor After performing the configuration of the fault injection scenarios and creating the 
required amount of Faulty systems, the Monitor invokes the simulator. It tracks the 
execution flow of the fault free system and Faulty simulations. The Monitor compares 
fault free system and Faulty system results by the data analysis activity. 

Table 94: Sabotage functional groups 

7.12.3 Development roadmap 

Sabotage will be used in its current version and with its current functionalities in the Platooning 
scenario (Vertical 1. 
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Use Case Architecture components Realisation Involved partners 

UC1 
Sabotage  

MatLab 

Connect Car vertical, scenario 5. 

Based on the countermeasures defined for 
Vertical 1 that have been developed by Tecnalia. 

TEC 

Table 95: Sabotage – Development Roadmap  

The Sabotage tool will be applied in the Platooning scenario (Vertical 1). Some different simulations 
will be deployed on a sensor-based plausibility check algorithm adding several faults originated from 
random hardware fault or cyber-attacks, to see how it can affect the vehicle behaviour by changing the 
velocity to an abnormal value. Each simulation will be elaborated through a fault list which contains 
some saboteurs and signal monitors. The results reflect the effectiveness (detection and/or recovery 
of errors) of the plausibility check helping to verify the corresponding requirement defined in the 
Vertical 1. 

7.12.4 Software verification and validation plan 

SR id Description Verification method Demonstration scenario 

SR1 

SR2 

Simulation-based Fault 

injection and analysis of 

faulty scenarios  

Verification by means of the scenario 

5 defined in Section 5.2.5 and in D5.3. 

Connected Car vertical, 

scenario 5 

Table 96: Sabotage – Demo scenarios and verification methods 

Scenario-based verification process 

Input: Fault list. 

Output: Effectiveness of the plausibility check. 

Test Procedure: The verification of the configuration of experiments will be done using a called 
Fault List. The Fault list will include the definition of fault locations, fault injection times, fault 
durations, and the input data for the system. 

The automation of experiments will be done using Xtend technology, which is a template language 
specialized generating code, in this case, in MatLab code to execute the experiments and visualise 
the results. 

7.13 SafeCommit (SF) – UNILU 

The SafeCommit tool, also called Commit Classifier, aims at automatically detecting vulnerability 
introducing commits (also referred as patches for sake of simplification) in Continuous Integration 
Ecosystem. SafeCommit is built on top of AI techniques relying on innovative features and advanced 
patch representation learning. Systematically and automatically identifying vulnerability introducing 
patches once a commit is contributed to a code base is of the utmost importance: (1) To reduce the 
number of vulnerabilities in a software code base; (2) To incite maintainers to quickly reject the 
relevant changes. The proposed tool aims at being integrated into real-world software maintenance 
and usage workflows. The objective is to carry out a live study in order to collect practitioner feedback 
for iteratively improving the tuning of the research output, towards an effective technology transfer. 

The possibility of automatically finding vulnerabilities in code bases has long been identified by 
researchers as a worthy investigation target. Related works rely on various type of techniques such 
as static analysis, symbolic execution, dynamic analysis, machine learning, etc. However, only few 
approaches have been proposed to detect vulnerabilities at commit level [132][133][134]. 

VCCFinder [134] is a seminal approach in the literature and probably the most popular approach 
that builds on machine learning to automatically detect whether an incoming commit will introduce 
some vulnerabilities. VCCFinder has brought two key innovations: (1) VCCFinder was the first 
approach where the focus is made on code commits, which are “the natural unit upon which to check 
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whether new code is dangerous” allowing to implement early detection of vulnerabilities just when 
they are being introduced; (2) the wealth of metadata on the context of who wrote the code and how 
it is committed is leveraged together with the code analysis to refine the detection of vulnerabilities. 
SafeCommit is built on this idea by proposing a new feature set as well as a new technique to 
overcome the problem of unbalanced datasets.  

7.13.1 Requirements Description 

 Use cases 

Table 97 shows an update of the Use Cases that were defined for the SafeCommit tool in D5.1.  

Use Cases No change Remove 

UC1 Vulnerability Introducing Commit/Patch X  

UC2 Vulnerability Fixing Commit/Patch  X 

Table 97: SafeCommit - Update of Use Cases specifications 

We decided to not consider the use case related to the detection of commits that fix vulnerabilities. 
This decision has been motivated by the fact that another SPARTA partner (SAP) has already 
developed such a tool (this tool is not listed in this document). Rather than competing, both SAP and 
UNILU decided to join force. Together they can propose a generic tool aiming at detecting security 
relevant commits, i.e., commits that either introduce or fix a vulnerability.   

 User Requirements 

Table 98 and Table 99 show an update of the User Requirements that were defined for the 
SafeCommit tool in D5.1. 

User Requirements Add Comments 

UR1.1 Software developer commit checking X Missing in D5.1 

UR1.2 Repository maintainer commit checking X Missing in D5.1 

Table 98: SafeCommit - Update of User Requirements specifications 

UR1.1 Commit Security Relevance Checking 

Description 
A software developer checks if his/her commit introduces a vulnerability in the repository 
code base.  

Actors Software developer 

Basic Flow 

Just before committing their modifications (i.e. a commit) into a code base (i.e., a version 
control repository such as GIT), developers can check if their modifications introduce a 
vulnerability. In this way, SafeCommit allows to avoid the introduction of vulnerabilities at the 
very early stage of software development. 

UR1.2 Repository maintainer commit checking 

Description 
A repository maintainer checks if the commit of a developer does not contain any vulnerability 
before propagating the commit into the repository. 

Actors Repository maintainer 

Basic Flow 

In a typical scenario, a developer proposes changes bundled as a software patch by pushing 
a commit (i.e., patch + description of changes) which is analysed by the project maintainer, 
or a chain of maintainers, who eventually reject or apply the changes to the master branch. 
With SafeCommit, maintainers will be immediately informed that a vulnerability introducing 
commit has been proposed, and thus, they can reject the change.  

Table 99: SafeCommit – Changes in User Requirements specifications 
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 Software Requirements 

Table 100 and Table 101 show an update of the SW Requirements that were defined for the 
SafeCommit tool in D5.1.  

Software Requirements Add Comments 

SR1.1 High precision and recall X Missing in D5.1 

Table 100: SafeCommit - Update of SW Requirements specifications 

SR1.1 High precision and recall 

Description 

SafeCommit should ensure both: 

 High precision, a predicted vulnerable commit should actually be a vulnerability 
introduction commit 

 High recall, most of the vulnerability introducing commits should be detected  

Actors Researcher 

Table 101: SafeCommit – Changes on SW requirements specifications 

 

7.13.2 Functional Specifications 

Note that SafeCommit will be developed in the course of the SPARTA project. 

SafeCommit will use a machine-learning based approach as described in Figure 72: Overall 

SafeCommit Process. In particular, SafeCommit will address a binary classification problem of 
distinguishing vulnerability introducing patches from other patches. As any classification problem, 
well-labelled datasets are more than welcome. To develop SafeCommit, the first main step will 
consist in building such datasets ("Ground Truth” in Figure 72: Overall SafeCommit Process).  Then, 
we will investigate the possibility to consider a combination of text analysis of commit logs and code 
analysis of commit changes diff to catch security patches. To that end, the idea is to proceed to the 
extraction of “facts” from both text and code, and then perform a feature engineering by assessing 
the efficiency of the proposed features for discriminating security patches from other patches 
(“Features Set” in Figure 72: Overall SafeCommit Process). Then, we will build a prediction model 
(“Classifier” in Figure 72: Overall SafeCommit Process) using machine learning classification 
techniques.  

As an add-on, we will investigate a specific learning approach named Co-Training, which has shown 
convincing results in situations where the training datasets are un-balanced. Finally, one major 
success criteria of SafeCommit is its ability of supporting the work of developers/maintainers in 
distributed software development. Once prediction models are learnt, we will assess their efficiency 
by performing extensive empirical studies in real development environments. 
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Figure 72: Overall SafeCommit Process 

7.13.3 Development roadmap 

Use Case Architecture components Realisation Involved partners 

UC1 

Ground Truth, features set 
and classifier 

 

Build a ground truth dataset, propose 
features from code and text, build the 
prediction models. 

UNILU 

Table 102: SafeCommit – Development Roadmap  

A first prototype will be released in December 2020. To reach this objective, we will address the 
following steps: 

 Collect enough commits and label them to build a ground truth 

 Propose features  

 Develop the classifier 

 Perform extensive experiments to test the classifier 

 Add the co-training module 

 Evaluate the performance of the co-training module 

7.13.4 Software verification and validation plan 

SR id Description Verification method Demonstration scenario 

SR1.1 
Compute performance scores 

by leveraging the ground truth 

Check if the performance scores 

are high enough 

Deploy SafeCommit and Run 

on the ground truth 

SR1.1 
Assess SafeCommit in 

practical settings 

Check if SafeCommit is able to 

detect vulnerabilities in open 

source libraries used in Vertical 1 

Deploy SafeCommit and Run 

on a git Repository of open-

source libraries of Vertical 1 

Table 103: SafeCommit – Demo scenarios and verification methods 
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Compute performance scores by leveraging the ground truth 

Input: The ground truth (i.e., the labelled commits) 

Output: Classification performance score 

Test Procedure: 

We follow a classical machine-learning assessment process. We will consider for instance using ten-
folds cross validation and compute precision, recall and F1 metrics.  

Assess SafeCommit in practical settings 

Input: Large open-source repositories such as Linux 

Output: Assessment report on this “in the wild” experiment 

Test Procedure: 

By considering commit history from large open-source repositories, mimic the behaviour of software 

developers. Check if at the time of a commit, this commit can be detected as vulnerability introducing 

commit.  

7.14 SideChannelDefuse (FS) – CNIT 

As anticipated in D5.1 [1], the main motivation for developing an assessment and countermeasure 
tool for side channel vulnerabilities comes from the fact that there is a new generation of side channel 
attacks which have raised suspects on the validity and trustiness of CPU operations. Popular attacks 
have raised attention to the public interest such as Spectre [135], Meltdown [136], and Foreshadow 
[137] [138]. 

We need an assessment towards these new forms of threats. To this extent there is very limited 
work in the literature since most of it is for discovering such vulnerabilities rather than finding a way 
to systematically assess and obstruct the presence and impact of such vulnerabilities. 

For these reasons, we have augmented the Foreshadow assessment tool described in D5.1 along 
two different directions. We recall that, originally, the tool in D5.1 was designed as a stand-alone tool 
which, when manually started, was able to detect whether a system (with particular focus on 
virtualized environments) was vulnerable to side channel attacks, such as Foreshadow-VMM.  

With respect to the above initial design, we have extended the tool by (1) turning it into a continuous 
assessment tool, and by (2) supplementing it with reactive mitigation capabilities.  

Specifically, if the new SideChannelDefuse integrated tool detects (still manually) that the system is 
vulnerable, it can activate a continuous kernel-level system-wide detection mechanism which allows 
to detect whether some application (also running in a virtual machine) is carrying out a side-channel 
attack. This detection is continuous, in the sense that the (host) operating system kernel based 
detection mechanism is always on, while introducing a minimal overhead in the system. It is system-
level, in the sense that it monitors all applications running in the system. 

If the SideChannelDefuse tool detects that a (virtualized) application is trying to carry out a side-
channel attack, that application is deemed as suspected. At this stage, the tool can activate per-
application mitigation mechanisms, the goal of which is to reduce the likelihood that the application 
can exfiltrate data using the attack. 

The overall resulting tool is able to detect Foreshadow-VMM attacks, as well as other attacks such 
as meltdown, spectre, or XLate-family attacks. 

The SideChannelDefuse tool will be distributed as open source software. The public repository is 
not yet available. 
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7.14.1 Requirements Description 

 Use cases 

Table 104 and Table 105 show an update of the Use Cases that were defined for the 
SideChannelDefuse tool in D5.1. 

Use Cases Add Remove Comments 

UC1 Assessment of L1-TF 
Vulnerability 

 X 
This feature is now not necessary anymore since the tool 
evolved in a self-contained new continuous instrument 

UC2 Assessment of cache-
based vulnerabilities 

X 
 Missing in D5.1 

UC3 Mitigation of cache-
based vulnerabilities 

X 
 Missing in D5.1 

Table 104: SideChannelDefuse - Update of Use Cases specifications 

UC2 Assessment of cache-based vulnerabilities 

Description 
The Cloud Infrastructure owner can perform an automatic detection of malicious processes 
on some VM, which try to exfiltrate information from the system using side channel attacks. 

Actors 

 Cloud Owner 

 Cloud Infrastructure 

 Infected VM 

Basic Flow 
The monitoring patch is installed on the guest operating system. The side-channel attack is 
launched on an infected VM. The tool detects the application as suspected and enforces 
proper mitigation actions to prevent information leakage. 

UC3 Mitigation of cache-based vulnerabilities 

Description 
The Cloud Infrastructure owner can automatically mitigate side channel attacks on an 
Infected VM. 

Actors 

 Cloud Owner 

 Cloud Infrastructure 

 Infected VM 

Basic Flow 
Once the tool detects the application as suspected, it then enforces proper mitigation actions 
to prevent information leakage. 

Table 105: SideChannelDefuse - Changes in Use Cases specifications 

 

 User Requirements 

Table 106 and Table 107 show an update of the User Requirements that were defined for the 
SideChannelDefuse tool in D5.1.  

User Requirements Add Remove Comments 

UR1 Assess the presence of the 
vulnerability 

 X 
This feature is now not necessary anymore since 
the tool evolved in an automatic self-contained 
new continuous instrument. 

UR2 Patch the kernel with the 
assessment-mitigation module 

X 
 Missing in D5.1 

Table 106: SideChannelDefuse - Update of User Requirements specifications 
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UR2 Patch the kernel with the assessment-mitigation module 

Description 
The monitoring tool (in the form of a patched kernel) shall be installed in the guest operating 
system. 

Actors Cloud Owner 

Table 107: SideChannelDefuse – Changes in User Requirements specifications 

 Software Requirements 

Table 108 and Table 109 show an update of the SW Requirements that were defined for the 
SideChannelDefuse tool in D5.1. 

Software Requirements Add Modify Comments 

SR1 Linux OS support  X  

SR2 Assessment metrics X  Missing in D5.1 

SR3 Mitigation strategies X  Missing in D5.1 

Table 108: SideChannelDefuse - Update of SW Requirements specifications 

SR1 Linux OS support 

Description In the current state of the tool, it has been implemented only to support Linux environments. 

Actors 
 Cloud Infrastructure 

 Cloud owner 

Basic Flow 
The cloud owner has to patch the Linux kernel in order to use the functionalities of the tool. 
No other software solutions are supported at this stage. 

SR2 Assessment metrics 

Description 
The tool relies on metrics which are based on models that account for typical hardware usage 
patterns (with respect to the memory hierarchy) proper of applications trying to exfiltrate 
information by means of side-channel attacks. 

Actors Entirely automated 

Basic Flow 
The tool continuously runs in the background and evaluates its metrics in order to understand 
if a covert channel is currently on going. 

SR3 Mitigation Strategies 

Description 
The tool enforces mitigation strategies in order to defend the host against side-channel 
attacks. Since the detection is fallible due to a degree of uncertainty, it does not take any 
destructive action with respect to the running process. 

Actors Entirely automated 

Basic Flow 
When the tool detects a side-channel attack, it triggers per-application mitigation 
mechanisms, in order to reduce the likelihood that the application can exfiltrate data. 

Table 109: SideChannelDefuse – Changes in SW requirements specifications 

7.14.2 Functional Specifications 

In its previous iteration, the tool ran under Linux Kernel 4+ and targeted the KVM hypervisor. We 
fetched the output of the cpuinfo file to search if the l1tf flag is present inside the reported CPU 

bugs within the available microcode.  

If the flag was present, the CPU checked, in the very same way, the presence of Intel proprietary 
Simultaneous Multithreading Technology on the target system. If so, the system is vulnerable to a 
cross-thread Foreshadow-VMM attack. At this point, the tool proceeded to assess the covert-channel 
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performance and error rate. To do so, it instantiated two identical Virtual Machines running on KVM. 
The two VMs were running a plain version of Linux 4+. 

Once the two VMs were up, the attacker VM mounted the Foreshadow-VMM attack, reading a pre-
defined number of bytes from an a-priori known memory location in its address space. This attacker’s 
guest (virtual) memory location maps to a host virtual memory location, which in turn maps to a 
victim’s virtual memory location. The tool, by manipulating the host memory mapping, managed to 
clash the three virtual addresses to the same host’s physical address. Since the attacker knows what 
string is expecting from the reading process, it is possible to calculate the error rate of the covert-
channel and the throughput of the latter. 

 

Figure 73: Architectural Diagram of the previous static FS assessment 

In its new version the tool can now detect multiple side-channel attacks, relying on a patched Linux 
kernel. Detection is carried out at kernel level with a lightweight overhead, relying on hardware 
performance monitor units (PMUs) and dedicated interrupt handlers. 

The tool obtains measures related to usage patterns of the caching subsystem on the machine, by 
properly configuring PMUs. These measures are associated with each running process. Thanks to 
the reliance on KVM, also virtualized applications are tracked with a proper granularity. Measures 
are managed so as to remove interference from the kernel itself. 

These measures are then aggregated into higher-level metrics, the goal of which is to reduce the 
likelihood that benignware is incorrectly classified as a malicious application. These metrics are 
based on models which account for typical hardware usage patterns proper of applications trying to 
exfiltrate information by means of side-channel attacks. In this way, the tool is agnostic to the actual 
attack, trying to detect that a covert channel has been put in place and is currently being used. 

To further reduce false negatives, the tool works using a sliding-window approach: the observation 
period is divided into time slots, which are observed over time. This allows discriminating among 
different execution phases, i.e. the tool is also able to detect malware which is running the attack 
only in a certain (reduced) timespan with respect to its overall lifetime - this is also the scenario of a 
non-malicious application infected with a side-channel based malware payload.  

In order to avoid false positives, we have introduced a scoring system. The process’s score will vary 
during execution as follows: 

 the score is increased by 𝛼 if the results of the comparison between metrics and thresholds 
show a behaviour similar to a side-channel attack; 

 the score is decremented by 𝛽 if the metrics don’t detect any abnormal situation. 

If the score reaches the value of a threshold 𝛾, then the process becomes suspected. 𝛼, 𝛽 and 𝛾 are 
tuneable hyperparameters of our model. Once a process becomes suspected, this information is 
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stored in the process’ PCB (Process Control Block), to account also for more sophisticated attacks 
which could exploit fork() calls to jeopardize the detection system. 

 

Figure 74: Updated architectural diagram for SideChannelDefuse 

 

7.14.3 Development roadmap 

Use Case Architecture components Realisation Involved partners 

UC1 Assessment Module Implement a custom kernel patch that does a 
continuous assessment of different side channel 
attacks relying on hardware performance monitors 

CNIT 

UC2 Mitigation Module Implement a per-application mitigation mechanism 
against detected vulnerabilities 

CNIT 

Table 110: SideChannelDefuse – Development Roadmap 

We will develop the following functionalities: 

 A continuous active detection strategy and algorithms based on hardware performance 
monitor units and dedicated interrupt handlers to assess the presence of Meltdown, Spectre, 
and side-channel attacks in general. 

 A continuous active mitigation strategy, capable to cover the vulnerabilities that we previously 
discussed. 

The tool will be developed as a self-contained subsystem working as a patch to the Linux kernel with 
no inputs and no outputs. 
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7.14.4 Software verification and validation plan 

SideChannelDefuse is being developed as a standalone tool within CAPE, and hence does not 
interact with other components during verification and validation. The tool is preinstalled at the kernel 
level and it continuously monitors processes activities. By doing this, it can detect cache attacks but 
also deploy mitigation strategies on the fly. It follows that rather than integrating it in a pipeline, the 
most obvious way to use it is to install it and then run other tools on top of the patched kernel. 

SR id Description Verification method Demonstration scenario 

SR1 
Patch Linux Kernel in order 

to start the tool 

Check if the tool is correctly installed 

and running in the kernel 

Stand Alone tool 

SR2 

SR3 

Continuously scan and 

eventually mitigate attacks 

in the system. 

Check if the tool correctly reports on 

going side-channel attacks and 

mitigate their behaviour 

Stand Alone tool 

Table 111: SideChannelDefuse – Demo scenarios and verification methods 

Patch Linux Kernel in order to start the tool 

Input: The tool itself. 

Output: None. 

Test Procedure: The cloud owner is expected to install and load the patch into its cloud host. After 
that, the owner can check if the tool is correctly mounted into the system using standard Linux 
terminal commands (lsmod). 

Continuously scan and eventually mitigate the applications behavior in the system 

Our detection mechanism, as well as the aforementioned mitigations, have been implemented at 
kernel-level in Linux, and has been exercised on multiple processors of the x86 family. It is an 
indication of the viability of using HPCs as building blocks for articulated detection mechanisms, and 
for devising strategies where the setup of security-oriented patches can be put in place on a dynamic 
and per-process basis - rather than paying the cost of these patches by default when any process is 
active. 

Input: None. 

Output: Per-application values on /proc/pid 

Test procedure: After having loaded the patched kernel in the guest system, the tool continuously 
assesses if there is a side-channel attack ongoing, and eventually mitigates its malicious effects. 
The cloud owner can check the output in /proc/pid in order to determine what applications have 

been suspected as malicious. 

7.15 Steady (VA) – SAP 

Steady supports software development organizations in regard to the secure use of open-source 
components during application development. As such, Steady addresses the OWASP Top 10 
security risk A9, Using Components with Known Vulnerabilities, which is often the root cause of data 
breaches. Steady analyses Java and Python applications in order to: 

 detect whether they depend on open-source components with known vulnerabilities, 

 collect evidence regarding the execution of vulnerable code in a given application context 
(through the combination of static and dynamic analysis techniques), and 

 support developers in the mitigation of such dependencies. 

There exist several free [139] and commercial tools [140], [143], [144], [145] for detecting 
vulnerabilities in OSS components. [142] shows that Steady’s approach outperforms state-of-the-art 
tools with respect to vulnerability detection. Though [145] claims to perform static analysis to 

https://www.owasp.org/index.php/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
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eliminate false positives, there is no public description of their approach available. OWASP 
Dependency Check [139] is used in [146] to create a vulnerability alert service and to perform an 
empirical investigation about the usage of vulnerable components in proprietary software. The 
results showed that 54 out of 75 of the projects analyzed have at least one vulnerable library. 
However, the results had to be manually reviewed, as the matching of vulnerabilities to libraries 
showed low precision. Alqahtani et al. proposed an ontology-based approach to establish a link 
between vulnerability databases and software repositories [140]. The mapping resulting from their 
approach yields a precision that is 5% lower than OWASP Dependency Check. All these approaches 
and tools differ from Steady in that they focus on vulnerability detection based on metadata, and do 
not provide application-specific reachability assessment nor mitigation proposals. 

Steady is part of Eclipse Foundation and can be downloaded as a stand-alone application. 

More information about Steady is available at: 
https://projects.eclipse.org/projects/technology.steady  

7.15.1 Requirements Description 

 Use cases 

Table 112 shows an update of the Use Cases that were defined for the Steady tool in D5.1. 

Use Cases No change 

UC1 Detect, assess and mitigate dependencies with known vulnerabilities in application 
projects 

X 

UC2 Detect dependencies with known vulnerabilities in open source projects and suggest 
mitigations 

X 

Table 112: Steady - Update of Use Cases specifications 

 

 User Requirements 

Table 113 and Table 114 show an update of the User Requirements that were defined for the Steady 
tool in D5.1. 

User Requirements Add Remove Comments 

UR1 Reduce number of 
unclassified findings 

X  
Missing in D5.1 

UR2 Share efforts related 
to the maintenance of 
vulnerability databases 

 X 

Facilitate the creation and sharing of information 
about vulnerabilities in open source software. 

Moved to Project KB, see Section 7.10. 

Table 113: Steady - Update of User Requirements specifications 

UR1 Reduce number of unclassified findings 

Description 
Reduce the number of cases where Steady cannot automatically establish whether the body 
of a given method is equal (or closer) to the vulnerable or fixed version. Today, such cases 
require human intervention and effort. 

Actors Developer, Security Analyst 

Table 114: Steady - Changes in User Requirements specifications 

https://projects.eclipse.org/projects/technology.steady
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 Software Requirements 

Table 115 and Table 116 show an update of the SW Requirements that were defined for the Steady 
tool in D5.1. 

Software Requirements No change Modify Comments 

SR1 Comparison of Java 
source code and bytecode 

X  

Addresses UR1 and consists of finding (or creating) 
an intermediate representation that can be created 
from source and compiled code, and which serves as 
the basis for comparisons and distance metrics. 

SR2 Implementation of a 
light-weight scan client 

X  
 

SR3 Shared vulnerability 
database 

 X 

Addresses UR2, and requires the definition of a data 
model, merge strategies and related tooling. 

The definition of a data model, merge strategies and 
related tooling has been moved to Project KB, see 
Section 7.10. 

What remains is a new component kb-importer, which 
takes the data of Project KB as input in order to 
populate Steady’s vulnerability database. 

Table 115: Steady - Update of SW Requirements specifications 

 

SR3 Shared vulnerability database 

Description Steady must load vulnerability information from Project KB in an automated fashion. 

Actors N.A. (entirely automated) 

Basic Flow 
Upon installation and at regular timeframes, Steady uses Project KB to update its database 
with known vulnerabilities. 

Table 116: Steady – Changes in SW requirements specifications 

 

7.15.2 Functional Specifications 

At high-level, see Figure 75, Steady comprises a number of client-side scan tools that analyse a 
given application, either manually or as part of automated build processes (plugin-maven, 
plugin-gradle, cli-scanner). Analysis results are uploaded to (and persisted by) a RESTful 

component called rest-backend, which is one out of several components that run server-side, e.g., 

in private or public clouds. The components frontend-apps and frontend-bugs are HTML5 

applications rendered by a browser and used by end-users to consume the analysis results. The 
remaining components, patch-analyser and rest-lib-utils are related to the analysis and 

processing of commit information (of open source projects) and packages available on public or 
private package repositories.  
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Figure 75: High-level architecture of Steady - Components created or modified by SR1-3 are highlighted with 
dotted borders 

With respect to Figure 75, SR1 will be implemented by modifying the component plugin-maven. 

More specifically, the plugin will be extended by the additional goal checkcode26. 

Upon invocation, manually or during automated pipeline builds, the goal analyses all unconfirmed 
vulnerable dependencies, which are pairs of (vulnerability v, library l). They correspond to Java 
archives that contain constructs known to be affected by a given vulnerability, but for which it could 
not be clarified whether the construct body is equal (or closer) to the vulnerable or the fixed version. 
This happens for Java archives not known to Maven Central, or for archives on Maven Central 
without a corresponding source code artefact, e.g., Uber JARs. These cases appear as orange 
hourglasses in the report and application frontend. 

In more detail and as explained in Figure 76, for every unconfirmed vulnerable dependency (v, l), 
the analysis consists of extracting the questionable constructs from the Java archive (JAR) and 
building their abstract syntax trees (AST). These ASTs are compared with the ASTs of the 
corresponding constructs in other Java archives previously assessed as vulnerable or fixed. Only if 
all questionable constructs correspond to constructs in either fixed or vulnerable archives, the 
unconfirmed vulnerable dependency is also set to fixed or vulnerable. 

 

Figure 76: Eclipse Steady: Plugin goal "checkcode" 

With respect to Figure 75, SR2 will be implemented by reducing the footprint of the Docker Compose 
environment such that it can also run locally, which has the big advantage of giving flexible 
deployment options to users: users can decide to run the entire Steady solution locally, e.g., for 

                                                
26 https://eclipse.github.io/steady/user/manuals/analysis/#analyze-unconfirmed-vulnerabilities-checkcode  

https://eclipse.github.io/steady/user/manuals/analysis/#analyze-unconfirmed-vulnerabilities-checkcode
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testing and demonstration purposes. Alternatively, users can stick to the existing deployment model, 
which is especially interesting for larger software development organizations with many development 
projects and central compliance and security teams. 

The footprint reduction will be realized by omitting components that are not necessary in local 
deployments, e.g., frontend-apps and frontend-bugs. Where necessary, information provided in 

those Web applications will be made available in a self-contained HTML report created through the 
existing plugin goal report27. 

Moreover, the local deployment shall happen as transparent as possible. Ideally, the local Docker 
Compose environment is downloaded, configured and started automatically when users invoke the 
scan clients, esp. plugin-maven. Corresponding Docker images are already available on Docker 

Hub28, however, their lifecycle has to be managed through the interaction of Steady with a local 
Docker client. 

SR3 has been modified since the writing of D5.1. Formerly, it was planned to develop an open and 
distributed vulnerability database as part of Steady. However, it turned out that such database has 
its own raison d’être, and that Steady is just one of potentially many downstream users. As such, it 
was decided to continue the development of this database as Project KB (see Section 7.10). 

What remains with Steady is a new component kb-importer, which consumes information from 

Project KB in order to populate Steady’s vulnerability database. kb-importer is a Java stand-alone 

application, which reads and processes vulnerability information from the file system, e.g., Java 
source code and vulnerability metadata, and calls the REST API of the component rest-backend 

in order to persist the information. A preliminary version of kb-importer has already been 

released29, and a corresponding Docker image to facilitate its use and support automation is under 
development. 

7.15.3 Development roadmap 

Use Case Architecture components Realisation Involved partners 

UC1 All Integration of Steady in CI/CD pipeline CINI/FBK 

UC2 All Integration of Steady in CI/CD pipeline CINI/FBK 

Table 117: Steady – Development Roadmap  

The software requirements SR1 and SR3 have been mostly completed and are available in the 
respective open-source repositories on GitHub. Minor adjustments and additions may be made 
throughout the tests described in Section 7.15.4. SR2 will be developed in the first half of 2021 such 
that its functionality is available and can be tested before project end. 

7.15.4 Software verification and validation plan 

SR id Description Verification method Demonstration scenario 

SR1 Bytecode 
comparison 

Check if an unclassified finding can be 
resolved through the execution of the new 
plugin goal “checkcode” 

e-Government (Vertical 2)  

SR2 Light-weight scan 
client 

Run light-weight Docker Compose 
environment and monitor resource 
consumption and performance 

Independent 

                                                
27 https://eclipse.github.io/steady/user/manuals/analysis/#create-result-report-report  

28 https://hub.docker.com/search?q=eclipse%2Fsteady&type=image  

29 https://eclipse.github.io/steady/vuln_db/manuals/kb_importer/  

https://eclipse.github.io/steady/user/manuals/analysis/#create-result-report-report
https://hub.docker.com/search?q=eclipse%2Fsteady&type=image
https://eclipse.github.io/steady/vuln_db/manuals/kb_importer/
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SR id Description Verification method Demonstration scenario 

SR3 Shared vulnerability 
database 

Check the initial and delta load of 
vulnerabilities from Project KB into Steady’s 
database 

e-Government (Vertical 2) 

Table 118: Steady – Demo scenarios and verification methods 

SR1 – Bytecode comparison 

Input: Artificial Java archive with vulnerable code, added as dependency to the e-Government 
application. 

Output: Correct classification as vulnerable after running the plugin goal. 

Test Procedure: An artificial Java archive A with vulnerable bytecode will be created and installed 
in the local m2 Maven repository of the build environment. The vulnerable bytecode will be taken 
from an existing, publicly available open source Java artefact P, which has been previously assessed 
as vulnerable in the context of the e-Government application. The e-Government application will 
declare a new dependency on A. 

Since the artificial artefact does not exist in the public Maven repository, neither as bytecode nor 
source code, the execution of Steady’s analysis goal “app” will yield an unclassified finding for A. 
The execution of the new analysis goal “checkcode”, however, should succeed, since the bytecode 
contained in the artificial artefact A can be compared to the bytecode of the already classified archive 
P. 

SR2 – Light-weight scan client 

Input: Publicly available Docker Compose file, Maven artefacts and Docker images. 

Output: Successful scan performed with the local Docker Compose environment plus metrics about 
resource consumption and performance. 

Test Procedure: The invocation of one or more Maven plugin goals will download and install 
Steady’s Docker Compose environment on the local test machine. This environment will be used for 
several subsequent scans using the “app” analysis goal of Steady’s Maven plugin. Both installation 
and scans shall be monitored in terms of resource consumption and performance.  

SR3 – Shared vulnerability database 

Input: Statements from Project KB. 

Output: Populated Steady. 

Test Procedure: The installation of Steady’s Docker Compose environment shall automatically 
trigger the initial and delta load of vulnerability statements from Project KB into Steady’s PostgreSQL 
database. This load will be tested as part of the e-Government scenario and can be checked by 
querying the database or consulting a dedicated Web application (frontend_bugs). The delta load 

can be tested by creating a new statement after the initial load in a given Docker Compose 
environment has happened, in a dedicated test branch of Project KB or a test repository (see Section 
7.10.4). 

7.16 SysML-Sec (TTool) – IMT 

TTool (pronounced "tea-tool") is a toolkit dedicated to the edition of UML and SysML diagrams, and 
to the simulation and formal verification (safety, security, performance) of those diagrams. TTool 
supports several UML profiles: AVATAR, DIPLODOCUS and SysML-Sec.      

SysML-Sec covers all development stages, including requirements, faults and attack trees, system-
level hardware / software partitioning with automated design space exploration, embedded software 
design, software deployment, and finally code generation. Main diagrams can be formally verified 
against safety, security and performance properties. When formal verification induces combinatory 
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explosion, fast simulation helps having a better confidence in the system. Last but not least, TTool 
can generate test sequences. 

The main originality of TTool / SysML-Sec relies its ability to support the design and formal 
verification of both safety and security aspects from the same input (SysML) models, while covering 
development cycles from requirements until code generation. Many other design methodologies 
handle the complete design flow of embedded systems, including design space exploration, and 
prototype code generation, such as [147][148][149]. [150] is a development environment with 
extensions so it can be customized for different domains. They all support modelling requirements 
and systems, and offer model-checking including simulation and formal verification capabilities. 
Unlike our toolkit, they also do not model or verify security properties.  

While AADL takes safety and performance requirements into account during design [151], it also has 
been extended for modelling security for access control both in its hardware partitioning and 
software-based communications [152]. SecureUML targets the design and analysis of secure 
systems by adding mechanisms to model role-based access control [153]. The security model of 
TTool rather focuses on protecting against an external attacker instead of access control. UMLSec 
[154] features a rather complete framework addressing various stages of model-driven secure 
software engineering from the specification of security requirements to tests, including logic-based 
formal verification regarding the composition of software components. However, UMLSec does not 
take into account the HW/SW Partitioning phase necessary for the design of e.g. IoTs, nor the 
relation between safety and security. 

More information about TTool is available at: https://ttool.telecom-paris.fr/  

7.16.1 Requirements Description 

 Use cases 

Table 119 and Table 120 show an update of the Use Cases that were defined for TTool in D5.1. 

Use Cases Add Comments 

UC1 Formal Security Verification of platooning SafeSec module X Missing in D5.1 

Table 119: TTool - Update of Use Cases specifications 

UC1 Formal Security Verification of platooning SafeSec module 

Description 
TTool intends to be used to verify that the defined architectures respect the safety and 
security requirements that can be verified from a high-level model. 

Actors System engineer 

Basic Flow 
Capture safety and security requirements, model fault and attack trees, perform the 
architecture design, including a model of hardware components, verify safety and security 
properties. 

Table 120: TTool – Changes in Use Cases specifications 

 User Requirements 

Table 121 and Table 122 show an update of the User Requirements that were defined for TTool in 
D5.1. 

User Requirements Add Comments 

UR1.1 Automated and formal security verification of digital systems from 
high-level models 

X Missing in D5.1 

Table 121: TTool - Update of User Requirements specifications 

https://ttool.telecom-paris.fr/
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UR1.1 Automated and formal security verification of digital systems from high-level models 

Description 
The main idea is to make high-level models of the (platooning) system taking into 
account both functional and architectural aspects, and then to perform in an automated 
way security evaluation. 

Actors System architects and verification engineers 

Table 122: TTool – Changes in User Requirements specifications 

 Software Requirements 

Table 123 and Table 124 show an update of the SW Requirements that were defined for the TTool 
tool in D5.1. 

Software Requirements Add Comments 

SR1 C-ACC Safety and Security Mapping and Verification X Missing in D5.1 

SR2 Inter-relations between safety and security aspects X Missing in D5.1 

Table 123: TTool - Update of SW Requirements specifications 

SR1 C-ACC Safety and Security Mapping and Verification 

Description 

Cooperative Adaptive Cruise Control (C-ACC) is used by vehicles to improve safety and fuel-
efficiency in vehicle platoon. This is because C-ACC enables the safe reduction of the gap 
between vehicles as vehicles can quickly adapt their state and react to emergency by relying 
on the information communicated through the communication channels. However, attackers 
can also exploit these communication channels to cause harm, such as vehicle crashes. We 
have proposed adequate countermeasures based on plausibility checks.  

We are going to develop in TTool a model-based view of the C-ACC architecture and 
functions, with a focus on safety and security aspects. By “architecture”, we mean the 
corresponding hardware platform, while functions refer to unmapped functional elements: the 
latter will be mapped onto the hardware components. The models will be done in 
collaboration with the models of AutoFOCUS3 (AF3). 

Models (e.g. mapping of functions over the hardware) will then be verified against safety and 
security requirements.  

Actors TTool, AF3 

Basic Flow 

1) Download and install TTool and AF3 

2) Open the model of the system specification in AF3 and in TTool 

3) Enrich the model of TTool by exporting the model of AF3 

4) Perform safety or security verification in TTool, and backtrace results in TTool and AF3. 

SR2 Inter-relations between safety and security aspects 

Description Ensure exchanges with external tools, e.g. AF3 

Actors Develop engineers 

Basic Flow Definition of necessary exchanges, program input / outputs. 

Table 124: TTool – Changes in SW Requirements specifications 

7.16.2 Functional Specifications 

Concerning SR1, all necessary hardware components that are not present in TTool will be specified 
and then added to the TTool framework. This addition will not impact the verification framework of 
TTool, so new components will be defined upon the existing components. 
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For SR2, we will have to define the format for diagram and view exchanges. Backtracing verification 
results to the complementary tool (e.g., verification performed in TTool, result displayed in 
AutoFOCUS3) will also be studied by first defining which verification aspects could be exchanged, 
and then an exchange format will be defined. 

In both cases, the following method will be applied. From the system specification and attack and 
fault trees, a functional view, an architectural view and then a mapping will be built. Then, verification 
will be performed, both from the functional view and the mapping view. Again, results will be 
backtraced to model, and updates will be proposed. An update could typically be a security 
countermeasure. 

 

Figure 77: TTooL modules 

 

7.16.3 Development roadmap 

Use Case Architecture components Realisation Involved partners 

UC1 

Hardware and software aspects 
will be taken into account. They will 
be built both from the system 
specification and from already 
developed code.  

Hardware / software partitioning 
models, formal verification of 
safety and security properties. 

IMT, FTS 

Table 125: TTool – Development Roadmap  

7.16.4 Software verification and validation plan 

SR id Description Verification method Demonstration scenario 

SR1 
Use TTool to verify the 
platooning system at a high 
level of abstraction 

 Capture the digital platform at a high-
level of abstraction 

 Look for possible attacks with formal 
verification 

 Study countermeasures 

Connected Car 
(Vertical 1) 
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SR id Description Verification method Demonstration scenario 

SR2 

Use TTool to verify the 
platooning system taking 
into account both software 
and hardware aspects 

 Capture the digital platform at a high-
level of abstraction 

 Look for possible attacks with formal 
verification. This security verification 
takes into account hardware aspects 
(e.g. access to buses, firewalls, etc.) 

 Study countermeasures 

Connected Car 
(Vertical 1) 

Table 126: TTool – Demo scenarios and verification methods 

SR1 - Verify the platooning system at a high level of abstraction 

Input: AF3 model 

Output: Countermeasures resulting from the verification process 

Test Procedure: We intend to import a (functional) model from AF3, to execute a safety verification 
with our internal model-checker and discuss with AF3 developers how we could inject the verification 
results in AF3. We will do the same for security properties: import of AF3 model in TTool, security 
verification with ProVerif, backtracing to AF3. In the scope of SR1, only very small model parts will 
be addressed because only the exchange of information is at stake here. 

SR2 - Verify the platooning system taking into account both software and hardware aspects 

Input: AF3 model 

Output: Countermeasures resulting from the verification process 

Test Procedure: We intend to show that several relevant properties of the system – safety 
properties, security properties – can be proved from TTool models of the platooning system, using 
the simulators and model-checkers integrated in TTool. Here, we intend to take into account both 
software and hardware aspects (which is not the case in SR1). 

7.17 VaCSInE (VCS) – CETIC 

VaCSIne is an open-source security orchestration, automation and response tool that provides 
adaptive security for distributed systems. It relies on continuous monitoring of Cloud and Edge 
systems to define, evaluate and apply automated countermeasures such as firewalls, intrusion 
detection systems, honeypots or quarantining. The automated response is triggered by changes to 
security requirements, indicators of compromise, incidents and vulnerabilities. The efficiency and 
speed of countermeasures deployment is evaluated in automatically provisioned sandbox 
environments that shadow the target Cloud/Edge systems. Those sandboxes provide observability 
and scalability for the training and maintenance of security response strategies.  

Mobile Edge Computing and Fog introduces additional security challenges, for example the need to 
satisfy security requirements in the presence of unreliable networks or when low latency in the 
security response is critical. This resilience can be ensured by continuous monitoring of the system, 
prompt detection of anomalies and remediation in an autonomous way [155] [156] [157]. Security 
orchestration has to take into account those Edge and Fog specificities to avoid being the single 
point of failure [158]. In the context of autonomous cars for example, simulation and machine learning 
model training can be done in part in the Edge and in the Cloud [159]. 

The VaCSIne source code and documentation is hosted in the public git repository: 
https://github.com/cetic/vacsine . 

https://github.com/cetic/vacsine
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7.17.1 Requirements Description 

 Use cases 

Table 127 and Table 128 show an update of the use cases that were defined for the VaCSInE tool 
in D5.1.  

Use Case No change Modify Comments 

UC1 Enforce security policy on the edge 
infrastructure based on certification 
criteria 

X  
 

UC2 Continuous self-assessment for 
adaptive security with service function 
chaining 

 X 
Further definition of the interactions 
with continuous certification pipeline 

Table 127:  VaCSInE - Update of Use Cases specifications 

UC2 Continuous self-assessment for adaptive security with service function chaining 

Description 
Monitor and detect: Ensure the edge infrastructure is protected through an automated 
reconfiguration of the service function chains. This can involve adding/removing or updating 
existing security functions. 

Actors Security Officer 

Basic Flow 

The intrusion detection triggers a firewall re-configuration, remediation is checked against 
the system’s security policy (derived from certification criteria) and applied to the security 
functions protecting the system.  

The resulting modifications to the firewall (configuration logs) are monitored and provide an 
input to the continuous certification process. Those logs can be used as evidence that the 
configuration has taken place and as input for further security certification tools further down 
the certification process. In case the changes to the firewall configuration require a re-
certification, for example following a major version change of the security service, a new 
iteration in the certification process is started. 

Table 128: VaCSInE – Changes in Use Cases specifications 

VaCSInE will demonstrate how to ensure continuous assessment of edge systems by developing 
adaptative security mechanisms based on security policies derived from certification requirements. 

 User Requirements 

Table 129 shows an update of the User Requirements that were defined for the VCS tool in D5.1. 

User Requirements No change 

UR1 Minimal network attack surface X 

Table 129: VaCSInE - Update of User Requirements specifications 

 Software Requirements 

Table 130 and Table 131 show an update of the SW Requirements that were defined for the VCS 
tool in D5.1.  

Software Requirements Add Comments 

SR1 – Orchestration of the security policy X Missing in D5.1 

SR2 – Observability of the security policy orchestration X Missing in D5.1 

Table 130: VaCSInE - Update of SW Requirements specifications 
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SR1 Orchestration of the security policy 

Description 

The tool should provide orchestration capabilities to manage the target system security 
policies. When a security policy changes, the system needs to be reconfigured accordingly. 
For example, the level of security of a system can be increased by restricting its attack 
surface through stricter firewall rules that allow only a minimal set of selected ports to be 
open. 

Actors Security officer 

Basic Flow 
1) A modified security policy is applied on the system 
2) The system’s security services are reconfigured to satisfy the policy 

SR2 Observability of the security policy orchestration 

Description 
The orchestration of the target system’s security policy should be observable to detect 
failures and their reasons. The execution status of policy changes and their effects (success, 
duration, logs, …) should be monitored, alerts should be triggered when failures happen. 

Actors Security officer 

Basic Flow 

1) A modified security policy is applied on the system, which results in error 
2) Information on the failure (error logs) is made available, an alert is sent to the security 

officer 
3) A modified security policy is applied to the system, which results in a successful 

reconfiguration of the services 
4) Execution logs of the remediation are registered as compliance evidence 

Table 131: VaCSInE – Changes in SW requirements specifications 

7.17.2 Functional Specifications 

Vacsine is composed of several modules that are deployed in Cloud and Edges infrastructures (see 
Figure 78): 

 The Federated Security Controller provides federated management of the security 
remediation on the target system. It is a consolidated view of the remediations history and 
states across the various edges and clouds. This controller relies on a registry of the security 
policies of its federated infrastructure, a remediation registry containing templates and 
workflows of security remediations and security monitoring information such as remediation 
execution logs, results of vulnerability scans, threat indicators, etc. 

 A Security Agent is deployed on each edge and cloud, it provides security remediations 
based on the detection of various events and the matching of those events to remediation 
workflows. Agents can operate in autonomous mode, this provides a quicker response time 
to events happening in the edge they are deployed on, and continued operation in case the 
edge-cloud connexion is degraded. The edge datastore contains a local version of the 
security policies, remediations registry and security monitoring information. 

 Vulnerability remediation in the form of security services such as firewalls, intrusion 
detection systems or honeypots that are triggered by changes to security requirements, 
threat indicators, incidents and vulnerabilities. 

 Remediation sandboxes to test remediation workflows in a dedicated environment before 
applying them or training new remediation strategies. 
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Figure 78: VaCSnE modules 

 

7.17.3 Development roadmap 

Use Case Architecture components Realisation Involved partners 

UC1 
Security agent, security policies, remediations 
registry 

Connected Car (Vertical 1) 
– scenario 2 

CETIC 

UC2 
Federated security controller, security 
monitoring 

Connected Car (Vertical 1) 
– scenario 2 

CETIC 

Table 132: VaCSInE – Development Roadmap  

Both use cases will be validated in D5.4 following the T5.1 roadmap. The range of remediations will 
be extended to more security services such as honeypots, and we will be applying the security 
orchestration in the case study where a new vehicle joins a platoon. 

7.17.4 Software verification and validation plan 

SR id Description Verification method Demonstration scenario 

SR 1 Orchestration of the security policy Vulnerability assessment  
Connected Car (Vertical 1), 

scenario 2 

SR 2 
Observability of the security 
orchestration 

Log analysis 
Connected Car (Vertical 1), 

scenario 2 

Table 133: VaCSInE – Demo scenarios and verification methods 

SR 1 - Orchestration of the security policy 

Input: security policy, target system description 

Output: verified remediation execution 

Test procedure: For each input security policy, we proceed as follows: 

1. create a test sandbox containing an image of the target system 

2. analyse the security policy and deduce a remediation workflow 

3. apply the remediation to the test sandbox 

4. check that the security requirements of the security policy are satisfied in the test sandbox 
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5. apply the remediation to the target system 

6. check that the security requirements of the security policy are satisfied in the target system. 

SR 2 - Observability of the security policy orchestration 

Input: remediation workflow, target system description 

Output: remediation logs 

Test procedure: For each remediation workflow, we proceed as follows: 

1. apply the remediation workflow to the system  

2. check the remediation workflow execution status, this includes execution logs for each step 
of the remediation. Those logs should contain details on the execution for traceability such 
as start time, duration, informative and error messages. 

 

7.18 Visual Investigation of security information (VI) – UKON 

Assessing the security of software is a central challenge in CAPE. The assessment of individual 
software applications can significantly impact organizations' software projects, such as detecting 
vulnerabilities (e.g., CSV's) in widely used third-party software packages. The visual assessment of 
such software vulnerabilities in the context of a whole large software development organizations can 
help to identify, explore, and interpret the security status of entire organizations. There is currently 
no visual interface that presents an overview of a whole software organization's security situation, to 
the best of our knowledge. Therefore, we decided to design and develop a visualization from scratch 
based on partner tools (Eclipse Steady) as part of the work package. 

The visual investigation (VI) of security information for larger software development organizations 
supports the visual analysis of individual software components' security status and evaluating the 
associated risk posed by their own and third-party components. The implemented demonstrator 
(Vulnerability Explorer) uses the outputs of the Eclipse Steady software (SAP) and allows to explore 
organization-wide picture of dependencies between the components as well as their exposures 
(vulnerabilities). The developed web demonstrator aims to increase confidence in a whole 
organization's security by presenting and exploring its exposure, including internal and external 
dependencies. The vulnerability explorer provides a complete overview of the software organization 
and investigates and prioritizes critical vulnerabilities. 

7.18.1 Requirements Description 

 Use cases 

Table 134 and Table 135 show an update of the Use Cases that were defined for the VI tool in D5.1. 

Use Cases Modify Comments 

UC1 Visual Investigation of Large 
Software Organizations 

X 
Following discussions with potential users from SAP, we 
have extended the characterization of the use case. 

Table 134: VI tool - Update of Use Cases specifications 

UC1 Visual Investigation of Large Software Organizations 

Description 
The automatically detected known vulnerabilities in large software organizations such as the 
Eclipse Foundation are presented and explored. 

Actors 

 Software developers 

 Software testers 

 Project managers 
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UC1 Visual Investigation of Large Software Organizations 

Basic Flow 

A software developer, tester, or project owner provides a project; the tool then depicts 
automatically detected known vulnerabilities in the component, in the dependencies to 
internally developed packages, as well as external third-party libraries. The stakeholder can 
also change the perspective and investigate which open source components are used 
frequently and explore their respective dependencies. 

Table 135: VI tool – Changes in Use Cases specifications 

 

 User Requirements 

Table 136 shows an update of the User Requirements that were defined for the VI tool in D5.1. 

User Requirements No change 

UR1 Increase confidence in analysed systems X 

UR2 Multi-source levels of analysis X 

UR3 Information representation X 

UR4 Vulnerability prioritization X 

UR5 Interdependence analysis X 

Table 136: VI tool - Update of User Requirements specifications 

 

 Software Requirements 

Table 137 shows an update of the SW Requirements that have been defined for the VI tool in D5.1. 

Software Requirements No change 

SR1 Web Application Prototype X 

Table 137: VI tool - Update on SW Requirements specifications 

 

7.18.2 Functional Specifications 

The developed demonstrator is called the SPARTA Vulnerability Explorer and utilizes the Eclipse 
Steady API (see Section 7.15). The displayed data are the scanned package results of a whole 
software organization. In this case, the open-source Java packages of the Eclipse Foundation were 
crawled exemplarily for the demonstrator.  

The demonstrator back-end was implemented in Java and the front-end with state-of-the-art web 
technologies. The Java back-end facilitates an in-memory database that accesses and stores the 
data from the Eclipse Steady API. The interactive visualizations are implemented using the 
JavaScript library D3 (Data-Driven Documents). The main input files for the demonstrator are either 
Java Maven projects or Python packages.  

Figure 79 shows a high-level architecture of the SPARTA Vulnerability Explorer tool. 
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Figure 79: High-level architecture of the SPARTA Vulnerability Explorer 

The SPARTA Vulnerability Explorer has two main views. The first one is a tree view to investigate 
search and filter all vulnerabilities which were detected in the whole software organization (see 
Figure 80). The second one is a graph view that enables to visually explore the dependencies 
between libraries to get an overview of the interrelationships in the software organization (see Figure 
81). 

 

7.18.3 Development roadmap 

Use Case Architecture components Realisation Involved partners 

UC1 Interactive visualization 
prototype and Eclipse Steady 

Build the prototype to get the vulnerabilities 
information from Eclipse Steady 

UKON, SAP 

Table 138: VI Tool – Development Roadmap  

We implemented the following features and functionalities: 

 A Java back-end which enables to access and preprocess the package scan results of the 
Eclipse Steady API. 

 Interfaces to explore the security status of software organizations. We have designed and 
implemented two interfaces in close collaboration with domain experts.  

The tree view (see Figure 80) depicts the whole software organization with their repositories, 
modules, libraries, and bugs in a tabular view. The vulnerability information is displayed in the various 
columns, for instance, a heatmap shows the distribution of all CVSS scores for all vulnerabilities in 
a repository. The tree view can be sorted, searched, and filtered using a filter panel. The tree view 
can also be used to investigate CVE in the whole software organization.  

We will extend the tree view to include open source packages to allow analysts to overview the used 
packages and their potential impact on the whole software organization. 
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Figure 80: The tree view of the Vulnerability Explorer 

 

The graph view (see Figure 81) displays the dependency structure from an ego-centric perspective 
to a particular repository or module. The visualization depicts a directed acyclic graph to allow 
analysts to visually explore dependencies between repositories to understand how various 
exposures affect the whole software organization. 

 

Figure 81: The graph view of the Vulnerability Explorer 

 

7.18.4 Software verification and validation plan 

We evaluated the designed interface and the demonstrator with domain experts from SAP in 
interviews. We conducted expert interviews with potential users with think-aloud protocols to capture 
the user requirements and further suggestions that we incorporated into the user interfaces' design. 
For example, we added more perspectives upon the software organization that enables analysts to 
investigate open source components in the whole organization.  
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SR id Description Verification method Demonstration scenario 

SR1 Web Application 
Prototype 

Display projects developed in 
software organizations (e.g., 
Eclipse Foundation) 

Visually investigate the Eclipse 
Foundation projects in the e-
Government scenario (Vertical 2) 

Table 139: VI tool – Demo scenarios and verification methods 

Verification method 

Input: The demonstrator will display the crawled Eclipse Foundation open-source project, with all 
vulnerabilities that Eclipse Steady detected. The usage scenario is in the e-government vertical and 
highlights how the demonstrator can be used to identify central exposures of packages in whole 
software organizations. 

Output: User feedback from domain experts about the usability and usefulness of the design. The 
demonstrator is used to confirm the applicability of the design. 

Test procedure: 

The demonstrator will be used to visually explore the Eclipse Foundation to identify the number of 
critical vulnerabilities and their organization-wide dependencies. We will conduct expert interviews 
with the Eclipse Foundation members to get further insight into the usability of the demonstrator and 
collect more user requirements. The expert interviews will be think-aloud protocols to capture 
usability and additional suggestions, such as new user requirements. 
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 Summary and Conclusion  

D5.2 is the second deliverable of the CAPE program and includes contributions for each task and 
vertical in the context of the CAPE program. It reports the work that has been conducted by the 
CAPE partners over the last 12 months on defining technical specifications for the development of 
the assessment tools and the demonstrators. 

Regarding Task 5.1, in Chapter 2 we have continued the development of the cybersecurity 
assessment tools identified in the framework for continuous assessment and certification. These 
assessment tools, which are thoroughly described in Chapter 7, cover different aspects of 
assessment and are sometimes dependent on specific technologies. When designing an 
engineering process, it is thus necessary to identify the useful assessment tools and integrate them 
into a development process. In the SPARTA project, we have explored the use of continuous 
integration methods and tools to orchestrate the loose coupling of the framework tools. We have 
applied DevSecOps approaches to integrate security activities in the different DevOps phases. To 
increase the coverage of the V-Model phases, we have also integrated existing tools (Maude, 
OpenSCAP, etc.) into the DevSecOps processes. For orchestrating the continuous assessment and 
certification, some of the framework tools have developed connectors to continuous integration 
services such as Gitlab CI or GitHub Actions. Assessment tools with the connectors can more easily 
be integrated into a DevSecOps process. While building the first version of the prototypes, the 
Technology Readiness Level (TRL) of most of the framework tools has been improved. 

Regarding Task 5.2, in Chapter 3 we have described both safety and security analysis for the CACC 
platoon scenario such as FMEA for safety and attack defence trees for security. We have described 
a new methodology for trade-off analysis between safety and security solutions. This methodology 
has led to two publications [74] [75] . We have described a protection profile for a safety and security 
platoon management module. This protection profile was the basis for designing the CACC platoon 
on AutoFOCUS3. Finally, we have assessed the security of CACC platoons by means of formal 
verification. This work has led to one publication [63]. 

Regarding T5.3, in Chapter 4 we have produced a comprehensive overview about open source 
supply chain attacks by reviewing recent, real-world supply chain attacks and creating a systematic 
attack tree. This work as well as the design and development of countermeasures led to a number 
of publications [49] [160] [161] [162] and a public dataset supporting future research30. The relevance 
of this work is also demonstrated by the attack on SolarWinds’ build infrastructure, which led to the 
distribution of malicious software updates to more than 18,000 SolarWinds customers, including US 
and European Government and private sector organizations. Moreover, we have progressed in 
regard to extending the set of tools that will be integrated into automated CI/CD pipelines, and – 
going forward – it will be important to ensure that those tools do significantly impact on pipeline 
performance and availability. Also, we have progressed with regard to developing AI models to 
automatically classify source code commits as security relevant, and to model the attractiveness of 
open source projects for attackers in order to identify projects that require special security measures. 

Chapter 5 and Chapter 6 cover the specification of our two CAPE use cases, the “Connected Car 
and the e-Government verticals. These two vertical use cases are particularly representative of the 
cybersecurity issues that modern digital systems are facing. Both use-cases are thoroughly 
described and analysed, in order to provide a strong and common vision of the validation and 
demonstration activities to be developed in deliverable 5.4 [3].   

Regarding the Connected Car vertical, we have described five scenarios involving the security of 
CACC platoons: 1) Basic scenario, evaluated the security of CACC platoons by means of formal 
verification and experiments. More specifically, it evaluated the effectiveness of injection attacks 
against CACC platoons as well as the effectiveness of plausibility countermeasures against such 
attacks; 2) Firewall updates scenario extended the basic scenario and developed an I2V case study 
to investigate how to maintain continuous compliance when security requirements are dynamic; 3) 
Verification tooling scenario focused on verification tools and scenarios to evaluate the security of 
                                                
30 https://github.com/cybertier/Backstabbers-Knife-Collection  

https://github.com/cybertier/Backstabbers-Knife-Collection
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the basic scenario by means of penetration tests; 4) Safety and security compliance assessment 
and certification scenario considered the generation of assurance cases for certification standards, 
in particular the management tool OpenCert is considered to assist assurance process of the CACC 
platoon; and 5) Fault-injection and analysis of faulty scenarios described the first steps towards 
investigating the impact of component faults for the safety and security of CACC platoons, in 
particular the Sabotage tool is considered to simulate how a fault can affect the vehicle behaviour. 
We have also deployed a continuous assessment pipeline using CAPE tools in the context of the 
Connected Car vertical. 

Concerning the e-Government vertical, namely the innovative authentication solutions based on the 
usage of the Italian national electronic identity card, we have provided the details about the identified 
demonstration scenarios for the CIE ID APP and the SAML IdP, including the involved actors. We 
have selected the CAPE tools and defined the corresponding security requirements they are able to 
evaluate. To assess the security of the CIE ID APP and the SAML IdP, we have deployed two 
DevSecOps pipelines. Finally, we have specified the assets we can provide to allow end-users to 
include the CAPE assessment tools in their pipeline and perform a security assessment of their 
complex systems.  

The technical details on how we integrated the CAPE assessment tools in the development and 
testing environments are provided in D5.3 [2], while the results concerning the continuous 
assessment framework of the vertical will be reported in D5.4 [3]. Benchmarking activities of the 
demonstrators with other developments in the field will be carried out and reported in D5.4. 

Finally, in terms of governance, the CAPE program demonstrates a cooperative mode of 
management. Several tools have the same (or very close) assessment targets. Rather than 
implement two times the same tool (with different techniques), we harmonized the specification of 
the tools so that they had complementary goals. This implemented a cooperating rather than a 
competing governance model, focusing on leveraging synergies and competencies between 
researchers to extend the coverage of our research activities. The joint design and sharing of the 
two verticals is also representative of the governance of CAPE, where people, competencies and 
platforms are collaboratively shared to elaborate advanced research platforms. 
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 List of Abbreviations  

Abbreviation Translation 

ACC Adaptive Cruise Control 

ACSL A Common Specification Language 

ADAS Advanced Driver Assistance System 

AI Artificial Intelligence 

ALM Application Lifecycle Management 

API Application Programming Interface 

AST Abstract Syntax Tree 

CACC Cooperative Adaptive Cruise Control 

CI/CD Continuous Integration / Continuous Distribution 

CIE Italian national electronic identity card 

CPE Common Platform Enumeration 

CPU Central Processing Unit 

CVE Common Vulnerabilities and Exposures 

CVSS Common Vulnerability Scoring System 

DAST Dynamic Analysis 

DFMEA Design FMEA 

ECU Engine Control Unit 

EMF Eclipse Modelling Framework 

FARM Faults, Activation, Readouts, Measures 

FMEA Failure Modes and Effects Analysis 

FTA Fault Tree Analysis 

FTP File Transfer Protocol 

GAN Generative Adversarial Network-based 

GPG GNU Privacy Guard 

GPU Graphics Processing Unit 

GSN Goal Structure Notation 

GUI Graphical User Interface 

HARA Hazard Analysis and Risk Assessment 

HMS Hardware Security Modules 

HTML HyperText Markup Language 

HTTP(S) Hypertext Transfer Protocol Secure 

I2V Infrastructure to Vehicle 

ICC Inter-component communication 

ICFG Inter-Procedural Control-Flow Graph 
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Abbreviation Translation 

IDS Intrusion Detection System 

IMAP Internet Message Access Protocol 

IP Internet Protocol 

ISO International Organization for Standardization 

JAR Java archive 

KAOS Keep All Objectives Satisfied 

KVM Kernel-based Virtual Machine 

NFC Near Field Communication 

NFV Network Functions Virtualization 

NLP Natural Language Processing 

NVD National Vulnerability Database 

OSCS Open Source Case Studies 

OSS Open-Source Software  

OWASP Open Web Application Security Project 

PFMEA Process FMEA 

PLM Product Lifecycle Management 

PP Protection Profile 

PURL Persistent URL 

RAICC Revealing Atypical Inter-Component Communication 

SAML Security Assertion Markup Language 

SARIF Static Analysis Results Interchange Format 

SAST Static Application Security Testing 

SCAP Security Content Automation Protocol 

SDLC Software Development Lifecycle 

SFC Service Function Chains 

SIEM Security Information and Event Management 

SMS Short Message Service 

SMTP Simple Mail Transfer Protocol 

SoS System of Systems 

SR Software Requirement 

SSH Secure SHell 

SW Software 

TARA Threat Analysis and Risk Assessment 

TOE Target Of Evaluation 

TRL Technology Readiness Level 
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Abbreviation Translation 

UC Use Case 

UML Unified Modelling Language 

UR User Requirements 

URL Uniform Resource Locator 

V&V Verification & Validation 

V2I Vehicle to Infrastructure 

VCS Vehicle Communication Device 

VCM Vehicle Control Module 

SysML Systems Modelling Language 

VM Virtual Machine 

XML Extensible Markup Language 

YAML Yet Another Markup Language 
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 Appendix A: FMEA of the Platooning System 

                        After applying the recommended actions 
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RPN 

Image Streamer Each vehicle 
should get an 
image each 
10 
milliseconds  

No image 
captured 

Vehicle not 
able to follow 
the lane and 
get out of road 

10 
HW failure 

- 
3 

Initialisation 
test  

5 150 
When the 
initialization 
test detects it, 
do not run. 

          

10 

Camera 
communication 
failure 

- 
3 5 150           

10 
Camera driver 
failure 

- 
3 5 150           

10 

An attacker points 
to the cameras 
with a powerful 
light causing an 
inoperative 
camera during 
seconds. 

- 

3 

- 

10 300 

Check incoming 
values and 
restart the 
function 

          

Lane Detection Each vehicle 
should detect 
white lines 
on the road 
and calculate 
a optimums 
trajectory of 
10 points 

No trajectory 
defined 

Vehicle not 
able to follow 
the lanes and 
get out of road 

10 

Physical attack: 
Modification of 
the environment 
(road) with the 
aim of confusing 
the vehicles 

- 

3 

  

10 300 

- 

          

10 

Lines are not 
detected, or no 
correct lines 

Adjust the 
camera 
parameters 4 

Camera 
remote 

visualization 10 400 

Set a sensor to 
auto-adjust the 
Gain and           
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RPN 

Wrong 
trajectory 
defined 

10 

detected because 
of de quality of 
the image (bad 
Gain, Exposure 
and/or Focus) or 
not well-defined 
function 
parameter 
(gradient, 
intensity...)  

and 
function 
parameters 
before 
running the 
vehicle 

4 

- 

10 400 

Exposure 
parameters or 
if a trajectory is 
not detected 
the vehicle 
ignore wrong 
images 

          

10 

Physical attack: 
Modification of 
the environment 
(road) with the 
aim of confusing 
the vehicles 

- 

        

- 

          

Trajectory is 
not defined 
in the middle 
of the lane 

The vehicle will 
not follow the 
middle of lane 

7 

Lines are not 
detected, or no 
correct lines 
detected because 
of de quality of 
the image (bad 
Gain, Exposure 
and/or Focus) or 
not well-defined 
function 
parameter 
(gradient, 
intensity...)  

Adjust the 
camera 
parameters 
and 
function 
parameters 
before 
running the 
vehicle 

4 

- 

10 280 

Set a sensor to 
auto-adjust the 
Gain and 
Exposure 
parameters or 
if a trajectory is 
not detected 
the vehicle 
ignore wrong 
images 

          

Less than 10 
points are 
detected 

The vehicle will 
not detect the 
trajectory 
completely 
correct 

7 4 

- 

10 280           

Lateral control Each vehicle 
should be 
kept 

The position 
of the 

The vehicle gets 
out of the lane 

10 

HW failure or 
mechanical failure  - 

3 

Impossible 
to detect 

10 300 

- 
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RPN 

between the 
two lines 

servomotor 
is not correct 

Insufficient or 
Excessive 
lateral control 
adjustment, 
vehicle is not 
on the centre 
of the lane 10 

- 

3 10 300 

- 

          

The 
servomotor 
does not 
move 

The vehicle gets 
out of the lane 

10 

- 

3 10 300 

- 

          

Longitudinal 
control 

The vehicle 
shall drive to 
the 
established 
speed 

Loss of 
longitudinal 
control 

The vehicle 
does not 
respond to the 
establish speed, 
possible crash 
with other 
vehicles 

10 

Hardware failure 

- 

3 Impossible 
to detect 

10 300 

Modify the 
speed 
depending on 
distance sensor 
to maintain the 
most 
appropriate 
velocity and to 
avoid a collision 

          

Unintended 
acceleration 
or brake 

10 

- 

3 10 300           

Communication Each follower 
vehicle 
should be 
connected 
with the 
Leader via 
Wi-Fi and the 
Leader 
vehicle 
should send 
its speed 
each 10 
millisecond 

Connection 
lost 

No speed 
communication 
between 
vehicles, 
possible crash 

10 

Denied of Service 
attack (DoS) - 

5 

- 

10 500 

Check there is 
connection all 
time, if not 
restart the 
communication 

          

10 
• Poor Wi-Fi signal                    
• Hardware and 
physical 
infrastructure not 
optimal for data 
transfer, or 
corrupted or 
buggy 

- 
4 

- 
10 400           

Delay Followers do 
not set the 
current speed 
of the Leader 7 

- 

4 

- 

10 280 

Check there is a 
delay and 
restart the 
communication           

Wrong value The follower 
vehicles do not 
have the leader 
speed and 
could crash 

10 
- 

4 
- 

10 400 

Plausibility 
checks. 
Evaluate last 
data values and 
get the 
consistent 
value 

          

10 

A malicious 
attack. The vehicle 
in front is sending 
a malicious value  

- 

4 

- 

10 400           
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Item /Function Requirement 
Potential 

Failure Mode 

Potential 
Effect(s) of 

Failure  Se
ve

ri
ty

 

Potential Cause of 
Failure 

Current Design 

RPN 
Recommended 

Action 

Action Results 

Controls 
Prevention 

O
cc

u
rr

e
n

ce
 

Controls 
Detection 

D
e

te
ct

io
n

 

Actions Taken 

Se
ve

ri
ty

 

O
cc

u
rr

e
n

ce
 

D
e

te
ct

io
n

 

RPN 

Interferences Short period of 
loss of data 

8 

Some wireless 
devices are using 
the same 
frequency 

- 

4 

- 

10 320 

Check if there 
are 
interferences 
and restart if it 
is needed           
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 Appendix B: Protection Profile for a Safety and 
Security Platooning Management Module 

A base Protection Profile (PP) for a Safety and Security Platooning Management Module 
(SafSecPMM) is described in detail in the document SPARTA-D5.2-TEC-R-M24_AppendixB.  
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