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Executive Summary  

Deliverable 5.3, CAPE Demonstrators Prototypes, is the third deliverable of the CAPE program. 
CAPE stands for Continuous assessment in polymorphous environments. This scientific activity of 
the SPARTA project addresses the issue of assessing cybersecurity performance of two 
environments, addressing security and safety co-design on the one hand, complex software systems 
of systems on the other hand. 

This deliverable is the continuation of D5.1, contributing with D5.2 (Demonstrators Prototypes) to the 
documentation of the first design-implement-integrate cycle of the CAPE program, providing a full 
picture of the scientific contributions of the CAPE program. D5.3 should be read after D5.2, as it 
describes the integrated part of the cycle while D5.2 describes the design part.  

The first contribution of the deliverable (chapter 3) describes the implementation of each of the 18 
CAPE tools. For each of the tools, the description includes the tool’s technical characteristics, the 
procedure for using the tool in test environments, and the results of tests carried out on each tool. 
The documentation of the internals and the test results is particularly important for CAPE, as it 
showcases each tool’s capabilities. 

The second contribution of the deliverable describes the implementation of the tools on the two 
testbeds representing the two use cases, the “Connected and Cooperative Car Cybersecurity” 
(chapter 4) and “Complex System Assessment including large software and open source 
environments, targeting e-Government services” (chapter 5). These two chapters are focusing on 
the application of the tools in the context of each vertical. They lay out the specificities of each use 
case, cyber-physical systems on the one hand, complex systems on the other hand, and explain in 
detail the application and contribution of the CAPE tools on the vertical.  

Chapter 6 provides a gathering of these two use-cases with a specific focus on evaluation. This 
contribution from task 5.4 is still limited in scope in this deliverable but will form the core of the 
contribution presented in deliverable D5.4.  

The third contribution of the deliverable describes the assessment scenarios that will be deployed in 
the two use cases, the “Connected and Cooperative Car Cybersecurity” (chapter 6) and “Complex 
System Assessment including large software and open source environments, targeting e-
Government services” (chapter 7). They describe the concrete usage scenarios and attacks that can 
be carried out in the prototype testbeds, with the aim to describe an assessment pipeline formed by 
the association of CAPE tools. As a result, what is showcased in the context of each use case is a 
complete toolchain for the cybersecurity (and safety in use case 1) assessment of each use case. 

This deliverable is a concrete materialization of cybersecurity and safety assessment and validation 
in two concrete examples. This prepares the upcoming second cycle of design-implement-validate 
for the tools in CAPE, as well as the work on certification profiles and cybersecurity certification 
started earlier in CAPE, in association with WP11. 

In terms of governance, the deliverable provides an example of how CAPE partners have 
successfully been able to collaborate towards integrated research and validation workflow. This is 
particularly important as evaluation and validation is the conclusion and an extremely important part 
of the research. It often is extremely expensive for individual researchers. The mutual exchange and 
joint elaboration of validation tools and processes is thus an important lessons-learned from CAPE. 
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Chapter 1 Introduction 

Deliverable 5.3, Demonstrators prototypes, is the third deliverable of the CAPE program.  

CAPE is listed in the description of action as Work Package 5 (WP5). It is one of the four scientific 
programmes of the SPARTA project selected during the project construction and being executed 
during the project lifetime to demonstrate concretely how research governance activities are handled 
within SPARTA. CAPE stands for Continuous Assessment in Polymorphous Environments. It 
acknowledges the issue of assessing cybersecurity performance of two environments, addressing 
security and safety co-design on the one hand, complex software systems of systems on the other 
hand. 

This deliverable provides the prototypes coming out of T5.4. They include contributions on 
integration mechanisms coming out of the four tasks in the CAPE program. 

 T5.1 - Assessment procedures and tools: Provide tools and methods for continuous 
assessment and certification. 

 T5.2 - Convergence of security and safety: Study techniques and specifications for the 
integration of security and safety 

 T5.3 - Risk discovery, assessment and management for complex systems of systems: 
Address security requirements on SoS using modern software engineering methods 

 T5.4 - Integration on demonstration cases and validation: Demonstrate that tools and 
techniques described in T5.1, T5.2 and T5.3 in the CAPE verticals could be evaluable with 
the purpose of a future unified certification scheme. 

The outcome of the WP5 tasks takes a generic continuous assessment framework based on the V-
Model software development process. Task 5.1 focuses on the framework specification, 
describing how the various tools that compose the framework can contribute to the continuous 
assessment process. Task 5.2 proposes techniques for integrating security and safety on the 
connected car vertical such as safety-security co-analysis techniques, requirements engineering, 
modelling and implementation, safety and security co-verification and validation techniques, etc. 
Task 5.3 proposes a set of tools that can be used by software development organizations for 
compliance activities by detecting the presence of known security vulnerabilities in 3rd party 
software and addressing supply chain attacks. Task 5.4 will demonstrate the continuous 
assessment framework in the connected car and e-government verticals by verifying the 
evaluability of the two verticals. 

 

Also, as stated in D5.1 [1], the vertical related to financial services will not be further pursued. 
Originally meant to demonstrate assessment tools developed in the context of CAPE task 5.3, further 
investigation revealed that those tools are largely independent of a given industry or vertical and 
their specific security and certification requirements. At high-level, those tools aim at the detection 
and prevention of known and unknown security vulnerabilities in own and third-party code as well as 
the detection of so-called supply chain attacks. Those objectives, however, apply to virtually every 
industry and use-case. Moreover, it turned out that many tools developed by CAPE partners target 
specific technologies, e.g., programming languages and devices. The majority of those technologies 
are not present in the software application part of the financial services use case, thus, cannot be 
demoed in this context. For those reasons, it was decided to demonstrate tools developed as part of 
CAPE task 5.3 at the example of the other use-cases, which will also allow to focus CAPE partners’ 
efforts. 
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1.1 Structure of the document 

This deliverable is organized as follows: 

 

 Chapter 1 is the current section presenting the objectives and structure of the document. 

 Chapter 2 presents a list of all CAPE Tools also indicating the partner, task and Vertical of 
belonging and its V-model phase. 

 Chapter 3 analyses all the prototypes included in the context of T5.1 using methods for 
verifying the software requirements defined in D5.1 and D5.2. 

 Chapter 4 discusses the roadmap phases for Task 5.2 activities belonging to the context of 
the D5.3. 

 Chapter 5 focuses on Synergy and integration of individual contributions in the context of 
T5.3. 

 Chapter 6 discusses the evaluation concepts and contributions on integration mechanisms 
coming out of the three other tasks in the context of T5.4. 

 Chapter 7 illustrates all the different scenarios for Vertical 1 demonstrating the development 
phases previously discussed in T5.2. 

 Chapter 8 illustrates all the different scenarios for Vertical 2 demonstrating the prototypes 
and tools discussed in the previous tasks. 

 Chapter 9 discusses the future roadmap for CAPE. 

 Chapter 10  presents the summary and conclusions of the report. 
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Chapter 2 CAPE Tools 

The next table shows a list of the CAPE tools described in D5.1 and D5.2. It also shows their 
involvement in each of the two Verticals and in which task they belong to. 

Tool Partner V-model Phase Task Scenario 

Approver (RAA) CINI Development process T5.3 
e-Government 

(Vertical 2) 

AutoFOCUS3 (AF3) FTS Development process; All phases T5.2 
Platooning 
(Vertical 1) 

Buildwatch (BW) UBO Application development T5.3 
e-Government 

(Vertical 2) 

Frama-C (FC) CEA Development, Unit testing T5.3 
Platooning 
(Vertical 1) 

Legitimate Traffic 
Generation System 
(LTGen)  

IMT Operations T5.1 Stand-alone 

Logic Bomb Detection 
(TSOpen) 

UniLu 
Design (from unit testing to 

acceptance testing) 
T5.3 

e-Government 
(Vertical 2) 

Maude (MAU) FTS Verification and Validation T5.2 
Platooning 
(Vertical 1) 

NeSSoS Risk assessment 
tool (RA) 

CNR 
Risk Management process at the 

global level 
T5.1 

e-Government 
(Vertical 2) 

OpenCert (OC) TEC 
Safety Goals definition; Safety 

Goals validation¸ Safety Analysis, 
Trade- Off Analysis, Assessment 

T5.2 
Platooning 
(Vertical 1) 

Project KB (KB) SAP All phases T5.3 
e-Government 

(Vertical 2) 

Risk assessment for cyber-
physical interconnected 
infrastructures (MRA) 

NCSR Requirements analysis T5.1 Stand-alone 

Sabotage (SB) TEC 
Functional and technical Safety 
concept design; Functional and 

technical Safety concept verification 
T5.2 

Platooning 
(Vertical 1) 

SafeCommit (SF) UniLu 
Software development (of the 

libraries used by the application) 
T5.3 

Platooning 
(Vertical 1) 

SideChannelDefuse (FS) CNIT Deployment T5.1 Stand-alone 

Steady (VA) SAP 
Design (from component design to 

deployment) and Operations 
T5.3 

e-Government 
(Vertical 2) 

SysML- Sec (TTool) IMT All phases T5.2 
Platooning 
(Vertical 1) 

VaCSInE (VCS) CETIC Operations T5.1 
Platooning 
(Vertical 1) 

Visual investigation of 
security information (VI) 

UKON 
Security Analysis, Verification and 

Validation 
T5.3 

e-Government 

(Vertical 2) 

Table 1: CAPE Tools  
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Chapter 3 Prototypes for Assessment procedures 
and tools (T5.1) 

3.1 Introduction 

This task addresses the aspects related to assessment automation, augmenting the assessment 
toolbox to support pre-assessment by users, as well as incremental assessment and continuous 
monitoring. Task 5.1 aims at proposing a framework for automated cybersecurity assessment. The 
framework is based on the V-Model lifecycle for software/hardware development, safety and security 
and aligns certification activities to the various steps of the model. Figure 1 matches the various tools 
of the framework with the steps of the security engineering process. The framework is applied to the 
two CAPE verticals using tools prototypes and will be demonstrated in D5.4.  

 

Figure 1: V-Model associated with the tools of the framework 

 

The roadmap for the final version of the framework tools prototypes will be guided by the 
demonstration scenarios on the verticals. It will follow a similar methodology as for the early 
prototypes, with a focus on integration in the verticals demonstrations: 

 M25-M26: refined design of the tools in order to reach the final version of the prototypes 

 M27-M28: implementation of the final prototype version of the tools 

 M25-M35: verification and validation of the updated prototypes 

 M29-M35: integration and evaluation of the framework tools on the various demonstration 
scenarios 

 

Figure 2: T5.1 Roadmap 
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3.2 Prototypes Analysis 

In this chapter, we will analyse all the prototypes associated with each tool describing its: 

 Description and goal: 
o Objectives and summary description of the prototype. 

 Technical characteristics: 
o How the prototype was developed explaining its technical characteristics, security 

functionalities, components, and constraints. 

 Experimental test activities: 
o Show the experimental tests and test environments. 

 Results: 
o Results from the tests (when they can be applied at this stage). 

These items will be used to verify the software requirements that are intended to be implemented in 
the different design and development cycles defined in D5.1 [1] and D5.2 [2]. The demonstration 
upon their completion will be shown in D5.4 [3]. Some tools will also present a complete report for 
their testing results in the upcoming D5.4. 

 

 Approver (RAA) - CINI 

The high-level development roadmap is to implement the software requirements SR1.1 and S1.2 
within 2020-21 such that it can be demonstrated at the project end, as explained in Table 2. Table 2 

SR id Description Verification method Demonstration scenario 

SR1.1 
Submit the app source to the 
DevSecOps plugin 

Check if scans succeed and 
the tool successfully report the 
security vulnerabilities to the 
issue tracker 

e-Government (Vertical 2) 

SR1.2 Scan a mobile app package 
Check if scans succeed and 
findings are correct 

e-Government (Vertical 2) 

Table 2: Approver - Demo scenarios and verification methods 

 Description and goal 

As documented in D5.1, Approver is an automatic toolkit for the in-depth, fully automatic security 
analysis of mobile applications. Approver automatically detects, evaluates and provides 
comprehensive reports explaining the security risks hidden in the mobile applications.  

Approver will be used in the Vertical 2 scenarios to i) Detect security vulnerabilities in the IDP app 
package ii) Detect security vulnerabilities in the CIE ID Android app during the development phase 
and suggest security mitigations. 

 Technical characteristics  

At a high-level, Approver is composed of a set of modules for both Static Analysis (SAST) and 
dynamic analysis (DAST). Each module, developed as a microservice using Docker technology, 
enables a different security analysis and is managed by an orchestration layer. Besides, each 
module exposes a set of RESTful APIs. The modules for SAST are in charge of analyzing the 
application package according to its content. Examples of implemented SAST analysis include 
vulnerability analysis, permission analysis, and string analysis. Instead, the DAST modules aim to 
install the application package in a testing environment and evaluate the application’s security during 
the execution. Examples of DAST analysis include network analysis, API monitoring, and filesystem 
monitoring. 
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Finally, Approver provides a web front-end that allows to: 

View the detailed results of each application analyzed. 

1. Download all the artifacts produced during the analysis. 

2. Download a security report which contains all the identified issue. 

The analyses carried out by APPROVER are coordinated by a central module, called Orchestrator, 
that manages the flow of requests between the various modules during the analysis of applications. 
The management layer is completed by the Authenticator service, which controls the authentication 
between the different modules, and the Account Management service, which manages the accounts 
enabled to use the platform. 

From a technical point of view, APPROVER modules are mainly developed using Java (Spring) and 
Python (Flask). Still, the modular architecture allows the dynamic inclusion of new modules 
regardless of the language used MySQL (for modules developed in Java) and MongoDB (for 
modules programmed in Python) are mainly used for data persistence and Amazon S3 for the 
persistence of files and artifacts generated by the analysis phase. To ensure the highest security 
level, all communication between the various modules inside APPROVER and between the 
APPROVER modules and external services takes place exclusively via HTTPS. 

Constraint and limitations: APPROVER can be used as a service (SaaS) or installed on-premise. 
In the case of an on-premise solution, the tool needs to be installed in a UNIX-like environment that 
supports nested-virtualization technologies and the docker environment. The suggested minimum 
hardware configuration comprises three nodes with quad-core processors, 16 GB of RAM each, and 
100GB of storage. 

 Experimental test activities 

We described the experimental test activities that will be used to evaluate the effectiveness of the 
APPROVER tool. 

Submit the app source to the DevSecOps plugin 

Input: The source code of an Android application package 

Output: A list of security vulnerabilities in the issue tracker of the DevSecOps pipeline 

Test Procedure 

The developer is expected to push a commit on the code repository that contains the application 
source and is connected to the DevSecOps pipeline. The Approver plugin is expected to build the 
app package and to send it to the analysis backend. 

After the analysis is completed, the developer can check in the issue tracker a list of issues that 
represent the security vulnerabilities contained in the app. At the same time, the Security Analyst 
can access the same report on the Approver web interface. 

Scan a mobile app package 

Input: An Android application package (APK). 

Output: A per-app security report. 

Test Procedure 

To test the new SAST vulnerability analysis module, the Security Analyst is expected to submit an 
Android application package through the Approver web interface. The new SAST module is expected 
to analyze the binaries of the pp and send the result to the backend collector to generate the security 
report. 

After the analysis is completed, the Security Analyst can access the security report on the Approver 
frontend and download a PDF version of the report. 
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 Results 

We describe here a brief overview of the result of the CIE ID Android app. The detailed results 
regarding the IDP Android app's experimental evaluation in the context of Vertical 2 will be described 
in the appropriate deliverable (D5.4). 

 

Submit the app source to the DevSecOps plugin 

In this evaluation scenario, a developer has sent a new commit request to the GitLab repository 
containing the mobile app's code. At this stage, after the building process, GitLab triggers the 
Approver CI/CD plugin (see Figure 3) that will send the application to the Approver backend. Once 
the process has been completed, APPROVER successfully detected 13 different vulnerabilities and 
opened 13 different security issues (see Figure 4) in the GitLab tracking system containing the 
description of the vulnerability, its severity, and a description of possible technical remediation. 

 

Scan a mobile app package 

To test this scenario, a Security Analyst accessed the APPROVER webpage and submitted the 
Android application package for the analysis. The tool successfully analyzed the application package 
and showed the results in Figure 5. Also, the tool allowed the download of a PDF report. 

 

 

Figure 3: CI/CD plugin - app submission process 
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Figure 4: CI/CD plugin - security issues 

 

 

Figure 5: Approver - Analysis Dashboard 
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 AutoFOCUS3 (AF3) – FTS 

SR id Description Verification method Demonstration scenario 

C-ACC Safety 
and Security Co-

Validation 

We will use the machinery 

developed to evaluate the 

safety and security of the 

architectures used for 

Coordinated Adaptive 

Cruise Control 

Carry out simulations and 

formal verification using 

Maude. 

Connected Car (Vertical 1) 

TARA and HARA 

modelling 

We use models in Goal 

Structure Notation (GSN) 

and attack defense trees 

for modelling, respectively,  

the safety and security 

analysis of the platooning 

scenario 

Validation of safety and 

security analysis. 
Connected Car (Vertical 1) 

Table 3: AutoFOCUS3 - Demo scenarios and verification methods 

 

 Description and goal 

As documented in D5.2, the main goal of the development is to enable the existing Model-Based 

Engineering too AutoFOCUS3 to support the following features: 

 Safety and Security Co-Analysis: The implemented extension of AutoFOCUS3 supports 
the modelling of safety cases using Goal Structure Notation (GSN) with quantitative 
evaluation. Moreover, we extended AutoFOCUS3 to enable the modelling of security 
arguments based on Attack Defense Tree. Finally, we have implemented algorithms for 
extracting Attack Defense Trees from GSN models. 

 Modelling of Platooning Scenario: We have implemented models that enable the 
implementation and validation of safety and security of vehicle platooning scenarios using 
simulation and formal verification methodologies 

 Technical characteristics  

We have implemented the AutoFOCUS3 prototype so to achieve the goals described above 

 AutoFOCUS security plugin has been implemented in JAVA with the modelling elements 

necessary for the specification of Goal Structure Notation Models with Quantitative 

Evaluation and the modelling of Attack Defense Trees; 

 Modelling Vehicle Platooning: We have implemented in AutoFOCUS3 safety and security 

analysis for the Connected Car scenario. These have been documented in D5.1. 

 Modelling of Vehicle Platooning Cooperative Adaptive Cruise Control (CACC): We have 

implemented models in AutoFOCUS3 algorithms used for Cooperative Adaptive Cruise 

Control as well as security countermeasures based on plausibility checks, as described in 

the D5.2 (Protection Profile). 

The tools and models implemented can only be used to justify scenarios where only the vehicle 
speeds are controlled and protected. 
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 Experimental test activities 

We have evaluated our machinery by applying it to the process described in D5.1 to develop safe 
and secure system. Our development has been successfully used for the co-analysis of vehicle 
platooning supporting the development of requirements.  

Moreover, as we described in D5.2, we have applied the models developed with CACC for Vertical 
1 (Connected Cars). As we detail in this document, our models are being deployed in the rovers 
available at FTS and TEC. Finally, we have also used our machinery together with the tool Maude 
(also described in this document) for the verification of platooning scenarios. 

 Results 

Our key results are described in this Document under the Connected Car scenario. In summary, we 
have successfully generated C code from our models for the CACC and the plausibility checks, and 
this generated code has been into the FTS rovers. Moreover, our integration with formal verification 
tools have been used to discover 3 new attack scenarios, also described within this document. 

 

 Buildwatch (BW) - UBO 

SR id Description Verification method Demonstration 
scenario 

SR1 Ingest a common build 

dependency 

Check that a report comprises all cyber 

observable objects created or modified by the 

build process of the software 

 e-Government 

(Vertical 2) 

SR2 Compute the difference 

between two versions 

Two Versions are built in the Buildwatch 

Sandbox two times each.  The differences 

are computed between all four reports.  The 

computation yields no result between builds 

of the same version but computes the same 

differences on reports of different versions. 

 e-Government 

(Vertical 2) 

Table 4: Buildwatch - Demo scenarios and verification methods 

 

 Description and goal 

Buildwatch can monitor the creation and manipulation of forensic artifacts, e.g. File created or read 
and network connections established, during the software build process. These may be monitored 
on each update of a dependency of a software project and subsequently compared. If changes 
between the updates occur, the dependency behavior may be changed dramatically, possibly even 
maliciously. Buildwatch highlights these changes for manual review. 

In software development environments within a critical use case like identity management, the 
consequences of maliciously behaving software may be disastrous. However, software and 
algorithms in this field are on active development by a multitude of cooperating parties. This complex 
and rapidly changing environment renders this field especially susceptible to software supply chain 
attacks. 

In order to prevent these attacks, dependencies have to be reviewed carefully whenever changes 
are introduced. However, reviewing all changes of every dependency is not feasible. Buildwatch 
aims to ease the workload by first transposing source code changes to changes made on the host 
machine during the build of the dependency and further ease assessment of these changes by 
comparing the different changesets and highlight their differences. 
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SAML IdP which is developed by CINI within SPARTA leverages Shibboleth, a web-based single 

sign-on log-in system. Shibboleth is developed as open-source under the Apache 2 license. It 
comprises several components that ease authentication and authorization of users and thus it handles 
sensitive data. Given the complexity and criticality of this project makes it a potential target for attacks. 

This test series demonstrates Buildwatch’s capabilities in a complex real-life scenario. 

 Technical characteristics  

Based on the descriptions in “D5.2 - Demonstrators specifications”, a custom tool for submission is 
implemented.  

While the main use case for Buildwatch is the monitor of all dependencies in one project, it can 
detect manipulation of the host system on the monitored process, commonly dependency 
installation, build, or test. If the malicious behaviour of the dependency is only exposed during 
runtime of the dependent software (sometimes only when specific circumstances are met), it will not 
be detectable by monitoring the development processes. 

Naturally, Buildwatch is only able to detect the change of behaviour. There are attacks on the supply 
chain that do not fabricate such change, e.g., typo squatting attacks on the dependency definition. 
Dependencies that were injected into the dependency repository to resemble a benign package will 
not be able to be detected using Buildwatch. 

Limitations: No protection against typo-squatting attacks. Highly targeted/sophisticated attacks that 
leverage evasion techniques might not trigger malicious behaviour during analysis (the general 
problem of dynamic analysis). 

 Experimental test activities 

The repository of Shibboleth is submitted to the sandbox for every commit and the build process is 
executed in the sandboxed environment. Buildwatch currently only supports Linux-based build 
environments. Forensic artifacts are captured by interpretation of the system calls to the kernel using 

the systap interface. Patterns of similar forensic artifacts are learned and filtered. The remaining 

forensic artifacts are presented to the developer. Statistics on the review requirements by the commit 
and by version change will be provided to estimate the required efforts during development. 

 Results 

A first preliminary study revealed the separability of benign and suspicious forensic artefacts. A 
malicious version of a software package tends to cause more forensic artefacts and of different 
types. It was observed that malicious code was often contained in newly added files that are 
executed by previously unseen processes. Most often this causes additional network connections 
that are unusual in relation to benign versions of the same package. Further results of Buildwatch 
based on the large scale analysis of Shibboleth will be provided on D5.4. 

 

 Frama-C (FC) - CEA 

SR id Description Verification method Demonstration scenario 

 
SR1.1 

CI-based configuration and 

use cases 

Check applicability and us- ability 

on a set of existing code bases 

Set of open-source code 

bases 
 

SR1.2 
Standardized output for- 

mat (SARIF) 

Feed output to other tools 

compatible with SARIF 

Integration in the CI 

pipeline produced in T5.3 

 
SR2 

Audit-mode outputs and 

validation as inputs 

Modify outputs and re-feed them 

as inputs to check conformance 

Set of open-source code 

bases 

Table 5: Frama-C - Demo scenarios and verification methods 

https://en.wikipedia.org/wiki/Single_sign-on
https://en.wikipedia.org/wiki/Single_sign-on
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 Description and goal 

The main goal of the development is to integrate Frama-C in a CD/CI pipeline, allowing the static 
analysis to take place after each commit, providing faster feedback and without requiring users to 
have the tool installed in their own machine. 

The amount and complexity of the result data require a structured format to be able to take into 
account as much information as possible. In order to ensure better compatibility with other tools, and 
future integration into the development process, the use of the standardized SARIF format enables 
integration with other tools, either viewer (for IDE-based result visualization, such as with VS Code’s 
Sarif Viewer plug-in) or more complex frameworks, such as Autofocus. 

A secondary goal, not directly related to build integration, is the creation of an audit mode for Frama-
C. It has a dual purpose: to help developers know the implicit assumptions in their analyses, and to 
aid them in giving the evidence so that external users can more easily re-run the analysis and check 
that it was properly setup. 

 Technical characteristics  

The CI-based integration was developed by creating Docker images of Frama-C which incorporate 
all of the required plug-ins, ready for analysis. These images are compatible with pipeline integration 
mechanisms such as Github Action and Gitlab Runners. The Docker images allow running Frama-
C automatically and producing a SARIF report after each change to the code. However, the initial 
configuration of analysis still might require local usage of Frama-C for faster feedback. Security 
considerations are the same as for integrating Docker images in a build pipeline; for instance, users 
with non-public code can host their own Gitlab instance, download the Docker images, and run them 
inside their network. Since the Dockerfiles used to produce the images are also made available, the 
user can rebuild their own private Docker images for added security. The main limitation of the usage 
of Frama-C in a CD/CI pipeline is the initial setup, which greatly benefits from immediate user 
feedback, and thus should be performed locally. 

For SARIF support, Frama-C uses tools available in the OCaml language, namely ppx_deriving, 
which allow semi-automated production of code to import/export documents in the JSON format. 
Updating support for newer SARIF versions still requires some manual steps. Concerning limitations, 
the SARIF report contains most but not all of the information present in an analysis. Its output allows 
mapping the alarms to the original code. However, some aspects of the Frama-C analysis cannot 
be directly captured by SARIF, so advanced usage of the tool benefits from direct usage of the 
Frama-C GUI, which is not available remotely via the CI pipeline. 

For the audit mode, the use of a JSON file, which serves both to present results and as structured 
input for validation, enables easy configuration and inspection without the need for specialized tools. 
The audit mode provides feedback information about the parametrization of analysis via Frama-C 
itself: due to its large set of tunable options, an oblivious or malicious user could set it up in a way 
that some assumptions about the analysis could go unnoticed. By providing specific feedback 
towards code and analysis reviewers, the audit mode prevents such situations from happening. 

 Experimental test activities 

Frama-C's public open-source case studies Gitlab repository (https://git.frama-c.com/pub/open-
source-case-studies) provides a set of varied C code bases that validate the proposed CI pipeline 
on small and large samples, both simple and complex. A similar setup using Github allows the 
validation of the Frama-C Github Action. These runs produce sample output with alarms and artifacts 
with the SARIF output. They allow checking that the Docker image is working and that the SARIF 
output is useful. For Gitlab, Frama-C uses its own public instance with a set of use cases serving as 
an example. The setup of an example Github repository using the Frama-C Github Action ensures 
that the audit mode works, and that users can refer to it when trying it themselves. 

https://git.frama-c.com/pub/open-source-case-studies
https://git.frama-c.com/pub/open-source-case-studies
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For the audit mode, non-regression testing is available in the Frama-C platform itself, via an oracle 
and a test that the input does perform the required checks. Another important test is external 
validation by users in the role of auditors. A review of the analysis documentation has been 
performed to ensure such users have clear information concerning the implicit assumptions and can 
thus check that the information provided by the audit mode is sufficient to prevent malicious users 
from bypassing the checks and reports. An audit being an ultimately human analysis (since it has 
not been entirely formalized), it is impractical to devise purely mechanical means to prevent all kinds 
of “cheating”. Manual testing remains thus necessary for this use case. 

 Results 

For SR1.1, usage of both Github and Gitlab CI tools allowed the identification of common features 

and improvement of the Docker images, to ensure they work with both environments without 

requiring adaptations. They also allowed refining the SARIF output to provide more useful 

information and filtering of excessive data. 

For SR1.2, the SARIF output could be successfully validated using Sarif-Multitool and imported into 

VS Code to verify that at least the basic information provided by the report (location of alarms, 

warning messages, etc.) is relevant and meeting the expectation of consumer tools. Testing also 

revealed that several sources of non-determinism (e.g., file paths, timestamps, tool versions, etc.) 

should be made optional in the report, as recommended by the SARIF standard itself, and to facilitate 

regression testing. Such features provide a more usable output for end-users. 

For SR2, the development of the audit mode enabled the identification and fixing of some possible 

misconfigurations of parameters, as well as an update of the documentation to take new scenarios 

into account. It showed the importance of providing a machine-validated output to prevent it from 

becoming stale and desynchronized with respect to future developments. It also showed that the 

human element should be taken into account: the guarantees offered by the tool must be well 

understood in order to use it efficiently. 

 

 Legitimate Traffic Generation system  (LTGen) - IMT 

SR id Description Verification method Demonstration scenario 

SR1.1 Metrics to measure real- 

ism 

Check the metrics against 

real traffic traces 

Test set of real traffic 

traces 

SR1.2 Anonymization functions Assess the  privacy of 

processed traces 
Privacy impact 
assessment (PIA) 

SR2.1 Metrics to measure mal- 

ice 

Check the potential 

damage to a target system 

Set of target systems 

SR2.2 Mutation functions Measure mutation ratio State-of-the-art mutation 

metrics 

Table 6: Legitimate Traffic Generation System - Demo scenarios and verification methods 

 

 Description and goal 

As indicated in D5.2, LTGen is a stand-alone component that neither interacts with other components 
nor integrate into the CI/CD pipeline. It does however, aims at contributing to the evaluation of 
common cybersecurity tools such as intrusion detection systems (IDS) or security information and 
event management systems (SIEM) as introduced in D5.1. This is achieved by the generation of 
legitimate traffic based on the input of previously observed real-life traffic. This enables the 
characterisation of potential false positives, from previously unseen legitimate samples or corner 
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cases, and help populate datasets which are hard to come by (mainly for privacy reasons), and often 
scarce. 

Future works involve the exploration of false negatives by the generation of malicious traffic this time. 
In particular, the new tool aims at generating mutated traffic from malicious samples. The mutated 
traffic is crafted to look close to legitimate traffic, in order to trigger misclassification. 

Both aspects should contribute to the data-driven evaluation of detection tools.  

Due to unforeseen hiring difficulties, the development has been stalled and this deliverable can only 
report on SR1.1. The remainder of SRs will be implemented and demonstrated in D5.4. 

 Technical characteristics  

The initial LTGen prototype is inspired by the DARPA project where sequences of actions were 
designed to represent typical human-initiated network activities (web browsing, email 
communication, etc.). LTGen thus relies on the generation of flows from a number of protocols to 
emulate these activities, including HTTP(S), IMAP, SMTP, FTP and SMB. These flows are generated 
by automated agents running real applications, generating additional flows (DNS, ARP, NetBios, 
etc.).  

On our physical infrastructure (a cluster of fully-meshed servers), we deploy an Openstack instance 
to host a 9-virtual machine topology, as shown in Figure 6. The topology is divided in three subnets, 
namely the DMZ, the Internal network, and the Office network. The mentioned FTP and Mail servers 
are instances of widespread open-source packages (e.g., postfix, vsftp, etc.) and feature 100 users 
each. HTTP connections are balanced over two Client machines and directed to the Intranet server 
in the Internal subnet and the remote Live stream server. The Intranet server is emulated by 
combining two pieces of software, namely INetSim1 and web.py2. This allows to receive requests to 
arbitrary URLs and respond with a custom page containing a number of characters varying according 
to a custom distribution (e.g., a Gaussian). This enables the generation of a variety of traffic with a 
wide range of packet sizes.  The Live stream server handles video streaming activities from the 
Client machines by providing videos from the DASH dataset3. 

 

 

Figure 6: Network architecture hosted on the LTGen’s Openstack infrastructure 

 

                                                

1 Internet Services Simulation Suite, available at: https://www.inetsim.org 

2 web.py Python web framework, available at: http://webpy.org/ 

3 ITEC – Dynamic Adaptive Streaming over HTTP datasets: https://dash.itec.aau.at/dash-dataset/ 
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Details on the other services present in the LTGen infrastructure are shown in Table 7. 

Machine Operating 
System 

Capability Number of 
instances 

Services Software 

Firewall CentOS Server 
5.6 

2G RAM 
1 VCPU 

1 NAT iptables 

Mail 
server 

Ubuntu Server 
16.04 LTS 

2G RAM 
1 VCPU 

1 email Postfix 
Dovecot 
OpenSSL 

HTTP 
server 

Ubuntu Server 
16.04 LTS 

2G RAM 
1 VCPU 

1 HTTP 
DNS 

INetSim 
web.py 

FTP 
server 

Ubuntu Server 
16.04 LTS 

2G RAM 
1 VCPU 

1 FTP vsftp 3.0.3 

Client Ubuntu Server 
16.04 LTS 

2G RAM 
1 VCPU 

5   

Table 7: Services in the LTGen infrastructure 

 

 Experimental test activities 

The objective of the experimental test activity is to evaluate the accuracy of LTGen in generating 
traffic that contains pre-defined characteristics (extracted from real traffic). As the traffic of reference, 
we chose a dataset from MAWILab4, a well-known public traffic database. Usually, MAWILab collects 
15-minute traces daily, but we randomly selected three traces from the 2017 “Day in the Life of the 
Internet” (DITL) project5. We extracted the following characteristics:  

 Average throughput 

 Volume distributions for 4 selected protocols (HTTP(S), IMAP, SMTP, FTP) 

These characteristics are fed to LTGen that will generate the protocol agents’ configuration for traffic 
generation. We conducted measurements at two levels: 

 Aggregate level: we measure the errors in the generated traffic, i.e., deviations from the traffic 
of reference, with respect to the above-mentioned metrics; 

 Flow level: we investigate further the distributions in terms of TCP session start times and 
packet size distributions between the generated traffic and the traffic of reference.  

                                                

4 MAWILab dataset, available at: http://www.fukuda-lab.org/mawilab/data.html 

5 MAWILab – A Day in the Life of the Internet, available at: http://mawi.wide.ad.jp/mawi/ditl/ditl2017/ 
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 Results 

 

Figure 7: LTGen’s accuracy in generating traffic close to MAWILab DITL 2017 

 

Figure 7 illustrates the results of the traffic generated by LTGen in the effort of reproducing the 
characteristics from the traffic of reference, i.e., at aggregate level. Each data point represents the 
mean of 10 experimental runs (AT stands for average throughput). Overall, the generated traffic and 
the traffic of reference are relatively close to each other in terms of the respective volumes of each 
protocol, for all three test traces. Regarding the HTTP(S) protocol, the difference in generating 
1.303GB of traffic is of 87.7MB, in the first test. The other two tests yield better results with less than 
20MB difference for both cases. For other protocols, although they are smaller in volume, the biggest 
difference observed is 2.58MB, 1.86MB and 0.25MB for the IMAP protocol in Test 1, the SMTP 
protocol in Test 2 and the FTP protocol in Test 1, respectively. Differences for minority protocols are 
relatively bigger as for such small volumes of traffic, the traffic generation agent needs a relatively 
small number of activities to produce. Hence, the random subset of activities may overflow the upper 
bound of expected traffic. In terms of throughput, the flows generated by LTGen are generally close 
to the reference ones, with the biggest error occurring in the first test (0.1MB/s difference, 
corresponding to a 6.8% error). 

 

 

Figure 8: TCP session start time distributions of MAWILab and LTGen traffic 
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Figure 9: Packet size distributions of MAWILab and LTGen traffic 

 

Regarding the flow level measurements, Figure 8 shows that the TCP sessions are generated at 
random in both MAWILab and LTGen traffic in all three tests. Figure 9 illustrates the cumulative 
distribution functions of the packet sizes for both traffic in all three tests. The results demonstrate a 
similar trend in the distribution of packet sizes but are not completely accurate. Since these 
characteristics are intrinsic and not taken as inputs for LTGen traffic generation, higher error rates 
are expected.  

 

 Logic Bomb Detection (TSOpen) - UNILU 

SR id Description Verification method Demonstration scenario 

SR1 Standalone command 

line tool 

Check if the tool works 

properly with right 

dependencies 

Use the tool with the 

com- mand line 

SR2 Trigger database Check if the database 

contains correct triggers 

Connect to the database 

SR3 Precise data flow tracking Manually check reported 

data flow paths on sample 

data 

Use a benchmark 

 

Table 8: TSOpen - Logic Bomb Detection - Demo scenarios and verification methods 

 

 Description and goal 

TSOpen is a static analysis tool that is able to detect logic bombs in Android applications. Logic 
bombs are mechanisms used by malicious apps to evade detection techniques. Typically, an 
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attacker uses a logic bomb to trigger the malicious code only under certain chosen circumstances 
(e.g., only at a given date) to avoid being detected by the analysis. 

The tool can be run by security analysts or directly on the marketplace side. Once the results are 
available, the analyst can take a decision whether the application should be deployed in a 
marketplace or not. It can be run over existing applications that could be removed from the 
marketplace if a logic bomb happens to be found. 

 Technical characteristics  

TSOpen is developed in Java using existing static analysis framework for Java and Android 
applications (Soot and Flowdroid) from the state-of-the-art in software engineering, 

Those provide the analyst with a precise model of the Android lifecycle and call-backs on which the 
analyst can run its proper algorithms. 

TSOpen combines symbolic execution, block predicate recovery, path predicate recovery, path 
predicate classification and control dependency to statically detect logic bombs. The tool output the 
result of the analysis, whether it found a logic bomb or not. In case it finds one, it gives information 
about its location in the code (class, method, statement, etc.) in order the analyst to manually verify 
if it is a true positive. 

 

Figure 10: Technical characteristics of TSOpen 

 

The main security item lies in the way conditions are defined as sensitive, here if a variable 
representing a comparison with at least a TIME, LOCATION or SMS component is found. Then the 
blocks guarded by the condition are analysed to find at least one method call to a sensitive API. 

TSOpen currently faces several limitations such as using non-polynomial algorithms which can lead 
to applications that cannot be analysed depending on the circumstances. Also, there is no formal 
definition in the state-of-the-art of what is malicious activity, therefore we used heuristics to try to 
reach at best a malicious behaviour. 

From the results of the tests, we were able to collect logic bombs that we gathered together in a 
database that can be used as a ground truth for further experimentations. 

 Experimental test activities 

In order to test TSOpen over a large set of applications, we used the HPC (High Performance 
Computing) facility at the University of Luxembourg to parallelize a large number of instances. As 
the tool is able to provide a readable output for humans, when a large-scale study is performed, we 
needed a simpler way to represent the results to process it later. Therefore, we used a multi-
dimensional vector representation that was stored in a REDIS server for future processing. 

The item tested are Android applications from different version that were fetched from an application 
repository available for researchers (Androzoo). 



D5.3 – Demonstrator prototypes   

SPARTA D5.3 Public Page 19 of 96 

 Results 

In the following figure we present an example of test run in an application containing a logic bomb: 

 

Figure 11: Example of TSOpen when run on malicious application 

 

We see that one logic bomb was found by the tool; this result can be used to feed the database that 
centralises all the logic bomb found. For the moment, 32 real logic bombs were found in malicious 
applications (not in the Google PlayStore). 

Here an example of the raw data result that can be processed later: 

f558aa271c4615f0c19df4889b0801d0329aa38d2ab99b3bd666a3b23b07b35b,vercoop.Zionusung.
app,0,18,1,0,0,1545064,705,1852,30,7671,8153,20,1730,848,10126,18367 

It is a vector representing data from the application under analysis. The data represent information 
such as: the hash of the application (sha256), the package name of the Android app, the different 
time taken for each part of analyses (call graph construction, symbolic execution, predicate recovery, 
etc.), the number of classes, the size of the app, whether the timeout has been reached or not, etc. 

As we use a full static analysis approach, we face the limitations of static analysis, i.e., the false-
positive problem (i.e., 17% of false-positives). That is why we had to manually analyse several 
hundreds of results to filter out false positives to constitute our database. 

 

 Maude (MAU) - FTS 

SR id Description Verification method Demonstration scenario 

SR1.1 
Use Maude to formally 

verify platooning modules 

 Discover an attack 

 Evaluate counter-

measure 

Connected Car (Vertical 1) 

Table 9: Maude - Demo scenarios and verification methods 
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 Description and goal 

As described in D5.2, the main goal of our development is to enable the formal security verification 
of cyber-physical systems, in particular, vehicle platooning scenarios. In these scenarios, attackers 
can cause harm by manipulating the messages communicated between vehicles in a platoon (or 
interacting with a platoon).  

Our model shall support the modelling of cyber aspects, e.g., communication protocols, as well as 
physical aspects, e.g., vehicle speed and acceleration. Moreover, it shall also support intruder 
models that can manipulate the available communication channels. Finally, it shall also support 
automated verification. This is done by relying on the Maude rewriting tool.  

 Technical characteristics  

As described in detail in D5.2, we have built on the framework called Soft-Agents that is a Maude 
implementation framework for cyber-physical systems. However, until now security aspects have not 
been considered nor vehicle platooning.  

We have, therefore, extended the Soft-Agents framework with the sorts, data-structures and models 
for enabling the formal verification of platooning scenario. These models are detailed in D5.2. 

 Experimental test activities 

We have applied our machinery to several platooning scenarios; some of these were taken from the 
protection profile described in D5.2, as well as new scenario that has been discovered while 
implementing the models. The experiments are described in this Document under the section for 
Connected Car.  

 Results 

We have applied our formal verification machinery to several scenarios. These are described within 
this document in Section 4.3.1. In a nutshell, we have validated the countermeasures based on 
plausibility checks. We have also identified 3 new attacks that have not yet been reported in the 
literature. These are detailed in this document as well. 

 

 NeSSoS Risk Asessment tool (RA) - CNR 

SR id Description Verification method Demonstration scenario 

 
SR1 

 
The tool works on-line 

Check if the tool is 

available on-line and 

provides the risk levels 

Use the tool through the 

web interface 

SR2 (Additional) Security 

configuration is suggested 

Check if the tool is able to 

provide reasonable 

suggestions for (additions) 

security configuration 

Use this functionality 

through the web interface 

SR3 The  tool  works  auto- 

matically 

Check if the tool is able to 

receive the input from the 

monitoring module and re- 

compute risk levels 

without human 

intervention 

Use the tool through the 

machine interface 

Table 10: NeSSoS Risk Assessment Tool - Demo scenarios and verification methods 
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 Description and goal 

The NeSSoS risk assessment tool is a framework implemented by CNR. Currently, the NeSSoS tool 
is integrated into a cybersecurity observatory maintained by CNR [9]. The observatory provides to 
the general public various cybersecurity services, including the NeSSoS risk assessment tool 
(named “Self-Assessment tools”). 

 

Figure 12: NeSSoS cyber risk assessment tool 

 

NeSSoS risk assessment tool is a simple and relatively fast method for quantitative estimation of 
annual cybersecurity losses, i.e., risks. The user should provide the information about the system 
and will get an estimation of the annual losses for various cyber threats. The information required for 
the analysis is: a questionnaire about cybersecurity practices and security controls implemented and 
applied in the evaluated system, and the information about the cybersecurity assets which can be 
damaged by various threats.  

The self-assessment tool is currently available in three versions: short, standard and complete. A 
short version is aimed for a very fast and rough assessment, with a minimal set of questions to be 
answered. The tool makes the prediction with a typical system (according to the answers) in mind. 
This version is aimed at those businesses with a standard network configuration, settings, and 
assets. Naturally, the more the system deviates from the standard settings, the less precise the 
predications are. Standard and complete versions are aimed for a more detailed analysis. They take 
into account the peculiarities of the analysed systems, but require more details to be provided as 
input. Therefore, these versions require more time and knowledge, but are more precise.  

 Technical characteristics  

The NeSSoS tool is hosted on a server running Ubuntu Server 18.04, located at the CNR in Pisa. 
The platform offers a website, built on Apache2 Web Server. The web-services available on the 
website are running over a Tomcat8 instance, running behind Apache2. 
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The tool is aimed to evaluate cyber risks. The results should help the system owners to plan their 
cybersecurity strategy and use resources to maximise cyber protection.  

The tool is aimed for SMEs, as it provides simple analysis. It is not very customizable to consider 
the systems deviating a lot from a “common” system type (e.g., using many IoT devices or have a 
complex network structure). The tool requires inputs with high details, i.e., specific security practices 
implemented in the system and expected costs in case of compromising assets. 

 Experimental test activities 

Internally, the tool is verified by testing input-output dependency. We see that once “more secure” 
practices are reported, lower risk values for the corresponding threats are obtained. The validity of 
outputs was checked by comparing the ratio of outputs with the ones reported by various surveys 
[10][11]. We acknowledge that such test is not precise, as input parameters (i.e., security practices) 
for the test subjects of the used surveys are unknown (moreover, they range from good ones to bad 
ones), which does not allow us to mimic their experiments correctly. On the other hand, these are 
the best available real data for testing. 

The tool is available for usage by wide public. The users are free to use the tool, evaluate their 
systems and provide their feedback. The results of the analysis should be verified by the users if 
they are in line with their indoor risk assessment. We are going to apply the tool in the eGovernment 
scenario and evaluate its result against the expectations of the system owners. 

 Results 

So far, internal testing shows that the tool works as expected: better security practices lead to lower 
associated risks. 

The external evaluation by practitioners is to be conducted together with the eGovernment scenario 
owners and reported in the future deliverables. 

 

 OpenCert (OC) - TEC 

OpenCert has been used in its current version and with its current functionalities in the context of 
Vertical 1, i.e. we have not generated a new prototype of the OpenCert tool. 

SR id Description Verification method Demonstration 
scenario 

SR1  
Use OpenCert to create an 

Assurance Case that presents 

safety and security arguments.  

Verification by means of the 

scenario 4, and also by the CAPE 

tools integration pipeline. 

Connected Car (Vertical 

1), scenario 4 

SR2 

SR3 

SR4 

Table 11: OpenCert - Demo scenarios and verification methods 

 Description and goal 

As documented in D5.2 [2], the main goal of the development is to enable OpenCert to give support 
to the engineers to achieve Safety and Security compliance assessment and certification of the 
platooning scenario.  

 Technical characteristics  

As it was described in D5.2, the OpenCert tool provides support to follow the compliance of a system 
with the standards by identifying what activities and requirements must be fulfilled for that specific 
system. It also helps to host the evidences of those requirements that are satisfied. 



D5.3 – Demonstrator prototypes   

SPARTA D5.3 Public Page 23 of 96 

 Experimental test activities 

The experimental test is fully described in the scenario 4 of the Connected Car case study (see 
Section 7.5). 

 Results 

Our key results are described in this document under the Connected Car case study (see Section 
7.5). In summary, we have digitalized the safety and security standards involved in the Platooning 
use case. In this first iteration we have created an assurance project for each standard to be followed 
and have added the generated evidences. 

 

  Project KB (KB) - SAP 

SR id Description Verification method Demonstration scenario 

SR1 Plain-text format 

Integration test according to 
defined scenario 

e-Government (Vertical 2) 

SR2 Digital Signature 

SR3 
Public and private 
repositories 

SR4 Versioning 

Table 12: Project KB - Demo scenarios and verification methods 

 

 Description and goal 

The goal of Project KB is to develop an open, shared and distributed knowledge base with 
information about security issues of open source projects, including security vulnerabilities or 
malicious/compromised releases. Compared to existing public vulnerability databases, this 
information will be code-centric, thus, it lends itself to (automated) code analysis. 

 Technical characteristics  

Project KB comprises a data format to express code-centric information about security issues, e.g., 
fix commits and affected versions in PURL. Project KB furthermore provides the necessary tooling 
to create, pull, merge and export such statements. Last, it comprises a collection of several hundred 
YAML statements that have been collected and curated over the course of several years at SAP. 

 Experimental test activities 

Project KB will be tested in the context of the e-Government scenario. In particular, it will be tested 
whether the YAML statements are correctly loaded into Steady’s database upon the installation of 
Steady, and whether any new statements provided in any of the before-mentioned Git repositories 
will be updated accordingly in delta runs. To this end, a demo scenario will be created that contains 
one example fix-commit for one of the dependencies of the SAML IdP. 

 Results 

Results of the publication and consumption of YAML statements according to Project KB will be 
provided in D5.4. 

 



D5.3 – Demonstrator prototypes   

SPARTA D5.3 Public Page 24 of 96 

 Risk Assessment for Cyberphysical interconnected infrastructures 
(MRA) - NCSRD 

The MRA development roadmap within SPARTA is to implement its software requirements as 
described in SR1 starting from Q4 – 2020 and finalising in Q2/Q3-2021 so that it can demonstrated 
at the project closing stages.  

 SR id Description Verification method Demonstration 
scenario 

SR1 Stand-alone tool Check if the MRA tool 
provides the risk levels 
as identified. Use the 
tool through the web 

interface 

Connected Car (Vertical 

1) - security profile  

Table 13: Risk Assessment for Cyberphysical interconnected infrastructures - Demo scenarios and 
verification methods 

 

 Description and goal 

As described within both D5.1 and D5.2 the MRA prototype that has been implemented within the 
SPARTA project is focused on assessing the attractiveness of infrastructure assets in the cyber-
physical domain. The foreseen goal of MRA is to identify the “attractiveness value” of existing 
infrastructures’ assets-at-risk from security profiles, also employing dynamic information in relevant 
environments. Target Attractiveness is perceived as a surrogate indicator for the likelihood of an 
attack. Within MRA is a composite indicator of the perceived value of a target (cyber/physical asset) 
to the adversary and their degree of interest in attacking the target. 

MRA is intended to be implemented in the Vertical 1 scenarios to determine and quantify assets 
attractiveness and present a relative comparison of different assets. 

 Technical characteristics  

Following a high-level description MRA module for cyber-physical attractiveness quantification is 
currently being developed as a stand-alone tool that could be readily integrated as a service within 
larger-in-scope cybersecurity solutions. A more detailed description of its technical characteristics 
will be provided upon further verification and testing as described in D5.2 

The analysis conducted by MRA do require the following inputs: 

 Manual assessment of the security profile of the cyber-physical system under consideration 
and recognition of key assets. This could be supported by a Threat Analysis and Risk 
Assessment (TARA) which may have considered the Hazard Analysis and Risk Assessment 
(HARA). 

 Ingestion of data from relevant demo components in .csv format, which will be further 
processed and utilized for quantification purposes. 

The MRA is currently being developed in the python programming language, after initial layman 
experimentation in MS-Excel. The later was implemented as a primitive experimentation step to 
check the correctness of the developed approach.  

Constraint and limitations: MRA can be used as a stand-alone tool or integrated as a service. The 
constraints are related to the manual requirement of thoroughly assessing the security profile and if 
needed re-adjust the attractiveness categories to match application-specific needs. No hardware 
requirements are present. 
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 Experimental test activities 

The experimental activities were based upon an assessment of the “vertical 1” security profile as 
presented in D5.1. Section 2.1.3.3 therein introduces the System Assets, which are pertinent to the 
integrity of the vehicles and their passengers. The identified assets / “surfaces of attack” on the 
CCCC vertical that may become target of attacks are 

 Wireless communication that may provide access to 3rd parties to the vehicle data and poses 
serious security and safety risks to the vehicle,  

 Safety critical functions such as brakes.  

 Non-safety critical functions like radio  

Asset attractiveness has been identified within the verification framework as a set of complimentary 
attributes that follow the risk word ladder approach and are introduced below. 

Attribute1: Impact - defined according to perceived functionality impacts described in section 2.1.1 
of SPARTA D5.1.  

Attribute2: Location – defined following D5.1 – section 2.1.1. Vertical Scenario Conditions.  

Attribute3: connectivity which is assigned following the DOT HS 812 636 report6 – Section 3 

Attribute4: EasinesstoAttack which is related to the CPS security properties, defined in D5.1 – 
section 2.1.3.  

Attribute5: DependentElenets which is the endpoint of the impact chain that may occur and is 
defined according to D5.1 section 2.1.1. 

 Results 

The following plot is indicative of the results that may be obtained following the MRA approach, and 
is constructed using MSExcel, as currently the tool is under development. The higher area covered 
is indicative that the asset is a more attractive target compared to the examined ones. 

 

Figure 13: MRA Results 

                                                

6 Stachowski, S., Bielawski, R., & Weimerskirch, A. (2018, December). Cybersecurity research considerations for heavy 

vehicles (Report No. DOT HS 812 636). Washington, DC: National Highway Traffic Safety Administration 
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 Sabotage (SB) - TEC 

Sabotage has been used in its current version and with its current functionalities in the context of 
Vertical 1, i.e. we have not generated a new prototype of the Sabotage tool. 

SR id Description Verification method Demonstration scenario 

SR1 

SR2 

Simulation-based Fault 

injection and analysis of 

faulty scenarios 

Verification by means of the scenario 

5. 

Connected Car (Vertical 

1), scenario 5 

Table 14: Sabotage – Demo scenarios and verification methods 

 

 Description and goal 

As documented in D5.2 [2], the main goal of the development is to enable Sabotage to generate and 
verify the behaviour of a measure, i.e. sensor-based plausibility check algorithm against different 
possible attacks. 

 Technical characteristics  

As it was described in D5.2, we have applied the Simulation-based fault injection technique in the 
Connected Car case study. It will be used to simulate how a fault, originated from a random hardware 
fault or cyber-attack, can affect the vehicle behaviour by changing the velocity to an abnormal value. 

 Experimental test activities 

The experimental test is deeply described in the scenario 5 of the Vertical 1 (see Section 7.6). 

 Results 

Our key results are described in this document under the Connected Car case study (see Section 
7.6). In summary, we have generated a sensor-based plausibility check algorithm and have used 
the Sabotage tool to verify the behaviour of the algorithm against possible attacks. 

 SafeCommit (SF) - UNILU 

SR id Description Verification method Demonstration scenario 

SR1 

Compute performance 

scores by leveraging the 

ground truth 

Check if the performance scores are 

high enough 

Deploy SafeCommit and 

Run on the ground truth 

SR2 
Assess SafeCommit in a 

practical settings 

Check if SafeCommit is able to detect 

vulnerabilities in open source libraries 

used in Vertical 1 

Deploy SafeCommit and 

Run on a git Repository of 

open-source libraries of 

Vertical 1 

Table 15: SafeCommit - Demo scenarios and verification methods 

 

 Description and goal 

This tool aims at automatically detecting commits that introduce vulnerabilities (we will also refer 
commit as patches for the sake of simplification) in Continuous Integration Ecosystem. SafeCommit 
is built on top of AI techniques relying on innovative features and advanced patch representation 
learning. 
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Systematically and automatically identifying vulnerability introducing patches once a commit is 
contributed to a code base is of the utmost importance: (1) To reduce the number of vulnerabilities 
in a software code base; (2) To incite maintainers to quickly reject the relevant changes. The 
proposed tool aims at being integrated into real-world software maintenance and usage workflows. 
The objective is to carry out a live study in order to collect practitioner feedback for iteratively 
improving the tuning of the research output, towards an effective technology transfer. 

 Technical characteristics  

SafeCommit will use a machine-learning based approach as described in Figure 14. In particular, 
SafeCommit will address a binary classification problem of distinguishing vulnerability introducing 
patches from other patches. As any classification problem, well-labelled datasets are more than 
welcome. To develop SafeCommit, the first main step will consist in building such datasets ("Ground 
Truth” in Figure 14).  Then, we will investigate the possibility to consider a combination of text 
analysis of commit logs and code analysis of commit changes diff to catch security patches.  To that 
end, the idea is to proceed to the extraction of “facts” from both text and code, and then perform a 
feature engineering by assessing the efficiency of the proposed features for discriminating security 
patches from other patches (“Features Set” in Figure 14). Then, we will build a prediction model 
(“Classifier” in Figure 14) using machine learning classification techniques.  

As an add-on, we will investigate a specific learning approach named Co-Training, which has shown 
convincing results in situation where the training datasets are un-balanced. Finally, one major 
success criteria of SafeCommit is its ability of supporting the work of developers/maintainers in 
distributed software development. Once prediction models are learned, we will assess their efficiency 
by performing extensive empirical studies in the real development environments. 

 

Figure 14: Overall SafeCommit Process 
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 Experimental test activities 

For the test activities, we first compute performance scores by leveraging the ground truth. The input 
is the ground truth (I.e., the labelled commits), and the output is the classification performance score. 
Regarding the test procedure,  we follow a classical machine-learning assessment process. We will 
consider for instance using ten-folds cross validation and compute precision, recall and F1 metrics. 

 Second, we will assess SafeCommit in a practical setting. As input, we consider large open-source 
repositories such as Linux. As output, we will yied an  assessment report on this “in the wild” 
experiment. Regarding the test procedure,  by considering commit history from large open-source 
repositories, we will mimic the behaviour of software developers, i.e., we will check if at the time of 
a commit, this commit can be detected as vulnerability introducing commit. 

 Results 

Regarding the computation of performance scores by leveraging the ground truth: 

To perform this experiment, we use a dataset containing both vulnerability introducing commits 
(positive samples) and vulnerability fixing commits (negative samples). This dataset is then split into 
training and test sets. The number of commits per set is detailed in Table 16 . 

 Training Test 

Vulnerability Introducing Commits (VIC) 470 253 

Vulnerability Fixing Commits (VFC) 389 879 

Table 16: SafeCommit - Dataset Description 

 

By learning on the commits from the training set, SafeCommit tries to differentiate both types of 
commits in the test set. The performances of SafeCommit are presented in Table 17.  

 True 
Positive 

False 
Positive 

False 
Negative 

True Negative Precision Recall 

SafeCommit 58 29 178 850 0.67 0.245 

Table 17: SafeCommit - Performance Score 

 

As we can see in Table 17, there is still room for improvement.  

Regarding the assessment of SafeCommit in a practical setting, we have not yet performed the 
experiment, This experiment will be conducted between M18 and M36. 

 

 SideChannelDefuse (FS) - CNIT 

SR id Description Verification method Demonstration scenario 

 

SR1 

Patch Linux Kernel in order 

to start the tool. 

Check if the tool is 

correctly installed and 

running in the kernel. 

 

Stand Alone 

SR2 

SR3 

Continuously scan and 

eventually mitigate the 

applications behaviour in 

the system. 

Check if the tool correctly 

reports on going side-

channel attacks and 

mitigate their behaviour. 

Stand Alone 

Table 18: SideChannelDefuse - Demo scenarios and verification methods 
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As stated in the D5.2, SideChannelDefuse is being developed as a standalone tool within CAPE, 
and hence does not interact with other components during verification and validation. The tool is 
preinstalled at the kernel level and it continuously monitors processes activities. By doing this it can 
detect cache attacks but also deploy mitigation strategies on the fly. It follows that rather than 
integrating it in a pipeline, the most obvious way to use it is to install it and then run other tools on 
top of the patched kernel. 

 Description and goal 

SideChannelDefuse is a tool for continuous assessment and reactive mitigation against side-channel 
attacks. 

If the tool detects that the system is vulnerable, it can activate a continuous kernel-level system-wide 
detection mechanism which allows detecting whether some application (also running in a virtual 
machine) is carrying out a side-channel attack. This detection is continuous, in the sense that the 
(host) operating system kernel based detection mechanism is always on, while introducing a minimal 
overhead in the system. It is system-level, in the sense that it monitors all applications running in the 
system. 

If the tool detects that a (virtualized) application is trying to carry out a side-channel attack, that 
application is deemed as suspected. At this stage, the tool can activate per-application mitigation 
mechanisms, the goal of which is to reduce the likelihood that the application can exfiltrate data 
using the attack. 

The overall resulting tool is able to detect Foreshadow-VMM attacks, as well as other attacks such 
as meltdown, spectre, or XLate-family attacks. 

The tool will be distributed as open-source software. The public repository is not yet available. 

 Technical characteristics  

The tool is developed as a patch to the Linux kernel. In our implementation, we have targeted the 
Intel architecture, considering its widespread adoption and the fact that it has been repeatedly 
subject to multiple attacks in the last years. Nevertheless, as we discuss, our reference 
implementation can be easily ported to other architectures, such as AMD. The cloud 
owner/mantainer has to load into the host system the patched kernel, and let it run. The tool 
continuously runs in the background. It does not need any further user input or interaction from other 
sources. In order to execute its detection activity, it relies on the use of Performance Monitoring Units 
(PMUs) which are equipped with modern CPUs in order to profile the performance or (to some 
extent) the behavior of applications. PMUs are composed basically of programmable Performance 
Monitor Counters (PMCs) also referred to as Hardware Performance Counters (HPCs). The 
detection mechanism is system-wide in the sense that the tool does not make any assumption on 
which process is the attacker and which is the victim. Since the detection can be fallible, the tool 
does not take any destructive action with respect to the running process. Rather, it couples the 
detection with mitigation actions automatically enforced by the operating system as soon as a 
process is suspected as malicious by entailing a limitation in the scheduler freedom at deciding what 
CPU resources should be assigned to some process, or the selective (per-process) activation at 
runtime of security patches against transient-execution vulnerabilities (such as KPTI). At the end, 
the tool returns some output to /proc/pid. 

 Experimental test activities 

As already anticipated in D5.2, to make what follows self-readable, we here provide a brief 
description of our experimental methodology. Our detection mechanism, as well as the 
aforementioned mitigations, have been implemented at kernel-level in Linux, and has been exercised 
on multiple processors of the x86 family. We have used our patched kernel for a month, also in daily 
usage, both on laptops and on server machines. No false-negative has been observed under that 
daily usage workload. Of course, this is not a guarantee that our approach could be used to enforce 
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more intrusive policies with respect to suspected processes like, e.g., killing suspected processes. 
Rather, it is an indication of the viability of using HPCs as building blocks for articulated detection 
mechanisms, and for devising strategies where the setup of security-oriented patches can be put in 
place on a dynamic and per-process basis—rather than paying the cost of these patches by default 
when any process is active. 

We started preliminary testing considering an attacker trying to carry out a cache-based attack and 
leak information from a co-located victim on the same platform. The attacker is thus sharing some 
architectural components with the victim, such as the First-Level Cache (L1) or the Lowest-Level 
Cache (LLC). We do not make assumptions on the privileges with which the attacker is running, nor 
on whether the side channel is being used to extract leaked information. Indeed, as mentioned, we 
are interested in detecting the usage of a cache side-channel to leak information while the attack is 
in progress. 

We have carried out an experimental assessment, relying on multiple generations of Intel CPUs, 
using the following processors: 

i5-8250U 4x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 6MB 12-way; 

i7-7600U 2x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 4MB 16-way (with TSX); 

 

 Results 

From Figure 15 we can see how the metrics works in a generic way using (for example) an X-Late 
attack. The green part is the footprint on the cache architecture of an attacker. There is a kind of 
continuous pattern, which is quite constant while running the attack. By looking how the profile of the 
cache usage by the application changes over time, we can detect a process as suspected or not. 

 

Figure 15: Example of a X-Late Attack 

 

We can already define what kind of attacks we are capable of detecting and mitigating in our 
experimental setup (Figure 16). We still have to refine the metrics that we use, so as to capture a 
wider spectrum of attacks. 
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Figure 16: SideChannelDefuse list of detections 

 

Detailed results for performance, false-positive and further detection/mitigation mechanisms will be 
described in D5.4. 

 

 Steady (VA) – SAP 

SR id Description Verification method Demonstration 
scenario 

SR1 Comparison of Java 
source code and 

bytecode 

Check if an unclassified 
finding can be resolved 
through the execution of 

the new plugin goal 
“checkcode” 

e-Government (Vertical 
2) 

SR2 Light-weight scan client Run light-weight Docker 
Compose environment 
and monitor resource 

consumption and 
performance 

Independent 

SR3 Shared vulnerability 
database 

Check the initial and 
delta load of 

vulnerabilities from 
Project KB into Steady’s 

database 

e-Government (Vertical 
2) 

Table 19: Steady - Demo scenarios and verification methods 
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 Description and goal 

This prototype will demonstrate the integration of Eclipse Steady into CI/CD pipelines of a given 
application or project. 

With every commit or at periodic times, Eclipse Steady will check whether upstream open-source 
components of the given project are subject to known vulnerabilities. If so, Steady will support the 
assessment and mitigation of those findings. 

 Technical characteristics  

SR1: The bytecode comparison is made available as a separate Steady analysis goal, which can be 
invoked using Steady’s Maven plugin or CLI. Typically, it will be invoked on-demand if previous 
analyses raised unqualified findings, thus, findings where it could not be determined whether the 
Java method or constructor contained in an application dependency contains the vulnerable or the 
fixed body. 

Upon execution, the Java bytecode in question is decompiled and transformed into an abstract 
syntax tree (AST), which is compared with the corresponding ASTs coming from archives that are 
known to be vulnerable or fixed. If AST equality can be established, the archive in question is 
qualified accordingly. 

The implementation as separate analysis goal gives greater flexibility to the user, who can decide 
whether to invoke this relatively expensive creation and comparison of potentially many ASTs. 

One limitation relates to the chosen decompiler, a 3rd party component, which fails to produce correct 
Java class names for nested classes. 

Another limitation is that questionable Java code is compared against qualified archives existing in 
a given instance of the Steady backend. If no or few archives have been assessed, the likelihood 
increases that no equality can be established at all. In other words, the success rate of the 
implementation depends on the number of archive assessments in the respective Steady backend. 
However, also note that there are several automated assessment strategies in place, which populate 
the database over time. 

SR2: The light-weight scan client will consist of a reduced version of the Docker-Composer 
environment for server-side operation, where unnecessary containers will be removed. 

SR3: The shared vulnerability knowledge base from Projekt KB, which consists of YAML files  
(statements) distributed across multiple Git repositories, will be loaded into Steady’s vulnerability 
database. To this end, a new module kb-importer has been developed, which processes the data 
produced by Project KB and uses Steady’s RESTful API for the actual database loading. 

 Experimental test activities 

Both SR1 and SR3 will be tested in the context of the SML IdP software of the e-Government vertical. 
To this end, Eclipse Steady will be installed in a dedicated infrastructure provided and managed by 
CINI/FBK, such that GitLab build jobs can trigger Steady’s client-side Maven plugin, which in turn 
interacts with Steady’s server-side components (cf. Section 8.3.2). 

SR2 will be tested independently from any of the SPARTA CAPE verticals. To test the footprint of 
the local, light-weight scan client, it is planned to measure and compare the resource consumption 
and performance (esp. at start-up) of the classical and the newly developed Docker-Compose 
environment. 

 Results 

Results of the analysis of the SAML IdP will be provided in D5.4. 
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 SysML-Sec/TTool (TTOOL) - IMT 

SR id Description Verification method Demonstration scenario 

SR1 

Use TTool to verify the 

platooning system at a 

high level of abstraction 

 Capture the digital 
platform at a high-level 
of abstraction 

 Look for possible 
attacks with formal 
verification 

 Study countermeasures 

Connected Car (Vertical 1) 

SR2 

Use TTool to verify the 

platooning system taking 

into account both software 

and hardware aspects 

 Capture the digital 
platform at a high-level 
of abstraction 

 Look for possible 
attacks with formal 
verification. This 
security verification 
takes into account 
hardware aspects (e.g. 
access to buses, 
firewalls, etc.) 

 Study countermeasures 

Connected Car (Vertical 1) 

Table 20: SysML - Sec/TTool - Demo scenarios and verification methods 

 

 Description and goal 

TTool is a UML/SysML tool dedicated to the design and verification of embedded systems. TTool is 
free and open source.  

TTool will be used to demonstrate its ability to verify safety and security properties on high-level 
model of embedded architectures. To do this, we will rely on the SysML-Sec framework supported 
by TTool. 

 We will first capture a subset of safety and security requirements 

 We will also model except of fault and attack trees 

 Then, we will proceed to the model of the hardware and software architecture of the system. 
TTool follows the Y-Chart, that is, functions are modeled independently from the hardware 
architecture before they are mapped to the architecture. We will experiment with different 
architecture and see which ones verify safety and security requirements while ensuring good 
performance. 

 Technical characteristics  

Currently, TTool can support the verification of security properties for simple cryptographic protocols. 
Since TTool also support hardware models, we intend to improve its ability to capture hardware 
security aspects such as firewalls, mapping of keys, TPMs, etc. 

 Experimental test activities 

We intend to use TTool for the Rover use case, taking into account at least one of the two systems 
(Tecnalia or Fortiss system). We will test that TTool is adapted to model at least one of them and to 
prove safety and security aspects. Extensions will probably have to be performed to fully support the 
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hardware aspects and security properties (TTool supports only confidentiality and authenticity 
properties). 

Last but not least, we intend to interact with the AutoFOCUS 3 tool is order to benefit from their fault 
and attack trees capabilities. 

 Results 

Not (yet) applicable. 

 

 VaCSInE (VCS) – CETIC 

SR id Description Verification method Demonstration scenario 

SR1 
Orchestration of the 

security policy 

Scan for vulnerabilities 

after the security 

remediation 

Connected Car (Vertical 

1), scenario 2 

SR2 

Observability of the 

security policy 

orchestration 

Remediation logs are 

available 

Connected Car (Vertical 

1), scenario 2 

Table 21: VaCSInE - Demo scenarios and verification methods 

 

 Description and goal 

In this prototype, we will demonstrate how the security requirements of a Cloud/Edge system can be 
continuously assessed in a vehicle platooning context.  

The security requirements for different parts of the Cloud/Edge can be dynamic, for example, when 
an incident happens in a part of the edge infrastructure, it needs to adapt its local security zone 
policy, possibly impacting the certification.  

The purpose of the demonstrator is to show how to orchestrate the automated deployment and 
configuration of security services (firewall, honeypot, etc.) based on security requirements. To do 
this, we will: 

 first define security requirements for a Cloud/Edge infrastructure in the context of vehicle 
platooning: this is done using the Security Content Automation Protocol (SCAP); 

 then we will automate the application of the security policy to various parts of the system: 
VaCSIne will deploy and configure various security services to satisfy the policy; 

 to check that the policy is continuously satisfied, we will run vulnerability scans: their output, 
coupled with the VaCSIne remediation logs can then be used as compliance evidence. 

 Technical characteristics 

The federated security controller and the security agents of VaCSIne are developed as Python 
microservices, for modularity and scalability reasons. The orchestration of the remediations is based 
on Kubernetes and Ansible, where security services are deployed as containers in Kubernetes based 
on Helm charts and Ansible playbooks are run to apply remediations. To extend the orchestration of 
security services to the Edge, the prototype relies on the KubeEdge project built upon Kubernetes. 
Monitoring of the system security properties and of the remediation logs is achieved with the help of 
Grafana dashboards, Grafana Loki and the Prometheus data source. The DevSecOps aspects of 
the prototype are implemented using GitLab-CI to orchestrate the continuous integration and 
deployment of the security services and playbooks. The security requirements are described using 
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the SCAP format and provided as input to the federated security controller, they will be exploited by 
the vulnerability analysis performed by OpenSCAP and the remediations by the VaCSIne security 
agents. 

 Experimental test activities 

The experimental environment is composed of a private Cloud on which we deployed a Kubernetes 
cluster as a container orchestration engine, the Edge infrastructure with KubeEdge deployments and 
rover platoon. In the first iteration, we deployed the platoon on the test infrastructure with a default 
security policy and performed a vulnerability scan to check the default security policy is verified on 
the platoon. We then let the platoon drive between edge infrastructure nodes having different zone 
security policies. Figure 17 provides an excerpt of a sample SCAP security policy where the 
presence of a firewall is required. Those tests provided us with vulnerability scan reports and security 
remediation logs that can be correlated and used as input for further compliance or operations 
activities in a continuous way. 

 

Figure 17: Sample security policy – Extract of SCAP content to check that a firewall is enabled on the target 

 

 Results 

Test results for the prototype include execution logs of the platoon, edge and security orchestration,  
Figure 18 provides an example of logs produced by a test where a platoon changes from one edge 
to another: depending on the changing security policy, vulnerability tests are automatically run, 
security remediation is executed by VaCSIne and another vulnerability scan confirms that the 
remediation managed to apply the security policy. 

 

Figure 18: Sample vulnerability scanning and associated remediation logs in Grafana dashboard 

 

Figure 19 provides a sample HTML report generated by OpenSCAP after a remediation that 
activated the firewall. We can see that the firewall check passed, that to satisfy the policy the firewall 
default ruleset needs to be stricter and that some network protocols need to be disabled. 
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Figure 19: Sample OpenSCAP report 

 

 Visual Investigation of security information (VI) - UKON 

SR id Description Verification method Demonstration scenario 

SR1 
Web  Application  Proto- 

type 

Display projects developed 

in software organizations 

(e.g., Eclipse Foundation) 

Visually investigate the 
Eclipse Foundation 
projects 

Table 22: Visual Investigation of security information - Demo scenarios and verification methods 

 

The demonstrator for the visual investigation (VI) of security information allows exploring the 
exposure of software projects from an organizational point of view. The developed vulnerability 
explorer allows us to visually assess the number of vulnerabilities in projects and their organization-
wide dependencies among the components. 

 Description and goal 

The primary purpose of the demonstrator for the use case visual investigation of security information 
is to get insights about the consumption of exposures in open-source components on the level of a 
whole software development organization. The implemented interface supports to discover various 
security-relevant information, for instance, the most/least-used open source components, the 
most/least-vulnerable open source components, the most/least-vulnerable applications, or 
most/least-relevant vulnerabilities. 

 Technical characteristics  

The demonstrator uses the API of the Eclipse Steady from SAP (see Sec. 3.2.15) and uses the 
results of individual package scans to highlight the security status of whole software organizations. 
The backend of the vulnerability explorer is implemented in Java and uses modern web technologies 
such as the JavaScript library D3 (Data Driven Documents) to display the whole software 
organization. The user interface allows us to investigate the results of the scans and their internal 
dependencies as a directed acyclic graph (DAG). For the development of the demonstrator, we 
crawled all open-source Java projects of the Eclipse Foundation and scanned the projects using 
Eclipse Steady. The main input files for the demonstrator are Java Maven projects. The user 
interfaces are shortly described in the following results subsection. A limitation of the approach is 
that it only enables us to assess the exposure vulnerabilities in larger software organizations. The 
individual vulnerabilities cannot be resolved with the demonstrator. 
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 Experimental test activities 

We developed the demonstrator using data from the crawled open-source projects from the Eclipse 
Foundation. Further, the demonstrator was presented to potential users at SAP to collect feedback 
and improve the interface. We conducted interviews with think-aloud protocols to capture the 
requirements and suggestions of software developers to validate the objectives of the demonstrator 
and the designed interface. The outputs of the demonstrator are shown in the results section. 

 Results 

 

Figure 20: The Tree View of the Vulnerability Explorer 

 

Filter panel: The system allows for the search and filtering of repositories and modules. The filter 
panel is located on the left of the screen (see Figure 20). The table can be filtered by, the number of 
dependencies, number of CVEs, the minimum CVSS score, the maximum CVSS score. In the search 
field, you can search for a specific repository name. This allows for the location of the most vulnerable 
repository or module. Additionally, options for showing modules without vulnerabilities and CVEs 
without CVSS score. These options allow for a more detailed insight into the project structure and 
software bugs that are only functional and do not pose a security risk. 

 

Tree view: The system allows for the exploration of repositories, modules, libraries, and bugs 
through a tree table. The tree view is located on the right of the screen (see Figure 20). The 
vulnerability information is displayed in the columns. The “Dependencies” column, indicated by the 
chain-link icon, shows the number of dependencies for a repository or module. The table can be 
sorted by the number of dependencies by clicking one of the arrow buttons in ascending and 
descending. The “Errors” column, indicated by a dark circle with a cross, shows the number of errors 
for a repository, modules, or libraries. The table can be sorted by the number of errors in the same 
way as the “Dependencies” column. The “CVSS min./max.” column visualizes the CVSS score of a 
repository, modules, files, or bugs in a heatmap visualization. A line represents the presence of a 
bug with a given CVSS score, the darker the line the more CVEs with this score are present in the 
software artifact. A lighter shade of gray highlights the range. The table can be sorted by the 
minimum or maximum CVSS score by clicking one of the arrow buttons in ascending and descending 
order. The “Top-Bugs” column, the right-most column, visualizes the presence of a specific Bug. By 
default, these bugs are the top-5 bugs by their number of occurrences. However, the list can be 
customized by clicking the gear symbol, where the user can search, add, and remove specific CVEs. 
This column allows for a fast inspection of those bugs. 
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Tree hierarchy: The lowest level represents a repository. It can be expanded to view errors and 
modules. The presence of errors is visualized on the left side of the repository symbol. The table 
entries show the number of errors, a visual representation of the CVSS scores, and whether a “top 
bug” is present. The CVEs are always displayed above the modules and can be expanded to reveal 
buggy libraries. Modules are separated from libraries to allow for an easier distinction. You can 
expand the errors row to reveal the relevant buggy libraries. The same information as for repositories 
and modules is available for libraries. Expanding a library reveals the relevant bugs for the selected 
repository or module, so bugs that affect the security of the repository or module. The CVSS score 
is shown in the appropriate column to allow for risk assessment. A bug is clickable and links to its 
entry on nvd.nist.gov. 

 

Figure 21: The Graph View of the Vulnerability Explorer 

 

Graph view: The Graph view shows the dependency structure of a specific repository or module. It 
serves as an overview of a specific software artifact. The dependency graph is a directed acyclic 
graph. A repository is shown as a black square. A module is visualized as a blue square. A library 
is shown as a green square A CVE is shown as a red square. A mouse-over pop-up reveals 
detailed information about the specific software artifact. An item dependency is shown as a line 
where the lower items depend on the ones on top. Figure 21 shows an example of the reddeer 
repository (see https://github.com/eclipse/reddeer). 

  

https://nvd.nist.gov/
https://github.com/eclipse/reddeer
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Chapter 4 Prototypes for Convergence of Security 
and Safety (T5.2) 

4.1 Introduction 

This section describes the implementation efforts carried out by T5.2 for the Convergence of Security 
and Safety. The goal of this task is to advance the techniques and tools for the integration of safety 
and security. This is particularly important given the increased interconnectivity of safety-critical 
systems, such as industry 4.0 applications and autonomous cars. This means that if adequate 
countermeasures are not put in places, attackers can exploit the increased attack surface to cause 
harm, such as accidents, by disabling, for example, safety features. 

  

 

Figure 22: Roadmap for Task 5.2 Activities 

 

In D5.1, the roadmap has been laid out which is depicted by Figure 22. The following activities have 
been carried out and are described in D5.2: The roadmap starts with the description of connected 
car cybersecurity (Vertical 1). From the identified scenarios, safety and security analysis have been 
carried out by extending existing machinery, such as Goal Structure Notation, KAOS models, and 
Attack Defense Trees. These analyses have led to requirements, written as a Protection Profile used 
by Common Criteria and machinery developed for carrying out trade-off analysis. Finally, formal 
verification techniques have been used to support security by design approach for some of the 
identified scenarios. 

We detail in the following sections the activities carried out until the time of the deliverable related to 

the Modelling and implementation, Verification and Validation, Update, and Assessment. 

4.2 Modelling and Implementation 

AutoFOCUS3 is a model-based engineering tool for safety-critical embedded systems. 
AutoFOCUS3 supports the design, development and validation of safety-critical embedded systems 
in many development phases, including architectural design and implementation [6]. We describe 
here a brief overview of how to use AutoFOCUS3 for developing component architectures, validating 
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them by means of simulation and generating C code from the defined architecture. For more details, 
we refer the interested reader to [7]. 

AutoFOCUS3 allows one to define datatypes and functions by using a so-called Data Dictionary. 
More specifically, it allows one to define enumeration datatypes, structure datatypes, arrays, and 
functions. Datatypes, arrays, and functions can be used when specifying the behaviour of component 
architecture. 

Architectural-wise, AutoFOCUS3 supports the creation of components as well as channels between 
components. Figure 23 illustrates two components in yellow, named as ComponentA and 
ComponentB. The black arrows denote two channels connecting the outputs of ComponentA to 
inputs of ComponentB. Channels are connected to output and input ports, illustrated by the small 
black and white cycles on the edge of components. Components may be declared as weakly or 
strongly casual. Weakly casual components instantaneously react to a value that arrived from an 
input channel (i.e., at the same time step), whereas strongly casual components only react to an 
input value at the next time step. 

 

 

Figure 23: AF3 - Component architecture 

 

AutoFOCUS3 provides two ways to specify the behaviour of components, namely code specification 
and automaton specification. Code specification allows one to specify the behaviour of components 
on code level in a C-like language. Figure 24 illustrates the code specification view from 
AutoFOCUS3 for ComponentB. It calculates the sum of two integers (numberA and numberB) 
received as inputs from ComponentA. The result of this computation is assigned to the integer sum, 
which is the output port of ComponentB.  

 

 

Figure 24: AF3 - Code specification view 

 

Automaton specification allows one to specify the behaviour of components in a graphical state 
automaton diagram, where one can specify states and transitions between states. Figure 25 
illustrates the automaton specification view from AutoFOCUS3. It contains two states, namely StateA 
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and StateB. The blue color of State1 denotes that the StateA is the initial state of the automaton. 
The black arrows denote the transitions between StateA and StateB. Guards may be specified to 
define which transition is used at the next step. Guards must be specified if a state has multiple 
outgoing transitions. For each state, one can define idle actions. Idle actions are fired in every 
simulation state if the state is active and no outgoing transition guard is fulfilled. 

 

 

Figure 25: Automaton specification view 

AutoFOCUS3 provides a way to validate the behaviour of components by means of simulation. 
Figure 26 illustrates the simulation perspective of AutoFOCUS3. One can simulate the entire 
component architecture or selected components only. Figure 26 illustrates the simulation of the 
behaviour of ComponentB. To run the simulations, one needs to manually provide the input values 
for components. For instance, in the middle of Figure 26 the variables numberA and numberB were 
manually assigned with values 2 and 4, respectively. One can run the simulation in a stepwise 
fashion by clicking on the simulation step button at the top of the simulation view. The result of the 
simulation is shown on the right-hand side of Figure 26. It shows that after one simulation step the 
variable sum is assigned with value 6, as expected. 

 

 

Figure 26: AF3 - Simulation perspective 

 

AutoFOCUS3 supports the automatic generation of C code from the specified component 
architectures. This feature allows one to directly deploy the generated code into the target system 
(e.g., into a Raspberry Pi used by the FTS rovers). The tutorial on how to deploy the generated C 
code into systems can be found here [8] (access by request). Code-wise, AutoFOCUS3 will create 
a dedicated folder for all header files (with extension .h), and one dedicated folder for the actual 
implementation (with extension .c). For each component architecture, AutoFOCUS3 will generate a 
file with the C code for that component architecture. AutoFOCUS3 will create one dedicated file for 
the defined data dictionary that includes datatypes, arrays, and functions. 

 



D5.3 – Demonstrator prototypes   

SPARTA D5.3 Public Page 42 of 96 

4.3 Technical characteristics Verification and Validation 

We modelled and implemented methods for the verification and validation of the safety and security 
of selected connected car scenarios. Our methods can be classified into three types of verification 
and validation. 

 Formal Verification of Platooning Scenarios: We constructed models based on the Soft-
Agents [4] a formal framework for security verification and assessment. This model is 
reported in a submission under peer review also described in the following subsection. In a 
nutshell, our framework supports the specification of cyber aspects, such as communication 
protocols, and physical aspects, such as position, speed, acceleration, of cyber-physical 
systems, such as vehicle platooning. Moreover, our framework enables the specification of 
intruder model that can manipulate communication channels to, for example, cause harm. 
Our machinery has been implemented in the rewriting tool framework Maude [5]. By using 
our framework, we were able to discover three novel attack scenario, detailed Section 3.2. 

 Penetration Testing: We have used current tools from the project related to this task to get 
all the possible information about the system to test. Once analysed the system architecture, 
a HW set of tools has been designed and set up. On top of this HW tools, a questionnaire 
has been filled up with all the possible protocols used in the Platooning Scenario of the Demo. 
By analysing these protocols, a list of possible vulnerabilities has been studied at the same 
time the HW has been constructed. More details about this HW setup and the vulnerabilities 
are explained in next sections. 

 Simulation-based fault injection: We have used the Sabotage tool (see Section 3.2.12), 
which is based on the Fault injection or the deliberate introduction of faults into a system, that 
has been widely used in order to assess the dependability of a system under test. Specifically, 
the tool consists on the Simulation-based fault injection which involves the construction of a 
behavioural model of the system. The simulation models can be developed in different level 
of abstractions such as Simulink, SCADE or using very high description languages like Very 
High-speed integrated circuit Hardware Description Language (VHDL). In the context of 
CAPE, we focus on the Simulink behavioural model. 

 Formal Security Verification Framework 

In D5.2, we detail the main model elements for the specification of vehicle platoon scenarios. We 
summarize below some of the modelling elements of our framework. Further details are available in 
D5.2. Then we focus on how these elements can be used for the verification of safety and security 
of vehicle platoons. 

The key model elements are listed below: 

 Knowledge Base: Vehicles have a local knowledge base (lkb). It represents the vehicle’s 
view of the world, e.g., the speed and position of itself and of the other vehicles. Formally, a 
vehicle knowledge base is composed by a set of grounded facts, p, i.e., facts not containing 
variable symbols, of the form p, or associated with a timestamp, p@t, where t is natural 
number. 

 Sensors: A vehicle is equipped with three sensors locS, speedS and gapS. They measure, 
respectively, the vehicle’s location, speed and the gap to the vehicle immediately ahead. As 
we illustrate below, at each tick, vehicles use these sensors to query the environment 
knowledge base and update the vehicle’s local knowledge base. 

 Communication Channels and Protocols: We assume that vehicles may communicate 
using peer-to-peer connections or by broadcasting messages. Based on this assumption, we 
implement several protocols for platooning including: Heartbeats protocols from Leader to 
Follower, Follower to Leader, and Leader to Joining Vehicles; Emergency brake protocols. 

 Actions: Vehicles decide to accelerate or decelerate. Since there may be infinitely many 
possibilities of acceptable speeds (for safety and fuel efficiency), we abstract actions by using 
facts of the form act(id,vmin,vmax) denoting a set of actions of changing id’s speed to values 
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between vmin and vmax. Actions are evaluated with a value that is the result of a soft 
constraint problem specification described next. 

 Soft Constraints: The evaluation of possible actions is done by taking into account the 
vehicle’s concerns specified as a soft constraint problem. The soft-agents framework 
supports several types of soft-constraint theories, such as probabilistic, fuzzy and classical 
logic. We have implemented fuzzy controllers that take into account two concerns, fuel-
efficiency and safety. 

 Intruder Model: The intruder can impersonate an honest vehicle, listening to messages, 
injecting messages, and blocking messages from communication channels. These 
capabilities enable us to carry out similar verification done for safety, but now considering a 
malicious intruder. Currently, our intruder model supports two capabilities: Message Injection 
and Message Blocking. 

 

We illustrate how our model can be used with an example.  

The following local knowledge base of vehicle v(1) specifies that he is following vehicle v(0). The 
vehicle v(1) has speed 20 and position 945 distance units. He believes to be immediately behind 
vehicle v(0) with a gap of 55 distance units. The vehicle v(1) has a maximum acceleration of 3 
acceleration units. Moreover, he keeps track of the three last speed values, 25, of v(0). 

 

LKB1  : (clock(3) (atloc(v(1),loc(945)) @ 3) (mode(v(1),following(v(0))) @ 3) (speed(v(1),20) @ 3) 
(gapNext(v(1),55) @ 3) (idNext(v(1),v(0)) @ 3) maxAcc(v(1),3) (histSpd(v(1),v(0),25 @ 3; 25 @ 2; 

25 @ 1) @ 3) (histGap(v(1),55 @ 3; 55 @ 2; 55 @ 1) @ 3) fuel(v(1),1,3) safe(v(1),2,4)) 

 

The following initial platooning configuration, S0, illustrates a scenario with two vehicles v(0) and 

v(1), where LKB1 is the local knowledge base above.  

 

{ [eId | kb ]  

[v(0) : veh | lkb : LKB1,  sensors : (locS speedS gapS),  evs : (tick @ 0)] 

[v(1) : veh | lkb : LKB,  sensors : (locS speedS gapS),  evs : (tick @ 0)] } 

 

Notice that the vehicles have sensors locS, speedS and gapS that sense, respectively, the location, 

speed and gap to obstacles in front. Moreover, [eId | kb] specifies the environment and its knowledge 

base kb contains the actual state of the platoon.  

From a given initial configuration, we can verify the safety of platoons. For example, we can use our 

framework to check whether vehicles can crash even without an intruder. For that we specify the 

function crash(S1) returns true whenever the configuration S1 consists in a state where the vehicles 

v(0) and v(1) crash. 

Consider the initial configuration S0' obtained from the initial configuration above, but where the 

speed of v(1) is 40 instead of 20. We can run the command: 

search[1] S0' => S1 such that crash(S1) . 

And the Maude engine attempts to find whether a configuration S1 that constitutes a crash scenario 

can be reached. Maude is able to find such configuration within 52ms. This result means that the 

chosen parameters for the soft-constraints do not work w.r.t. safety. Indeed, one could expect a 

crash when the speed of a vehicle is much greater than the speed of its preceding vehicle. 
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The configurations above did not include an intruder model and therefore are only useful to verify 

the safety of platoons. The following intruder configuration extends the configuration above with an 

intruder intSpec with the capability of injecting and blocking messages. 

Isys0 : { S0 ; intSpec } 

For example, consider an intruder that can inject at any time the following message: 

msg(v(0),v(1),hbl2f(v(0),70,loc(1070), none)) 

where he impersonates vehicle v(0) informing that he is at much greater speed of 70 than v(0) 

actually is (of 25). We can use Maude to find whether such an intruder can cause a crash by running 

the following command: 

search isys0 =>* isys1 such that crash(isys1) . 

It takes around 90 seconds for Maude to find an attack. 

One way to mitigate these attacks is by specifying plausibility checks, as described in D5.2. Our 

machinery also supports the specification of such plausibility checks. However, as described in 

Chapter 3, we discoverer through our formal framework 3 new attacks for which some cannot be 

mitigated by the proposed plausibility checks. 

To this end, we formalized such attack scenarios using the intruder model supported by our Soft-

Agents verification framework. We run the search command in Maude to automatically check 

whether two vehicles crash under the presence of the intruder. We run all experiments on a 1.90GHz 

Intel Core i7-8665U with 16GB of RAM running Ubuntu 18.04 LTS with kernel 5.4.0-47-generic and 

Maude 3. 

 

Figure 27: Evaluation of the attack scenarios. Some experiments were aborted after 120 minutes 

 

Figure 27 summarizes our main results. We considered 5 different types of attack scenarios, 

specified in detail in D5.2, where attacks are carried during different platooning conditions.  

 II-B - Injection of False Messages Against Follower: In this attack, an intruder sends false 

position and speed values to a vehicle in order to cause a crash with the preceding vehicle. 

This attack works because CACC algorithms ensure that a vehicle maintains a desired 

distance from the preceding vehicle based on the received messages from other vehicles in 

the platoon (especially from the leader) 

 II-C – Slow-Injection of False Messages: The goal of the previous attack II-B is a quick 

crash between two vehicles. To this end, the intruder injects extreme false position and speed 

values into the CACC communication channels. 
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 II-D – Injection of False Messages Against Joining Vehicles: A new vehicle may join a 

platoon after a negotiation phase (a.k.a synchronization handshake) with the leader of the 

platoon. During this negotiation phase, the leader sends the platoon information to this 

vehicle, including the position and speed of the last vehicle, so that the joining vehicle can 

adapt itself to catch up to the platoon. An intruder may impersonate the leader to send false 

information during this negotiation phase. 

 II-E – Injection of False Emergency Brake Messages: The emergency brake is a safety-

type message that may be triggered by any vehicle in the platoon to avoid crashes. An 

intruder, however, might take advantage of this situation to carry out attacks causing vehicles 

to apply emergency brakes without the need to do so. 

 II-F Blocking Legitimate Emergency Brake Messages: Instead of injecting false 

emergency brake messages, the intruder may block legitimate emergency brake messages 

from the CACC communication channels in order to cause a crash.  

The scenarios II-D, II-E and II-F are novel, being discovered while using our formal verification 

machinery. 

We also considered two different plausibility countermeasures denoted as COMM (communication-

based) and SNSR (sensor-based) in Figure 27. 

 COMM: The communication-based countermeasure works as follows. Whenever a vehicle 

receives a message with the speed of the preceding vehicle, the countermeasure checks it 

against the history of speed values communicated that is stored. The countermeasure is 

triggered if the incoming speed value deviates from 30\% w.r.t. the average of the last n 

speed values received by the vehicle. 

 SNSR: The sensor-based countermeasure estimates the speed of the preceding vehicle 

based on the information obtained from the gap sensor. That is, we estimate the speed of 

the preceding vehicle by computing (spd + (gap2 - gap1)), spd as the speed of the vehicle 

and gap2 and gap1 as the last two gap distance measurements. 

Our intruder using both capabilities has successfully carried out the attacks II-B, II-C, and II-D against 

a platoon without countermeasure. The attack II-B, however, has not led to a crash when the 

countermeasures were deployed. In fact, this result was expected as attack II-B sends high-speed 

values to a target vehicle. We run the search command to look for a crash between two vehicles 

without the countermeasure being triggered. We could not find any crash (in 120 minutes). The 

attack II-C bypassed the communication-based countermeasure, but not the sensor-based 

countermeasure. Next, the attack II-D led to a crash even when the countermeasures were deployed. 

Interestingly, neither of those three attacks led to a crash using the injection capability only (i.e., no 

blocking at the same time). This happens because the target vehicle receives legit and false 

messages during the attack, and dynamically adapts its acceleration based on the received 

messages. That is, the target vehicle accelerates when receiving a false message from the intruder, 

e.g., with high-speed values, and decelerate when receiving legit messages from the leader. 

Therefore, we speculate that anti-jamming countermeasures could serve as an additional layer of 

defense against injection attacks for CACC platoons. 

Finally, both the attacks using emergency brake messages led to a crash. In particular, the attack II-

E is effective even without blocking messages from the communication channels. This is due to the 

fact that vehicles immediately stop driving upon receiving an emergency brake message regardless 

of any message (usually blocked by the intruder) sent by the leader. 
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 Penetration Testing 

The collection of information for penetration testing to be done in the assessment phase has begun. 
Once the architectures and the outputs of the tools used in previous stages are ready, they are being 
analysed as inputs for the penetration testing phase.  

 

Figure 28: AF3 Tool provides a great overview to analyse possible attack vectors 

 

A questionnaire with the protocols and sensors used by both Rovers’ architectures has been 
collected which helps Eurecat to begin to search for already known vulnerabilities which could be 
exploitable. Here below there is a table of the main protocols used by each Rover implementation. 
As part of the AVA_VAN document a list of possible vulnerabilities associated to these protocols is 
going to be searched. 

 Tecnalia Fortiss 

Ultrasounds  HC-SR04 40kHz 

WiFi 802.11n 802.11n 5.0GHz 

TLS 1.3 N/A 

Python 2.7 N/A 

Table 23: Main protocols provided to Pen Tester as part of a grey-box strategy 
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On the HW side, the tools for penetration testing are being prepared. A Raspberry PI 4 with 
Raspberry OS has been set up and an ultrasound sensor with the same frequency range of the 
rovers has been chosen to be connected and controlled by the Raspberry. The possibilities of the 
Raspberry to be used for monitoring and packet injection have been considered. Nexmon framework 
is going to be tested (https://github.com/seemoo-lab/nexmon/blob/master/README.md) for this 
purpose 

For penetration testing, it is also considered to use a Kali Linux distribution in the Raspberry. In any 
case, the use of common exploration tools like NMAP is going to be used. As one of the main vectors 
is the WiFi protocol, some possible scripts have been considered as for instance the ones described 
in https://github.com/vanhoefm/krackattacks-scripts. 

 

 

Figure 29: HW tools: Raspberry PI and ultrasounds transducer 

 

 Simulation-based fault-injection 

Fault Injection contributes to the safety analysis phase, which includes the verification and validation 
of safety concepts and requirements. Some of its most remarkable aims are to support the 
assessment of implemented safety requirements, and the correct implementation and the 
effectiveness (diagnostic coverage) of safety or fault-tolerant mechanisms. However, sometimes 
traditional safety analysis methods such as Fault Tree Analysis (FTA) or Failure Mode and Effect 
Analysis (FMEA) are not sufficient. Manual reviews are normally needed to proof the completeness 
and the correctness of those analyses. Furthermore, the failure logic or the effects of certain faults 
cannot easily be determined by those analysis techniques. A promising approach to overcome this 
limitation is to combine traditional analysis with fault injection approaches. It is important to 
understand that fault injection mitigates the new challenges but cannot replace safety assessments 
such as FTA or FMEA. Therefore, fault injection and traditional safety analysis techniques 
complement each other. 

https://github.com/seemoo-lab/nexmon/blob/master/README.md
https://github.com/vanhoefm/krackattacks-scripts


D5.3 – Demonstrator prototypes   

SPARTA D5.3 Public Page 48 of 96 

In order to identify differences in the system´s behaviour and to automate the fault injection 
campaigns, the simulation results of a faulty system under test (faulty SUT) or extended system 
model with faulty behaviour are compared versus a fault-free system (golden SUT) under the same 
workload. Extra model blocks (saboteurs) are injected into the component inputs, which reproduce 
a certain failure mode. After that, the effect of that fault can be observed in the output by including 
extra read-out blocks or monitors. These fault injectors simulate failures at input ports and the 
inclusion of monitors in the outputs tool in order to detect whether and in which ways an output 
assertion is violated in consequence. The results can be stored as part of the safety case as applies 
to conventional safety analysis techniques. 

Section 7.6 describes deeply how this technique has been used in the context of the Connected Car 
case study. 

4.4 Update 

This section describes the implementation status at M24 of the two platooning V2I scenarios 
described in D5.2: the firewall reconfiguration scenario and the firewall update scenario.  

In the V2I firewall reconfiguration scenario platoons communicate with traffic control centers via 
edge clouds distributed along the road network (see Figure 30: Firewall update – Security 
orchestration with vulnerability scan on edge change. As the platoon progresses it must change 
edge clouds to get the best network latency available. This requires reconfiguring the certified vehicle 
firewalls. From the certification point of view only authorized firewall reconfigurations should be made 
as specified by the certified requirements. The firewall must be monitored for detecting firewall 
intrusions and unauthorized changes to the configuration that would allow an attacker to launch 
injection or jamming attacks. This monitoring mechanism is currently under implementation. 

 

 

Figure 30: Firewall update – Security orchestration with vulnerability scan on edge change 

 

The above figure shows the VACSINE tool transforming security requirements into the edge 
security policies and deploying them on the platoons that are passing by. To ensure that firewalls 
are not compromised and remain compliant, vulnerability scans are launched after the 
reconfiguration. The current tool used for monitoring and compliance is OpenScap. Compliance 
evidence include firewall reconfiguration and operation logs, as well as the vulnerability scan 
reports. 



D5.3 – Demonstrator prototypes   

SPARTA D5.3 Public Page 49 of 96 

 

Figure 31: Firewall update - V-Model related to software/security engineering process 

 

In the V2I firewall update scenario, a new version of the firewall is available and needs to be 
deployed on customer vehicles. The update is performed when vehicles are not being driven. The 
firewall update is orchestrated by the VaCSIne tool that is running in a Cloud and has agents 
deployed in the vehicles. From the certification point of view, if some certified requirements are 
impacted then the new firewall version must be re-certified on vehicles. This requires following the 
certification process for the impacted parts. 

Figure 31 highlights the V-Model security steps associated with the firewall update activities: secure 
design using SCAP for security policies, testing by, for example, running vulnerability scans, 
orchestrating the deployment and configuration of security services and monitoring the results of the 
reconfiguration and scans in the operations step. Section 7.3 provides more details on the Firewall 
update implementation in an Infrastructure to Vehicle (I2V) case study where we show how we 
maintain continuous compliance when security requirements are changing 

4.5 Assessment 

The assessment process activities can be linked with the various task of the V-Model related to 

software/security engineering process, as shown in the following figure. 
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Figure 32: V-Model related to software/security engineering process 

 

After Requirement Analysis, the Architecture Design, and System Design must foresee Security by 

Design, as well as Component SW & HW Design in order to have a Secure Design. 

After the development of SW & HW components a Cybersecurity Assessment (VA/PT) is needed, 

and this must repeated after the activity of SW & HW Component Test, Integration testing and 

Function Verification and Validation. 

A visual mapping of the assessment process with the activities of the engineering process is shown 
in the following figure: 

 

Figure 33: Assessment process (V-Model) mapping  
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Chapter 5 Prototypes for Risk discovery, assessment 
and management for complex systems of 
systems (T5.3) 

5.1 Introduction and overview 

Table 24 provides an updated overview of tools and contributions related to the security of software 
and software supply chains. Notable changes compared to deliverable D5.1 are as follows: 

 Buildwatch from UBO will be demonstrated in the context of the e-Government vertical 
instead of the connected cars vertical. Initially it was planned to demonstrate Buildwatch by 
analysing the autonomous vehicle’s platform Apollo Auto. This software, however, is not used 
within the connected cars vertical of WP5. Hence, a more suitable demonstration based on 
Shibboleth, leveraged by CINI’s SAML IdP, is preferred. This barely influences Buildwatch's 
development roadmap and planned evaluations as it was planned to be language agnostic 
from the beginning. 

 Project KB from SAP has been added to the list, which encompasses a YAML data format, 
a dataset with security-related statements about open source projects as well as a tool to 
facilitate data production and consumption. This work was formerly mentioned as part of 
Eclipse Steady, cf. Section 3.1.9 in D5.1, but has been promoted to a separate project/tool, 
due to the general need for publicly available dataset with code-level security information. As 
of Nov 20, the dataset comprises statements related to 702 different security vulnerabilities. 

 The Package Scanner from SAP has been removed from this list, which was meant to detect 
malicious packages deployed in the PyPI package repository. Still, a prototype has been 
developed in collaboration with Cybersecurity for Europe, and its results led to several 
publications. 
 

SafeCommit was originally meant to identify both vulnerability-introducing and vulnerability-fixing 
commits. However, to avoid overlap with SAP’s work on Commit2Vec (cf. Section 5.2.2.2 in D5.2), 
which also identifies fix-commits, it was decided to focus SafeCommit on vulnerability-introducing 
only. 

Partner Contribution Section Technologies Covered Use-case 

UBO Buildwatch 3.2.3 Agnostic E-government 

CEA Frama-C 3.2.4 C Connected cars 

CINI Approver 3.2.1 Java (Android) E-government 

SAP Steady 3.2.15 Java, Python E-government 

SAP Project KB 3.2.10 Agnostic E-government 

UNILU Logic Bomb Detection 3.2.6 Java (Android) E-government 

UNILU SafeCommit 3.2.13 C/C++ Connected cars 

UKON Supply chain visualization 3.2.18 Java, Python E-government 

Table 24: Overview about tools extended/developed in the context of task 5.3 

 

Beyond actual tools, task 5.3 produces several additional contributions in the form of datasets, data 
formats and models/techniques/concepts: 
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 KEMEA contributes a model to determine the attractiveness of open source projects from the 
viewpoint of attackers (cf. Section 5.2.3.1 in D5.2). 

 UBO and SAP contribute a dataset with malicious packages that have been used in past, 
real-world attacks against the npm, Ruby and Python ecosystems (cf. Section 5.2.3.2 in 
D5.2). As of December 7th, the dataset comprises information about 1083 malicious 
packages. 

 

The synergies and integration of all the above contributions is described in the following section, 
while in-depth descriptions of each tool can be found in Chapter 3 of this deliverable and Section 3 
of deliverable D5.2. 

 

5.2 Synergies and integration of individual contributions 

This section describes synergies and integrations of the various SPARTA tools and contributions 
related to the security of software and software supply chains. Figure 34 provides a comprehensive 
overview of those contributions, their nature, e.g., tool or dataset, and selected dataflows. 

 

 

Figure 34: Synergies and integration of task 5.3 contributions 

 

The primary targets of all contributions are (1) package repositories, e.g., PyPI or npm, which contain 
pre-built, binary packages of open source projects, (2) build pipelines, which automate the 
compilation, packaging and deployment process of given software projects and (3) versioning control 
systems, which support the versioning of source code and other development artifacts of software 
projects. Some tools can be applied in multiple contexts, e.g., the Logic Bomb Detector, which can 
be used to check both arbitrary Android packages published on app stores such as Google Play, as 
well as Android packages built for a given project during its pipeline runs. 

The general guideline towards tool integration was to focus on Linux-based build pipelines as 
integration technology, and – where possible – to avoid any direct communication channels. 

This design choice provides a great degree of freedom to tool end-users, who can assemble their 
pipelines according to risk profile and appetite. Of course, tool interaction is also needless when 
different technologies are addressed, e.g., Frama-C targets C/C++ while Approver targets mobile 
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applications for the Android operating system. Furthermore, the focus on pipelines also provides 
freedom to tool developers, who can develop using arbitrary technologies and programming 
languages as long as their tooling can be invoked through the command line of Linux-based pipeline 
executions. 

Accordingly, Figure 34 illustrates the invocation of different tools during three different build pipelines. 
BuildWatch is agnostic to the technology of the development project in question, hence, can be 
invoked no matter the programming language used. In contrast, Frama-C, Approver, Steady and 
Logic Bomb Detector target specific technologies. 

However, a direct communication channel was established in the case of the Security Visualization 
tool and Eclipse Steady. Its purpose being to provide organizations with holistic views on open 
source consumption and security, it seemed appropriate to connect to Steady, which – due to its 
centralized architecture – holds current and historical scan results of potentially all development 
projects of an organization. 

Two dataset contributions of task T5.3, the Backstabber’s Knife Collection of malicious open source 
packages used in real-world attacks, and Project KB with code-level information about vulnerabilities 
in open source projects, play an important role in terms of conceptual integration and community 
building. 

The motivation for both datasets is to provide high-quality data to developers and researchers within 
and outside of SPARTA. Consequently, both projects have been open-sourced on GitHub, and 
already enjoyed contributions from 3rd parties, including commercial software providers and EU 
research projects. They both fill a gap, as corresponding datasets were not available in the past. In 
case of Project KB, for instance, the code-level information about fix commits and vulnerable open 
source projects is more precise and actionable than corresponding databases like the CVE/NVD. 

The consumption and population of those datasets within SPARTA is illustrated by dataflows in 
Figure 34. Dataset contributions typically involve a certain degree of manual review in order to 
maintain the dataset quality, while the consumption happens mostly automated. 

One example flow goes from the Backstabber’s Knife Collection to Project KB, and from there to 
Eclipse Steady. In this example, information about malicious packages is exported to Project KB 
using its YAML format, and from their automatically imported into Steady’s internal database. As a 
result, users of Steady will be notified if their software project depends on a malicious open source 
component version. 

The Backstabber Collection is also used to train models aiming to determine the attractiveness of 
open source projects for attackers, and – in general – serve to improve the detection techniques and 
tools such as Build Watch and Package Scanner. Any new findings of malicious packages will be 
reviewed and fed into the dataset. 

Similarly, the results of our efforts to automatically classify commits in versioning controls systems 
as security-relevant, either vulnerability introducing or fixing, will be reflected as YAML statements 
in Project KB. 
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Chapter 6 Prototypes for Integration on 
Demonstration Cases and Validation (T5.4) 

6.1 Introduction 

The concept of evaluation certification in the context of “Cybersecurity” has evolved in the last 
decades to face what have been the related problems that have arisen with the passage of time and 
with technological developments. 

Evaluation and certification development has proved more difficult in the world of information 
security, where they have had a reasonably long history in which it is possible to highlight the 
advantages and disadvantages of its development. 

After the end of the Cold War, the European model prevailed creating the Common Criteria for 
Information Technology Security Evaluation. 

The common criteria introduced the concept of evaluation against a model called "protection profile" 
which specifies the type of threats that must be assumed and the type of protection that must be 
provided against such threats 

Thanks to its flexibility this approach has found fertile ground also in this project. Demonstration is 
set in Task 5.1 of WP5 in which an ad hoc PP for vertical 1 was defined and in which we have gone 
even further by inserting in such a format alongside the security requirements those of safety. 

 

6.2 Evaluation Process Concepts 

Security should be viewed as a process, which should not be static. Moreover, it must be easily 
modifiable so that any improvement can be implemented and it must cover the entire life cycle of the 
target (product, system or process) to which security is applied. 

One of the problems that arise with a static type certifications is that the validity of the certifications 
would seem to decay when the first patchless vulnerability is highlighted. 

This leads on one hand to push towards the patching of vulnerabilities, but on the other hand it is 
necessary that such patching, if relative to a certified target, needs the definition of an appropriate 
procedure that goes to consider the correct actors (those of the certification process) and 
accompanies this target throughout its life cycle. 

But this is only one aspect of one of the phases of what we can introduce with the name of "Security 
Process". 

Let's then consider what the approach to safety, adopted in the CAPE program of this project, was 
and in particular in deliverable D5.1 

In this context, security (in general) has been approached as an iterated process, and it has been 
shown that the identified process is applicable to different frameworks of interest. 

In particular, the same process has been adapted to the following contexts: 

 Common Criteria Evaluation Process 

 Safety engineering 

 Security engineering 

using the V-model as shown in the following image. 
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Figure 35: Different frameworks V-model appliance 

 

All of these, however, can be traced back to a flow process relating to the security assessment that 
can  generally be applicable to a product, a system (of any complexity) or a process, during its entire 
life cycle 

 

6.3 Introduction to verticals evaluability 

The correlation between the assurance classes and the Cybersecurity process phases can be 
described as follows: 

 ASE (Security Target Evaluation): this class deals with the evaluation of the consistency of 
the ”Security Target” which also contains the definition of the security requirements of the 
TOE, therefore it is closely linked to the security requirements management phase. 

 ADV (Development): this class deals with the evaluation of the six families of requirement for 
structuring and representing the security functionality realized by the target of evaluation 
(TOE) at various levels and varying forms of abstraction that the developer must produce 
during the product development phase, naturally it is linked to the features of the Secure by 
design processes adopted by the supplier. 

 AGD (Guidance Documentation): this class takes care of the evaluation of the manuals that 
are delivered to the customer. These manuals contain both the secure configuration process 
of the TOE in its user environment and its safe use methods for each category of defined 
end-user. 

 ALC (Life-cycle support): this is a very important class that evaluates all aspects of the 
management of the TOE during its life cycle: in the development phase in which it is under 
the responsibility of the developer, during the transitional phase of transport in its final 
operating environment and of course the management in the operating environment under 
the responsibility of the customer and the developer, in the hypothesis of maintaining the 
certification (security patch management). 
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 ATE (Tests): it is the class that takes into consideration all the tests that demonstrate that 
security functionalities operate according to its design descriptions, both the functional ones 
proposed by the developer and the independent ones proposed by the evaluators. 

 AVA (Vulnerability Assessment): this class takes care of vulnerability assessment activity to 
analyze vulnerabilities in the development and operation of the TOE. Development 
vulnerabilities are those introduced during its development and these can be minimized with 
the adoption by the developer of ”security by design” processes. Operational vulnerabilities 
are those that could exploit the weaknesses of non-technical countermeasures to violate the 
TOE security functionality. This analysis is carried out by the evaluators during TOE 
evaluation deliverables analysis or from the classic vulnerability analysis performed also 
adopting automatic tools. 

 

Of course, in such a process, compared to a normal CC certification process, to maintain the status 
of the target obtained with the certification, some of these phases must be repeated throughout its 
life cycle. 

 Vertical 1 - Connected and Cooperative Car Cybersecurity (CCCC) in 
the context of Euro NCAP 

In the context of the Platooning scenario (Vertical 1 Chapter 7), the safety and security requirements 
of the scenario have been defined in the same Common Criteria Protection Profile. 

The Target Of Evaluation (TOE) is the Safety and Security Platooning Management Module 
(SafSecPMM), that is used to ensure the safe and secure operation of vehicle platoons. The TOE 
has an interface towards the Vehicle Communication Device (VCS), the Hardware Security Modules 
(HSM), if HSM is available and is not directly integrated in VCS, and the Vehicle Control Module 
(VCM). 

The PP of SafSecPMM is included in Deliverable D5.2 Annex B. It incorporates security 
countermeasures and other security features to increase the robustness of the platooning behaviour, 
provides accountability information for this behaviour, and contains security measures to protect its 
own assets. 

 Vertical 2 - Complex System Assessment Including Large Software 
and Open Source Environments, Targeting e-Government Services 

A different approach was followed for Vertical 2 (Chapter 8) evaluation instead of CC Protection 
Profile. 

The security evaluation of the CIE ID app in the context of Vertical 2 involves the verification of a set 
of security requirements that enable the assessment of the security posture of the mobile app. 

The following security requirements has been identified, using OWASP Mobile Application Security 
Verification Standard: 

ID 
OWASP 

MOBILE TOP 
10 

Description 

SecR1 M3 
Data is encrypted on the network using TLS. The secure channel is used consistently 
throughout the app. 

SecR2 M7 
The app is signed and provisioned with a valid certificate, of which the private key is 
properly protected. 

SecR3 M7 
The app has been built in release mode, with settings appropriate for a release build 
(e.g., non-debuggable). 
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ID 
OWASP 

MOBILE TOP 
10 

Description 

SecR4 M7 
Debugging code and developer assistance code (e.g., test code, backdoors, hidden 
settings) have been removed. The app does not log verbose errors or debugging 
messages. 

SecR5 M7 Debugging symbols have been removed from native binaries. 

SecR6 M7 The app only requests the minimum set of permissions necessary. 

SecR7 
M2 
M5 
M7 

The app uses cryptographic primitives that are appropriate for the particular use-case, 
configured with parameters that adhere to industry best practices. 

SecR8 M2 The app removes sensitive data from views when moved to the background. 

SecR9 M7 
The app detects, and responds to, the presence of a rooted or jailbroken device either 
by alerting the user or terminating the app. 

SecR10 M3 
The TLS settings are in line with current best practices, or as close as possible if the 
mobile operating system does not support the recommended standards. 

SecR11 M7 JavaScript is disabled in WebViews unless explicitly required. 

SecR12 
M3 
M7 

The app verifies the X.509 certificate of the remote endpoint when the secure channel 
is established. Only certificates signed by a trusted CA are accepted. 

SecR13 
M3 
M7 

The app only depends on up-to-date connectivity and security libraries. 

SecR14 
M2 
M7 

No sensitive data is shared with third parties unless it is a necessary part of the 
architecture. 

SecR15 
M2 
M7 

No sensitive data should be stored outside of the app container or system credential 
storage facilities. 

SecR16 M7 
The app does not export sensitive functionality through IPC facilities, unless these 
mechanisms are properly protected. 

SecR17 M7 No sensitive data is included in backups generated by the mobile operating system. 

SecR18 M7 
A WebView's cache, storage, and loaded resources (JavaScript, etc.) should be 
cleared before the WebView is destroyed. 

SecR19 M3 
The app either uses its own certificate store, or pins the endpoint certificate or public 
key, and subsequently does not establish connections with endpoints that offer a 
different certificate or key, even if signed by a trusted CA. 

SecR20 
M7 
M9 

Obfuscation is applied to programmatic defenses, which in turn impede de-
obfuscation via dynamic analysis. 

SecR21 M3 
A WebView's cache, storage, and loaded resources (JavaScript, etc.) should be 
cleared before the WebView is destroyed. 

Table 25: Security Requirements for Vertical 2 in T5.4 

 

The aforementioned security requirements will be evaluated, using the tools Approver and TSOpen 
by implementing the DevSecOps pipeline. 

Eclipse Steady will be used to assess the presence of known security vulnerabilities affecting any 
of the dependencies of the specific version of Shibboleth integrated in the scenario. In addition, 
Eclipse Steady will be used to detect whether the code implemented to customize the solution 
depends on open-source components with known vulnerabilities, to collect evidence regarding the 
execution of vulnerable code, and to provide updated recommendations. 

  



D5.3 – Demonstrator prototypes   

SPARTA D5.3 Public Page 58 of 96 

Chapter 7 Vertical 1 – Prototypes for Connected and 
Cooperative Car Cybersecurity (CCCC)  

7.1 Introduction 

This chapter describes how the prototypes described in previous chapters have been applied to the 
cooperative car cybersecurity vertical (a.k.a. Connected Car Vertical), in particular to the scenarios 
described in D5.2. For more details on such scenarios, we refer the interested reader to D5.2. 

For each scenario, we detail in the following sections the activities carried out till the time of the 
deliverable. More specifically, Section 7.2 describes how prototypes are used in the basic scenario. 
The next sections increment the basic scenario with new features or new methodologies to evaluate 
the basic scenario. Section 7.3 describes how the firewall can improve the security of the basic 
scenario. Section 7.4 describes the evaluation process for validating the basic scenario with 
penetration testing. Section 7.5 assesses both safety and security compliance and certification with 
the OpenCert tool. Finally, Section 7.6 describes fault-injection and analysis of faulty scenarios by 
means of simulations. 

7.2 Scenario 1: Basic Scenario 

The basic scenario's goal is to evaluate the process, from security analysis, requirements to 
implementation and verification and validation, for increasing the security of vehicle platooning when 
assuming a malicious intruder that can manipulate the communication channels.  

The goal of our intruder is to cause a crash between two legitimate vehicles. To this end, the intruder 
injects false messages into the CACC communication channels. To ensure that injected messages 
are valid, we assume that the intruder can obtain encryption keys from any vehicle in the platoon. 

Finally, the scenario is complemented by the incorporation of a dashboard, a web page that will allow 
checking the status of the platoon. In addition, this dashboard is used to inject false speed messages 
from one car to another. 

 Modelling and Implementation 

The implementation of the Connected Car basic scenario has started from the safety and security 
requirements described in detail in the Safety and Security Platooning Management Module 
(SafSecPMM) Protection Profile (see D5.2 Appendix B [2]). This set of requirements support the 
implementation of the two iterations of the Basic Scenario, having the first one being achieved during 
the second year of the SPARTA project. 

Table 26 shows the requirements that have been defined for the first iteration of the Basic Scenario, 
both for the TEC demonstrator and the FTS demonstrator. The open requirements in the table 
(yellow or red cells) will be tackled in the next iteration of the Basic Scenario. 

Req. Id Short Description TEC FTS 

PMM_IF.1.1 

Maintain heart-beat data 
(vehicle identifier, speed, 
direction, geo-position, 
timestamp) to VCS 

Solved Solved 

PMM_IF.2.1 
Maintain heart-beat data from 
VCS 

Solved Solved 

PMM_IF.3.1 
Maintain incoming emergency 
brake  

Solved Solved 

PMM_IF.4.1 
Maintain incoming emergency 
brake  

Solved Solved 
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Req. Id Short Description TEC FTS 

PMM_IF.5.1 Maintain data from VCM  Solved Solved 

PMM_IF.6.1 Maintain data to VCM Solved Solved 

PMM_PC.1.1 
Data passes all VCS plausibility 
checks 

Solved Solved 

PMM_PC.3.1 
Inform on Failed Plausibility 
Checks 

Solved   

PMM_VCS-HPC.1.1 Maintain heart-beat data history Solved Solved 

PMM_VCS-HPC.2.1 
Heart-beat message consistent 
to the history  

Solved Solved 

PMM_VCS-SPC.1.1 Maintain distances history Solved   

PMM_VCS-TPC.1.1 
Consult the TOE vehicle 
internal clock 

Solved   

PMM_VCM-HPC.1.1 Maintain sensor data history Solved Solved 

PMM_VCM-TPC.1.1 
Consult the TOE vehicle 
internal clock 

Solved   

PMM_VCM-TPC.2.1 Message freshness Solved   

FPT_ITC.1.1 
Inter-TSF confidentiality during 
transmission 

Solved   

FPT_ITI.1.2 Inter-TSF verify integrity Solved   

Table 26: Requirements covered by each demonstrator for the first iteration of the Basic Scenario 

It is important to emphasize that during the second year of the SPARTA project FTS and TEC have 
consolidated a close collaboration between their laboratories. This collaboration has been mainly 
reflected in four ways: periodical meetings, common set of requirements, a shared MS Excel sheet 
to overview implementation progress, and a common Git repository for code.  

 Fortnightly meetings have been held between FTS and TEC to inform about the 
implementation status, share ideas, have a better understanding of our Rovers, help each 
other to solve problems, discover good candidate parts to be re-used, etc. In some of them, 
other CAPE partners, Leonardo and Eurecat, have joined to support the elaboration of a 
Protection Profile according to the ISO/IEC 15408 Common Criteria standard.  

 The implementation of the two demonstrators has started from a common set of 
requirements, defined jointly in the Protection Profile document. As a result, FTS and TEC 
laboratories have produced similar results in the implementation, but with some specificities 
that are described in Section 7.2.1.1 and 7.2.1.2 respectively. 

 FTS and TEC have also worked collaboratively by using an implementation status sheet 
that keeps track of the basic scenario development (see Figure 36). This file, that is available 
at the SPARTA project SVN, has allowed TEC and FTS to track the implementation progress 
of the requirements. For each requirement, we indicate its identification, short description, 
detailed description, iteration, whether the requirement will be covered in the TEC and/or 
Fortis demonstrator, current status (pending, solved, partially solved, cancelled) and 
comments to it.  

 Finally, a private git repository has been created by TEC to share some code that would 
be used in both demonstrators and therefore, to save implementation effort. More specifically, 
the CACC implemented by FTS has been integrated into the TEC Rovers (see Figure 41). In 
the future, FTS also plans to integrate the TEC Dashboard (see Figure 42) into the FTS 
demonstrator, thus becoming another code-reuse sample. As an illustration of the Git 
Repository we have included the Figure 37, showing the high usage of the repo with 240 
commits so far, and the Figure 38 showing the AutoFOCUS3 Project for the CACC and 
generated code. 
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Figure 36: MS Excel sheet showing the implementation status of a subset of the requirements from the PP 

 

 

Figure 37: Git Repo for collaboration in the Platooning Basic Scenario 

 

ID Short Description Description
TEC Rovers 

Demonstrator 

FTS Rovers 

Demonstrator 

TEC Rovers 

Status

FTS Rovers 

Status

PMM_IF.1.1
Maintain heart-beat data 

to VCS 

The TOE shall maintain an outgoing heart-beat data flow with other platooning 

vehicles as specified below:

• From TOE to VCS (and then to another vehicle TOE)

• Messages transmitted shall contain the following data computed from the TOE 

vehicle sensors/algorithms:

  ◦Vehicle unique identifier

  ◦Vehicle speed

  ◦Direction

  ◦Geo-Position

  ◦Timestamp

X X Solved Solved

PMM_IF.2.1
Maintain heart-beat data 

from VCS

The TOE shall maintain an incomming heart-beat data flow with other platooning 

vehicles as specified below:

• From (another vehicle TOE to vehicle) VCS to TOE

• Messages transmitted shall contain the following data collected by the VCS from 

the links to other vehicles

  ◦Unique identifier of  the vehicle to which the data corresponds to

  ◦Vehicle speed

  ◦Direction

  ◦Geo-Position

  ◦Timestamp

  ◦Digitally signed certificates

X X Solved Solved

PMM_IF.3.1
Maintain incoming 

emergency brake 

The TOE shall maintain an incomming flow with other vehicles informing the TOE 

vehicle about emergency brake maneouvers as specified below:

• From (another vehicle TOE to vehicle) VCS to TOE

• Messages transmitted shall contain the following data:

  ◦Unique identifier of the vehicle to which the emergeny brake has been issued

  ◦Emergency brake identifier

  ◦Timestamp

  ◦Digitally signed certificates

X X Solved Solved

PMM_IF.4.1
Maintain incomming 

emergency brake 

The TOE shall maintain an outgoing information flow with other vehicles informing 

the other vehicles about emergency brake maneouver performed by the TOE vehicle 

as specified below:

• From TOE to VCS (and then to another vehicle TOE)

• Messages transmitted shall contain the following data:

◦Unique idenfier of the TOE vehicle

◦Emergency brake identifier

◦Timestamp

X X Solved Solved

PMM_IF.5.1 Maintain data from VCM 

The TOE shall maitain an incomming information from the TOE vehicle VCM and the 

TOE as specified below:

• From VCM to TOE

• Messages transmitted shall contain the following data:

  ◦Speed

  ◦Direction 

  ◦Geo-Position

  ◦Gap to the next vehicle

  ◦Distance to the edges of the lane

X X Solved Solved

PMM_IF.6.1 Maintain data to VCM

The TOE shall maitain an outgoing information from the TOE to the the TOE vehicle 

VCM as specified below:

• From TOE to VCM

• Messages transmitted shall contain the following data:

  ◦Speed

  ◦Direction

X X Solved Solved

PMM_PC.1.1
Data passes all VCS 

plausilibity checks

The TOE shall accept data incomming from the VCS only if the data passes all 

plausilibity checks defined. X X Solved Solved

PMM_PC.2.1
Data passes all VCM 

plausilibity checks

The TOE shall accept data incomming from the VCM only if the data passes all the 

plausilibity checks defined.

PMM_PC.3.1
Inform on Failed 

Plausibility Checks

The TOE shall inform the other vehicles in the platoon, the TOE vehicle driver and 

the authorities whenever a sequence of M rounds of incomming data fails at least N 

plausibility checks. [M,N to be defined by the application]
X X Solved
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Figure 38: FTS CACC code in Git 

 

 Specificities for FTS Rovers (FTS) 

We developed our platoon control system on AutoFOCUS3. In this section, we describe the 
communication process between platoon members, the Cooperative Cruise Control (CACC) system, 
and the plausibility check to mitigate injection attacks. The developed platoon control system has 
been deployed on the FTS rovers. 

 

Figure 39: Communication process between platoon members 

Figure 39 illustrates a platoon scenario that makes explicit the communication process between 
platoon members. This platoon scenario is composed of three vehicles: a leader (ldr), and two 
followers (flw1 and flw2, respectively). The green arrows illustrate the messages exchanged between 
vehicles. These messages are exchanged periodically. Each follower sends a message with 
information such as speed and location to the platoon leader. The leader gathers the received 
information and broadcasts it to each follower in the platoon. Each follower adapts its state based 
on the received message (as explained next). Technically, these messages are sent via UDP 
sockets. The developed communication process allows each follower to know relevant information 
about other vehicles. This information may be used to implement plausibility checks to mitigate 
injection attacks.  

We developed a CACC system to enable followers to adapt to their state, such as speed and 
position, based on information exchanged between vehicles. The developed CACC system is both 
fuel-efficient and safe. That is, if the distance to the preceding vehicle is too great, the fuel 
consumption concern kicks in and attempts to reduce it by accelerating. Similarly, if the distance is 
dangerously short, then the safety concern kicks in and attempts to increase it by decelerating. To 
this end, our CACC system implements functions for fuel-efficient and safe.  
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 safe(id,min,max) denotes that the distance to the preceding vehicle of id is considered safe 
if it is between the values min and max; 

 fuel(id,min,max) denotes that the distance to the preceding vehicle of id is considered fuel 
efficient if it is between the values min and max; 

We attempt to satisfy both concerns, safety and fuel-saving, by searching for interceptions between 
safe and fuel values. If this is not possible, then safety is given priority over fuel-saving. 

We developed a plausibility countermeasure to mitigate injection attacks that send false speed 
values. This plausibility countermeasure considers the speed of the preceding vehicle. To this end, 
we implemented a list on each follower to store the last n speed values from the preceding vehicle 
(a.k.a. history). The plausibility check works as follows. Whenever a follower receives a message 
with the speed of the preceding vehicle, the countermeasure checks it against the local history. The 
countermeasure is triggered if the incoming speed value deviates from 30% w.r.t. the average of the 
last n speed values received by the vehicle. 

Through AutoFOCUS3, we automatically generated C code from the specified platoon control 
system, including the communication process, CACC and plausibility check. The generated code 
has been deployed on the FTS rovers. Figure E illustrates two FTS rovers: a leader (yellow rover) 
and a follower (blue rover) running the generated code from AutoFOCUS3.  

 

Figure 40: FTS rovers 

 

 Specificities for TEC Rovers 

Figure 41 shows the different software parts installed in TEC Rovers (the three rovers have exactly 
the same software with different configurations), the specific parts responsible for interchanging 
messages between cars, and the parties responsible for serving the dashboard page to a web client.  
For connectivity between cars and between cars and the computer displaying the dashboard, we 
use the same private WiFi network. 
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Figure 41: TEC Rovers Software architecture 

The TEC Rovers autonomous driving is composed of different programs, written in C++, modelled 
as ROS Nodes that communicate using the ROS bus message system to interchange commands 
between the nodes. Each node takes on different tasks: 

 acc_sensor: ultrasonic sensor node that provides the distance with the object in front of the 
car, usually a preceding car. 

 camera_stream: get the images and pass them to the lane detection program. 

 lane_detection: program in charge of analysing the camera images and calculating the 
trajectory to keep the car in the lane delimited by white lanes in the ground. 

 communication: program that controls the steering and motion motors using a custom 
board. It accepts commands for setting the speed and steering angle and gives back the 
current speed. 

The software implemented for the project (see Figure 41) fulfils the requirements specified in the 
protection profile. It is mainly a program composed of multiple threads that allow communication 
between the cars. All the software is written in python 2.7, except a CACC module provided by 
AutoFOCUS3 that is written in C but that has been compiled as a shared library (.so) and called from 
the python program. In addition, an NTP server has been installed in the leader to synchronize the 
clocks of the three cars. 

The software uses Flask7 as the framework to serve the pages and respond to the REST calls, the 
python module Requests8 to create the REST HTTPS calls as a client and the rospy library9 to 
communicate with the ROS Nodes in C++. 

                                                

7 https://flask.palletsprojects.com/en/1.1.x/  

8 https://requests.readthedocs.io/en/master/ 

9 http://wiki.ros.org/rospy 

https://flask.palletsprojects.com/en/1.1.x/
https://requests.readthedocs.io/en/master/
http://wiki.ros.org/rospy
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For each thread, there is a corresponding class that manages all the communication with the related 
entity. The following is a list of the most important classes: 

 ros_comm: is in charge of receiving all the ROS messages provided by other ROS nodes to 
acquire the different variables that are needed to know the car status: current speed, distance 
with the previous car and the steering angle. It also provides a method to send ROS 
messages for setting the leader speed. 

 car_comm: is in charge of sending the intercar_data every 0.5 seconds to the other two 
cars in the platoon. The class establishes a secure TLS connection with each of the 
remaining cars and sends the same message to both via REST calls. The intercar_data 
interchanged is the following:  

o timestamp: message time 

o source: car sender id 

o destination: car receiver id 

o speed: sender car speed 

o distance: distance to previous car 

o direction: steering angle 

o emergency_brake: boolean indicating if the car is in emergency mode 

o emergency_break_id: emergency break id 

 rest: is a RESTful API in charge of receiving the REST calls coming from the Dashboard and 
the calls that exchange the intercar_data coming from the other cars of the platoon.  

 control: it centralizes the communication storing all the values coming from ROS Nodes and 
intercar_data. Besides, it integrates the CACC algorithm made by Fortiss that allows the 
platooning and has been explained before (see Section 7.2.1.1). It is also in charge of 
implementing the countermeasures to validate incoming messages to avoid and detect false 
messages coming from a malicious car. The countermeasures are triggered if the incoming 
speed value deviates from 10% the average of the last 3 speed values received by the 
vehicle. Finally, it also listens to the Dashboard events to disable the countermeasures and 
to inject false speed messages between cars. 

 history: it implements the functions in charge of storing all the platooning data (all incoming 
and outgoing messages and the sensors data) in a local database using sqlite3. Each car’s 
local database will have the same data. 

 serve_panel: provides the Dashboard (see Figure 42).  
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Figure 42: Dashboard 

 

Finally, the Dashboard web application has been developed using Bootstrap framework10 and 
jQuery11, that uses the REST API to interact with the cars to support the following objectives: 

 Show relevant indicators (car_info):  

 Identification 

 mode 

 speed 

 distance to preceding car 

 id and speed received from preceding car  

 Show the number of wrong messages detected by the countermeasures. 

 Disable countermeasures, to allow for crashes between attacked cars. 

 Simulate a cyberattack by injecting a false speed in the intercar_data (note that the 
jamming and hacking sensor attacks haven’t been implemented in the first iteration 
of the demonstrator) 

 

                                                

10 https://getbootstrap.com/ 

11 https://jquery.com 

https://getbootstrap.com/
https://jquery.com/
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 Verification and Validation 

Both verification and validation of the basic scenario will be handled by D5.4 [3]. This section briefly 
describes the first steps towards validating our model and implementations. 

We have validated our AutoFOCUS3 model by means of simulations using AutoFOCUS3. More 
specifically, we validated the correctness of our CACC implementation, communication channels 
and plausibility countermeasures through a set of input values. 

As described in Section 4.3.1, we also validated the security of CACC platoon using formal 
verification. We have formalized a CACC platoon in Maude. The formalized CACC platoon should 
cover the same functionalities of the CACC platoon modelled on AutoFOCUS3. We have validated 
the CACC platoon through multiple platoon scenarios such as joining and emergency mode. 
Security-wise, we validate the effectiveness of multiple attack scenarios and two plausibility 
countermeasures (all described in Section 4.3.1).  

 

Figure 43: Injection of false speed values leads to a crash between vehicles 

 

Next, we generated C code from AutoFOCUS and deployed the generated code on the FTS rovers. 
We validated the effectiveness of an injection attack (see attack II-B from Section 4.3.1) against the 
FTS rovers through actual experiments. That is, we validated whether the injection of false speed 
values would lead to a crash between two vehicles. Our experimental results confirmed the 
effectiveness of this attack. Figure 43 illustrates a crash between two FTS rovers, where the yellow 
rover maliciously sent false speed values to the blue rover.  

In addition, we validated the effectiveness of a plausibility countermeasure (see COMM 
countermeasure from Section 4.3.1) against this injection attack. Our experimental results showed 
that the implemented countermeasure was effective in mitigating the injection attack. 

The validation of the basic scenario has been recorded in a video, an outstanding project output 
focused on dissemination purposes. The video storyline goes through the definition of the Connected 
Car Platooning scenario, the requirements definition by means of the Protection Profile, the 
AutoFOCUS modelling process, the formal methods used for security-by-design, and concludes with 
the two demonstrators of the basic scenario, FTS demonstrator and TEC demonstrator. Figure 43 
and Figure 44Figure 50 show some video frames extracted from the video. 
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Figure 44: TEC Rovers moving in a platoon 

 

 Assessment 

We assess the adequacy of our implementation based on the requirements defined in the protection 
profile. The complete list of requirements can be found in the SPARTA repository. A screenshot of 
a subset of these requirements is shown in Figure 36.  

We have implemented multiple requirements from the protection profile, including: 

 PMM_IF.1.1/PMM_IF.2.1: Platoon members (e.g., leader) may send heartbeat message to 
other platoon members (e.g., followers) as well as receive heartbeat messages from other 
platoon members.  

 PMM_IF.3.1/PMM_IF.4.1: Platoon members may send emergency brake messages to other 
platoon members as well as receive emergency brake messages from other platoon 
members. 

 PMM_VCS-HPC.1.1: Each platoon member keeps a history of the last n received heartbeat 
messages. 

 PMM_VCS-HPC.2.1: Each incoming heartbeat message must be checked against the local 
history. As a result, only messages that are consistent with local history shall be allowed 
(plausibility countermeasure). 

These requirements were enough to evaluate the basic scenario. They enabled us to evaluate the 
CACC platoon itself, and communication between platoon members. Moreover, we also evaluated 
the history-based plausibility countermeasure against an injection attack. 

We are yet to implement other requirements such as the one about a plausibility check (PMM_VCS-
HPC.3.1) for mitigating attacks injecting false emergency brake messages. We will also implement 
the requirement about keeping the history of the last n distance values from the preceding vehicle. 
This will help us to implement plausibility countermeasures that use data from the gap sensor, as 
described in Section 4.3.1.  

We were not able to implement some requirements from the protection profile. For instance, the FTS 
rovers do not share internal clock. Hence, we could not implement the requirements PMM_VCM-
TPC.1.1 and PMM_VCM-TPC.2.1 that aim to check the timestamp of incoming heartbeat messages 
for message freshness. 
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7.3 Scenario 2: Firewall updates 

In this demonstration scenario, we develop an Infrastructure to Vehicle (I2V) case study where 
continuous compliance can be maintained when security requirements are dynamic. In the security 
branch of the V-Model, this scenario covers security design through the use of SCAP to describe the 
security policies, testing with the application of vulnerability scans and operations with the 
orchestration of the security services. 

In a first iteration, we consider the case of a platoon that traverses zones with different security 
requirements. In a second iteration to be implemented in the first half of 2021 we will enrich the 
scenario to demonstrate how to apply security requirements to a vehicle joining the platoon and 
improve the security services registry with for example honeypots. 

 Modelling and Implementation 

The demonstration scenario is developed on the CETIC testbed (see Figure 45), it is implemented 
as follows: 

 A Private Cloud infrastructure managed by the Proxmox Virtual Environment12 open-source 
server management platform coupled with Kubernetes13 to provide container orchestration, 
Kubernetes clusters are managed using the Rancher14 solution. The cloud is connected to 
the Edge nodes devices using the KubeEdge15 system, which provides container 
orchestration at the Edge, Raspberry Pi devices are used to simulate the traffic infrastructure, 
providing wifi connectivity and local security zone policies for the platoon. This infrastructure 
offers scalable on-demand compute resources to support variations in the load of the 
simulation. 

 The platoon consists of Donkey Car16  rovers. They can use a Raspberry Pi to drive 
autonomously, but we chose the Jetson Nano Development Board17 instead to leverage its 
improved GPU capabilities for data intensive processing at the edge (e.g. real-time image 
processing). The rovers use a wide-lens camera for lane detection, ultrasonic sensors and a 
2D Lidar for distance detection. 

 The orchestration of the security services is provided by VaCSIne, it is written as Python 
microservices. The Security Agent orchestrates the deployment and configuration of the 
security services (firewalls, vulnerability scanners, honeypots, etc.) using Ansible18 
playbooks and Helm19 charts. 

 Security services orchestration and execution produce traces that can be monitored. 
VaCSIne produces logs of the orchestration, for instance when a new service is deployed or 
reconfigured. Security services will also output traces, for example a vulnerability scan with 
OpenSCAP will produce execution logs and a vulnerability scan report. We use Grafana 
Loki20 for the management and visualisation of the logs and security events in the system.  

                                                

12 https://proxmox.com/en/proxmox-ve 

13 https://kubernetes.io/ 

14 https://rancher.com/ 

15 https://kubeedge.io/ 

16 https://www.donkeycar.com/ 

17 https://developer.nvidia.com/embedded/jetson-nano-developer-kit 

18 https://www.ansible.com/ 

19 https://helm.sh/ 

20 https://grafana.com/oss/loki/ 
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 The infrastructure continuous integration, deployment and assessment is supported by the  
GitLab and Foreman platforms. 

 

Figure 45: Vertical 1, Scenario 2 - CETIC testbed implementation and deployment view 

 

Figure 46 is a picture of a platoon of rovers in the CETIC testbed, the platoon is composed of a 
leader and a follower. The platoon can be seen driving on the road between two wifi hotspots the 
Security Agents will reconfigure the security services to satisfy the new hotspot zone securthat 
simulate the traffic infrastructure. When the platoon changes from one hotspot to the other (based 
on signal strength), the Security Agents will reconfigure the security services to satisfy the new 
hotspot zone security policy. 

 

Figure 46: Vertical 1, Scenario 2- CETIC Edge testbed 
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To monitor the security events in the testbed, we use the Grafana Loki log aggregation system. 
The results can be viewed in Grafana web interface, where the logs and events can be explored 
and monitored in dashboards through various visualisations. Figure 47 presents a sample 
dashboard that shows the timeline of events and corresponding logs when a platoon drives 
between edges: vulnerability scans and security remediations are applied as needed when the 
security policy changes. 

 

Figure 47: Vertical 1, Scenario 2- Grafana log and event dashboard 

 

 Verification and Validation 

Verification and validation of this scenario will be done in D5.4. We describe briefly here our initial 
approach to validate the scenario implementation. 

In this first iteration, we deployed the platoon on the CETIC testbed with a default security policy and 
perform vulnerability scans to check the default security policy is verified on the platoon. While the 
platoon drives between zones with different security policies, the security services (in this first 
iteration, the firewall) are redeployed and reconfigured. This produced compliance evidence in the 
form of vulnerability scan reports and logs for the security services orchestration. Figure 48 provides 
a sample SCAP content that corresponds to a security policy where the firewall needs to be running 
and the ssh port should be closed. 
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Figure 48: Sample security policy – Extract of SCAP/OVAL ssg-rhel7 

 

We use Foreman21 combined with Gitlab-CI to orchestrate the DevSecOps pipeline. Figure 49 shows 
the Foreman web interface for a non-compliant vehicle, this is the result of a vulnerability scan using 
OpenSCAP.  

 

Figure 49: Compliance status in Foreman 

 

In the next iteration, we will validate inside the continuous assessment pipeline that the security 
requirements stay satisfied by correlating the security orchestration logs and the vulnerability scan 
reports. 

 

 

                                                

21 https://www.theforeman.org/ 
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7.4 Scenario 3: Verification tooling 

 Modelling and Implementation 

As commented in chapter 4.3.2 the tools to perform the penetration testing phase are being 
prepared.  

On one side, there is the collection of information and exploration of already known vulnerabilities. 
Special focus here are the WiFI attacks as main vector with exploitable results, but also python, TLS, 
Raspberry and Broadcom chipsets are studied. Here below there is the complete list of CVEs found 
on the different attack vectors. 

 

TLS1.3 

CVE Description Applicability 

CVE-2018-19608 Arm Mbed TLS before 2.14.1, before 2.7.8, and before 
2.1.17 allows a local unprivileged attacker to recover 
the plaintext of RSA decryption, which is used in RSA-
without-(EC)DH(E) cipher suites. 

Local attacks are not 
contemplated in this pen-
testing. To check if it is 
possible somehow to 
access locally via WiFI 
vector. 

CVE-2018-12404 A cached side channel attack during handshakes 
using RSA encryption could allow for the decryption of 
encrypted content. This is a variant of the Adaptive 
Chosen Ciphertext attack (AKA Bleichenbacher 
attack) and affects all NSS versions prior to NSS 3.41. 

Local attacks are not 
contemplated in this pen-
testing. To check if it is 
possible somehow to 
access locally via WiFI 
vector. 

CVE-2018-16868 A Bleichenbacher type side-channel based padding 
oracle attack was found in the way gnutls handles 
verification of RSA decrypted PKCS#1 v1.5 data. An 
attacker who is able to run process on the same 
physical core as the victim process, could use this to 
extract plaintext or in some cases downgrade any TLS 
connections to a vulnerable server. 

Local attacks are not 
contemplated in this pen-
testing. To check if it is 
possible somehow to 
access locally via WiFI 
vector. 

CVE-2018-16869 A Bleichenbacher type side-channel based padding 
oracle attack was found in the way nettle handles 
endian conversion of RSA decrypted PKCS#1 v1.5 
data. An attacker who is able to run a process on the 
same physical core as the victim process, could use 
this flaw extract plaintext or in some cases downgrade 
any TLS connections to a vulnerable server. 

Local attacks are not 
contemplated in this pen-
testing. To check if it is 
possible somehow to 
access locally via WiFI 
vector. 

CVE-2018-16870 It was found that wolfssl before 3.15.7 is vulnerable to 
a new variant of the Bleichenbacher attack to perform 
downgrade attacks against TLS. This may lead to 
leakage of sensible data. 

Local attacks are not 
contemplated in this pen-
testing. To check if it is 
possible somehow to 
access locally via WiFI 
vector. 

CVE-2019-6659 On version 14.0.0-14.1.0.1, BIG-IP virtual servers with 
TLSv1.3 enabled may experience a denial of service 
due to undisclosed incoming messages. 

 



D5.3 – Demonstrator prototypes   

SPARTA D5.3 Public Page 73 of 96 

CVE Description Applicability 

CVE-2020-24613 wolfSSL before 4.5.0 mishandles TLS 1.3 server data 
in the WAIT_CERT_CR state, within 
SanityCheckTls13MsgReceived() in tls13.c. This is an 
incorrect implementation of the TLS 1.3 client state 
machine. This allows attackers in a privileged network 
position to completely impersonate any TLS 1.3 
servers, and read or modify potentially sensitive 
information between clients using the wolfSSL library 
and these TLS servers. 

Local attacks are not 
contemplated in this pen-
testing. To check if it is 
possible somehow to 
access locally via WiFI 
vector. 

CVE-2020-1968 The Raccoon attack exploits a flaw in the TLS 
specification which can lead to an attacker being able 
to compute the pre-master secret in connections 
which have used a Diffie-Hellman (DH) based 
ciphersuite. In such a case this would result in the 
attacker being able to eavesdrop on all encrypted 
communications sent over that TLS connection. The 
attack can only be exploited if an implementation re-
uses a DH secret across multiple TLS connections. 
Note that this issue only impacts DH ciphersuites and 
not ECDH ciphersuites. This issue affects OpenSSL 
1.0.2 which is out of support and no longer receiving 
public updates. OpenSSL 1.1.1 is not vulnerable to 
this issue. Fixed in OpenSSL 1.0.2w (Affected 1.0.2-
1.0.2v). 

If not in the last version of 
openSSL, it could be 
exploited. 

CVE-2020-1967 Server or client applications that call the 
SSL_check_chain() function during or after a TLS 1.3 
handshake may crash due to a NULL pointer 
dereference as a result of incorrect handling of the 
"signature_algorithms_cert" TLS extension. The crash 
occurs if an invalid or unrecognised signature 
algorithm is received from the peer. This could be 
exploited by a malicious peer in a Denial of Service 
attack. OpenSSL version 1.1.1d, 1.1.1e, and 1.1.1f are 
affected by this issue. This issue did not affect 
OpenSSL versions prior to 1.1.1d. Reported by Bernd 
Edlinger. 

It could be exploited if not 
last version of OPENSSL 

 

 

CVE-2020-24659 An issue was discovered in GnuTLS before 3.6.15. A 
server can trigger a NULL pointer dereference in a 
TLS 1.3 client if a no_renegotiation alert is sent with 
unexpected timing, and then an invalid second 
handshake occurs. The crash happens in the 
application's error handling path, where the 
gnutls_deinit function is called after detecting a 
handshake failure. 

It could be exploited if 
GNUTLS is used and not 
the final version SW 

CVE-2020-13777 GnuTLS 3.6.x before 3.6.14 uses incorrect 
cryptography for encrypting a session ticket (a loss of 
confidentiality in TLS 1.2, and an authentication 
bypass in TLS 1.3). The earliest affected version is 
3.6.4 (2018-09-24) because of an error in a 2018-09-
18 commit. Until the first key rotation, the TLS server 
always uses wrong data in place of an encryption key 
derived from an application. 

It could be exploited if 
GNUTLS is used and not 
the final version SW 

Table 27: TLS selected CVEs 
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WiFi 802.11n 

CVE Description Applicability 

CVE-2019-15126 
(Broadcom) 

CVE-2020-
3702(Qualcomm) 

KROOK attacks. An issue was discovered on 
Broadcom Wi-Fi client devices. Specifically timed and 
handcrafted traffic can cause internal errors (related to 
state transitions) in a WLAN device that lead to 
improper layer 2 Wi-Fi encryption with a consequent 
possibility of information disclosure over the air for a 
discrete set of traffic, a different vulnerability than 
CVE-2019-9500, CVE-2019-9501, CVE-2019-9502, 
and CVE-2019-9503. 

To be checked, as some 
devices use Broadcom 
chipsets. 

 

CVE-2017-13077, 
CVE-2017-13078, 
CVE-2017-13079, 
CVE-2017-130780, 
CVE-2017-130781, 
CVE-2017-13082 
CVE-2017-13084, 
CVE-2017-13086, 
CVE-2017-13087, 
CVE-2017-13088 

This CVE are all the representative of the KRAK 
attacks. Wi-Fi Protected Access (WPA and WPA2) 
allows reinstallation of the Pairwise Transient Key 
(PTK) Temporal Key (TK) during the four-way 
handshake, allowing an attacker within radio range to 
replay, decrypt, or spoof frames. 

To be checked if not yet 
updated with last FW. 

Karma attacks Karmetasploit is a great function within Metasploit, 
allowing you to fake access points, capture 
passwords, harvest data, and conduct browser attacks 
against clients. 

 

Table 28: WI-Fi selected CVEs 

 

Rasbperry Pi (module B+) 

CVE Description Applicability 

CVE-2018-18068 The ARM-based hardware debugging feature on 
Raspberry Pi 3 module B+ and possibly other devices 
allows non-secure EL1 code to read/write any EL3 
(the highest privilege level in ARMv8) memory/register 
via inter-processor debugging. With a debug host 
processor A running in non-secure EL1 and a debug 
target processor B running in any privilege level, the 
debugging feature allows A to halt B and promote B to 
any privilege level. As a debug host, A has full control 
of B even if B owns a higher privilege level than A. 
Accordingly, A can read/write any EL3 
memory/register via B. Also, with this memory access, 
A can execute arbitrary code in EL3 

It may require physical 
access which is out of scope 

Table 29: Raspberry Pi selected CVE 
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BROADCOM 

CVE Description Applicability 

CVE-2017-9417 Broadcom BCM43xx Wi-Fi chips allow remote 
attackers to execute arbitrary code via unspecified 
vectors, aka the "Broadpwn" issue. 

There is a high possibility of 
success. Check also CVE-
2017-11122, CVE-2017-
11121, CVE-2017-11120 
from similar family. 

CVE-2018-19860 Broadcom firmware before summer 2014 on Nexus 5 
BCM4335C0 2012-12-11, Raspberry Pi 3 
BCM43438A1 2014-06-02, and unspecifed other 
devices does not properly restrict LMP commnds and 
executes certain memory contents upon receiving an 
LMP command, as demonstrated by executing an HCI 
command 

There are possibilities to 
exploit 

Table 30: Broadcom selected CVEs 

 

Python 2.7 Server – client 

CVE Description Applicability 

CVE-2020-25658 It was found that python-rsa is vulnerable to 
Bleichenbacher timing attacks. An attacker can use 
this flaw via the RSA decryption API to decrypt parts 
of the cipher text encrypted with RSA. 

As there is TLS also, it may 
be interesting 

CVE-2020-8492 Python 2.7 through 2.7.17, 3.5 through 3.5.9, 3.6 
through 3.6.10, 3.7 through 3.7.6, and 3.8 through 
3.8.1 allows an HTTP server to conduct Regular 
Expression Denial of Service (ReDoS) attacks against 
a client because of 
urllib.request.AbstractBasicAuthHandler catastrophic 
backtracking. 

It could work 

CVE-2020-27783 A XSS vulnerability was discovered in python-lxml's 
clean module. The module's parser didn't properly 
imitate browsers, which caused different behaviors 
between the sanitizer and the user's page. A remote 
attacker could exploit this flaw to run arbitrary 
HTML/JS code. 

It could work 

CVE-2020-26116 http.client in Python 3.x before 3.5.10, 3.6.x before 
3.6.12, 3.7.x before 3.7.9, and 3.8.x before 3.8.5 
allows CRLF injection if the attacker controls the HTTP 
request method, as demonstrated by inserting CR and 
LF control characters in the first argument of 
HTTPConnection.request. 

It’s python 3.0 but still 
enough interesting to list it 
here and maybe test it. 

CVE-2019-10160 A security regression of CVE-2019-9636 was 
discovered in python since commit 
d537ab0ff9767ef024f26246899728f0116b1ec3 
affecting versions 2.7, 3.5, 3.6, 3.7 and from v3.8.0a4 
through v3.8.0b1, which still allows an attacker to 
exploit CVE-2019-9636 by abusing the user and 
password parts of a URL. When an application parses 
user-supplied URLs to store cookies, authentication 

It could be possibly affected 
if python is not updated 
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CVE Description Applicability 

credentials, or other kind of information, it is possible 
for an attacker to provide specially crafted URLs to 
make the application locate host-related information 
(e.g. cookies, authentication data) and send them to a 
different host than where it should, unlike if the URLs 
had been correctly parsed. The result of an attack may 
vary based on the application. 

CVE-2019-9947 An issue was discovered in urllib2 in Python 2.x 
through 2.7.16 and urllib in Python 3.x through 3.7.3. 
CRLF injection is possible if the attacker controls a url 
parameter, as demonstrated by the first argument to 
urllib.request.urlopen with \r\n (specifically in the path 
component of a URL that lacks a ? character) followed 
by an HTTP header or a Redis command. This is 
similar to the CVE-2019-9740 query string issue. 

It could be possibly affected 
if python is not updated 

CVE-2019-9740 An issue was discovered in urllib2 in Python 2.x 
through 2.7.16 and urllib in Python 3.x through 3.7.3. 
CRLF injection is possible if the attacker controls a url 
parameter, as demonstrated by the first argument to 
urllib.request.urlopen with \r\n (specifically in the query 
string after a ? character) followed by an HTTP header 
or a Redis command. 

It could be possibly affected 
if python is not updated 

CVE-2019-5010 An exploitable denial-of-service vulnerability exists in 
the X509 certificate parser of Python.org Python 
2.7.11 / 3.6.6. A specially crafted X509 certificate can 
cause a NULL pointer dereference, resulting in a 
denial of service. An attacker can initiate or accept 
TLS connections using crafted certificates to trigger 
this vulnerability. 

. 

CVE-2019-5010 is 
exploitable with network 
access, and does not 
require authorization 
privledges or user 
interaction. This 
vulnerability is considered to 
have a low attack 
complexity. It has the 
highest possible 
exploitability rating (3.9). 
The potential impact of an 
exploit of this vulnerability is 
considered to have no 
impact on confidentiality 
and integrity, and a high 
impact on availability 

CVE-2018-20852 http.cookiejar.DefaultPolicy.domain_return_ok in 
Lib/http/cookiejar.py in Python before 3.7.3 does not 
correctly validate the domain: it can be tricked into 
sending existing cookies to the wrong server. An 
attacker may abuse this flaw by using a server with a 
hostname that has another valid hostname as a suffix 
(e.g., pythonicexample.com to steal cookies for 
example.com). When a program uses 
http.cookiejar.DefaultPolicy and tries to do an HTTP 
connection to an attacker-controlled server, existing 
cookies can be leaked to the attacker. This affects 2.x 
through 2.7.16, 3.x before 3.4.10, 3.5.x before 3.5.7, 
3.6.x before 3.6.9, and 3.7.x before 3.7.3. 

It could be possibly affected 
if python is not updated 

Table 31: Python 2.7 selected CVEs 
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On the other side, a setup for the tools composed by a Raspberry PI 4 (which has possibilities to be 
used in monitor mode thanks to the Nexmon driver tool) is going to be used. Also an ultrasounds 
transceivers has been chosen and first integration tests with the raspberry have been integrated (see  
Figure 50) 

 

 

Figure 50: Ultrasound sensor used for pen-testing 

 

The protection profile is also analysed to see if there is any possible fault in the protocol and the 
outputs of some tools (like AF3) are used in order to get a better overview of the system and 
understand all the possibilities. 

 

7.5 Scenario 4: Safety and Security compliance assessment and 
certification 

 Modelling and Implementation 

Some of the activities described in deliverable 5.2 have been developed in this first iteration of the 
scenario 4, including the digitalization of the safety and security standards, the creation of two 
Assurance projects, one per each standard, and the addition of the evidences into the Assurance 
projects. 

First, the digitalization of the standards must be done. As mentioned in D5.1 [1] and D5.2 [2] the 
standards to be modelled with OpenCert are ISO 26262 ”Functional Safety Road Vehicles” for 
functional safety and SAE J3061 “Cybersecurity Guidebook for Cyber-Physical Vehicle System” for 
cybersecurity. They will be created in the Reference Framework folder. Two new files will be created 
per standard, one file will show the standard modelled in a tree view folder and the other one in a 
diagram view. Figure 51 shows the diagram view with all the main activities and sub-activities of the 
ISO 26262 Standard. 
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Figure 51: Diagram view of ISO 26262 in OpenCert 

 

The standard is carefully digitalized where all the activities and their requirements are included. If 
necessary, we could specify for each requirement its applicability (recommended or highly 
recommended) and its criticality level (A, B, C, D). Figure 52 presents a specific requirement which 
recommends when different methods/artifacs should be applied depending on the criticality level (A, 
B, C, D). 
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Figure 52: Applicability of methods depending on the criticality level 

Figure 53 shows the diagram view of the SAE J3061 “Cybersecurity Guidebook for Cyber-Physical 
Vehicle System”. 

 

Figure 53: Diagram view of SAE J3061 in OpenCert 
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After the ISO 26262 and SAE J3061 standards are completely digitalized, we can create the two 
Assurance projects. When creating an Assurance project, OpenCert helps the engineer to select the 
activities and requirements to be fulfilled according to the level of criticality of the system. 

The Safety Engineer and the Security Engineer follow the steps of both standards in parallel but 
always having each other into consideration. They must be in constant communication to avoid 
incongruities where one standard may conflict with the other.  

 

Figure 54: Generation of an Assurance project for ISO 26262 

 

In the first iteration of the scenario we have included several evidences in the Assurance projects of 
both standards:  

 In the ISO 26262 Assurance project, we have added the HAZARD analysis for the Connected 
Car Vertical that was documented in D5.1, resulting in a criticality level D for the platooning. 
Furthermore, we have added the FMEA analysis that was documented in D5.2 Annex A. 
Figure 55 shows the FMEA evidence in OpenCert and how it is linked to its corresponding 
requirement. 

 In the SAE J3061 Assurance project, we have added the Protection Profile document that 
was documented in D5.2 Annex B as an evidence of the security requirements definition.  
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Figure 55: FMEA evidence added in the ISO 26262 Assurance project 

 

In the next iteration of the scenario, we will add more evidences to the Assurance projects, and will 
make the necessary arguments. These arguments, which will be defined in a structured way called 
"Assurance Case", are those that allow specifying convincing justification that a system is adequately 
safety and secure. 

 Verification and Validation 

The verification and validation of this scenario will be documented in D5.4. 

 

7.6 Scenario 5: Fault-injection and analysis of faulty scenarios 

 Modelling and Implementation 

In the first iteration of the scenario, we have implemented a proof of concept with the Sabotage tool 
to carry out a preliminary analysis of a security mechanism before being integrated in the Connected 
Car Vertical.  

We have modelled a mathematical model in the Matlab/Simulink tool, through the predefined blocks 
of its library, to detect whether the information (speed of the vehicle in front) received through the 
WiFi communications of one of the vehicles is false or not. This information is contrasted with the 
information that this vehicle receives from its proximity sensor (ultrasonic sensor). The mathematical 
algorithm is called a sensor-based plausibility check. Figure 56 shows some of the types of failures 
that have been tested with this model. 

 



D5.3 – Demonstrator prototypes   

SPARTA D5.3 Public Page 82 of 96 

 

Figure 56: Plausibility check model 

 

Once the model has been created in Simulink, it is time to start testing it to make sure the algorithm 
works as it should. To know if the algorithm is working correctly, we must inject faults to verify that it 
really detects when there is a false input value or when it is a true value. By defining what type of 
fault we are going to inject, where, when, and for how long, we will be able to visualize its response. 
Figure 57 shows the type of failures that have been tested on this model. 

 

Figure 57: Fault types 

 

All these simulations will help to know if the engineer has to configure better the fault tolerance of 
the algorithm or, if on the contrary, there is some kind of fault that s/he is unable to detect. If that is 
the case the engineer should redefine the algorithm again. Once the algorithm has been redefined, 
all the previous tests must be carried out again to ensure that this time they have been detected. In 
Figure 58 there is an example of a test with a “ramp up” fault and we can be seen that the algorithm 
works properly. 
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Figure 58: Example of simulation results 

 

In the next iteration of the scenario, we will perform more simulations to inject other types of failures 
into the algorithm, and the required corresponding modifications will be done before including them 
into the vehicle. 

 Verification and Validation 

The verification and validation of this scenario will be documented in D5.4. 
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Chapter 8 Vertical 2 - Prototypes for e-Government 
Services 

8.1 Introduction 

This chapter illustrates the prototypes for demonstration of the “Complex System Assessment 
Including Large Software and Open-Source Environments, Targeting e-Government Services” 
vertical (a.k.a. e-Government services vertical), having as goal to improve the cyber-security of the 
innovative authentication solutions based on the usage of the Italian national electronic identity card 
(CIE). The main use case is based on the use of an app on the smartphone to interact with the CIE 
(through the NFC interface) as an authentication tool to gain access to the services offered by the 
Public Administration. 

In Section 8.2 we present the technical aspects of the selected scenarios, by describing the 
environment on which the demonstration will take place. 

In Section 8.3 we describe the demonstrator prototypes we developed aiming to show how the CAPE 
tools contribute to secure the CIE selected scenarios.   

 

8.2 Scenarios 

As mentioned in D5.2, for the demonstration of vertical 2 we identified two main components, as 
depicted in Figure 59: 

 CIE ID APP, and 

 SAML IdP on the CIE ID SERVER 

 

Figure 59: Components in the scope of the demonstrations 

 

For each component we defined a demonstration scenario. In D5.2 we mainly focused on the 
functional and security aspects of these scenarios, while in the following subsections we provide 
more details concerning the used technology of each scenario. The aim is to specify the environment 
on which the demonstration will take place. 

 

 Scenario for the CIE ID APP 

CieID is the app developed by the Italian National Mint and Printing House for access, leveraging 
the electronic identity card (CIE 3.0), to the services of the Italian Public Administrations and the 
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services provided by the member states of the European Union under the regulation EU 910/2014 
eIDAS.  

The app has been developed in Kotlin programming language, and it required Android 6.0 and later 
(API level > 23) equipped with NFC interface. The app integrates third-party libraries to provide 
specific functionalities and allows the users to make the most of the potential offered by the app. 
Two examples of the third-party libraries used in the app are okhttp, a library in charge of handling 
all HTTP calls, and Firebase Crashlytics, a lightweight real-time crash reporter that helps to track, 
prioritize, and fix stability issues that erode the app quality. The app is available in the official Google 
Play Store and currently has more than 100.000 installations. 

In the context of the SPARTA project, CINI has extended the Gitlab environment in such a way to 
use the continuous integration functionalities offered by Gitlab to automatically build the APK file 
after each commit in the repository. 

 Scenario for the SAML IdP 

SAML IdP is based on Shibboleth, a standard-based, open-source software package for Single Sign-
on (SSO) system across or within organizational boundaries. It allows sites to make informed 
authorization decisions for individual access of protected online resources in a privacy-preserving 
manner. SAML IdP is responsible for supplying information about users at a domain to relying parties 
protected by service providers leveraging the information contains in the CIE.  

The Shibboleth’s IdP workflow forecasts that when an HTTP request arrives at a request dispatcher, 
it inspects the request and, based on its properties, sends it to a profile manager. A profile manager, 
as the name suggests, is designed to handle a particular protocol profile request (for example, SAML 
1 Attribute Query, SAML 2 Single Sign-On). In this case, the functions of sending requests and 
managing profiles are actually implemented by Spring Web Flow, which is located on top of the 
Spring MVC layer. Each request is mapped to a specific profile flow, the higher-level units of 
processing in the software. Each profile flow is composed of a set of actions that perform part of the 
overall process required to generate the appropriate response. Requests go from action to action 
until the response is complete and then return to the requester. At a high level, the actions are, for 
example, to authenticate the user, perform the resolution of attributes, sign the responses, etc. When 
an action does its job, it can, in turn, make calls to one or more IdP services. Each communication 
is through an API REST via HTTPS. Shibboleth is mostly a set of software components made using 
the Spring framework based on Java programming language and built with Apache Maven. 

The SAML IdP is indeed a custom implementation of Shibboleth IdP deployed on an Azure Virtual 
Machine with two virtual CPUs and 8Gb of RAM. The OSx on the virtual machine is Ubuntu 20.04 
with Java JDK 1.8 and Apache Tomcat version 9.0.40. 

FBK has recently extended the Gitlab environment in such a way to use the continuous integration 
functionalities offered by Gitlab. Every time a git commit is pushed on the repository, the source code 
is automatically built and deployed (using Apache Maven) on an Azure virtual machine. It provides 
a running version of CIE ID SERVER, which is accessible for functional and security testing. 

The workflow of the pipeline for the CI of the SAML IdP is composed of the following Stages, also 
depicted in Figure 60: 

 Build maven: during this stage, a shell script is executed by the Gitlab runner, hosted on the 
Azure Virtual Machine, and make the build of the SAML IdP via Apache Maven. 

 Deploy artifact: this stage is in charge of deploying the SAML IdP on the server where it is 
running. Moreover, it stops the Apache Tomcat service, copies the artifact from the previous 
stage, and then starts the service again. 
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Figure 60: Example of the status of a GitLab Stage during code submission 

 

8.3 Demonstrators prototypes 

In this section, we will describe the demonstrators prototypes we developed aiming to show how the 
CAPE tools contribute to secure the CIE ID APP and SAML IdP scenarios.  

In particular, we will show how:  

 we integrated in the development process of the CIE ID APP and SAML IdP (some of) the 
continuous integration techniques developed in the context of Task 5.3, and 

 the tools perform a security assessment of the CIE ID APP and SAML IdP, providing a 
security report to the security analyst. 

The demonstration scenarios of the vertical 2 involve the development and testing environments, 
where the preliminary versions of the components are developed and tested (before being migrated 
on the Italian Ministry of the Interior servers). They consist of a Gitlab platform hosted by FBK, and 
cloud-hosted Azure virtual machines. 

Gitlab provides: 

 a version control system (Git-repository), storing the source code of CIE ID APP and SAML 
IdP; 

 Issues tracking and continuous integration and deployment pipeline. 

The Azure virtual machines, running Linux distributions (Ubuntu) and supporting the Docker 
technology, are used to:  

 host the deployed services for functional and security testing purposes, and 

 run some of the CAPE tools.  

The virtual machines hosting the tool must install the GitLab Runner application, which works with 
GitLab CI/CD to run jobs in a pipeline. 

In the next sections we provide the technical details on how we integrated each CAPE tool in the 
demonstrator prototype, by following a continuous integration and DevSecOps approach. 

 Prototype for the DevSecOps pipeline of the CIE ID APP 

To assess the security of the CIE ID APP, we deployed the DevSecOps scenario depicted in Figure 
61. As described in Deliverable 5.2, the DevSecOps pipeline relies on a set of tools, namely 
APPROVER (CINI) and TSOpen (UNILU), to evaluate the security and risk requirements for the CIE 
ID mobile app.  

The pipeline has been designed as a set of integration scripts that are attached to the GitLab 
repository hosting the mobile app source code. The different tools are either hosted in the Azure VM 
environment or available as remote services (SaaS) exposing REST APIs. 

 

In the following of this section, we detail the current status of each of the involved tools' integration 
process, and we discuss the next steps to finalize the prototype. A detailed description of the 
achieved results will be included in Deliverable 5.4. 
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Figure 61: DevSecOps scenario for the CIE ID App 

 

Approver 

The Approver tool, as discussed in Section 3.2.1.2, can be either used as a SaaS service or an on-
premise solution.  

For this prototype, we specifically developed a DevOps plugin compatible with GitLab (SR1.1) to 
integrate the usage of the Approver SaaS instance with the GitLab CI/CD system. Then we added a 
GitLab Script to invoke the Approver plugin in order to perform the security evaluation on the CIE ID 
app. The tool, as described in Section 3.2.1.4, is able to generate i) a SAST and DAST report – 
accessible using the APPROVER web interface and ii) a list of vulnerability issues – that are 
automatically reported as GitLab Issues. 

The workflow of the DevSecOps pipeline for the Approver tool is composed of the following Stages: 

 Build-application: this stage is in charge of building the CIE ID APP and creates an APK 
file, i.e., the bundle containing the compiled mobile app for Android environments. 
 

 Test with Approver: during this stage, the APK is sent to the APPROVER service to perform 
the analysis. The tool automatically opens for every discovered security vulnerability – thanks 
to the DevOps-plugin – a GitLab Issue containing the description of the vulnerability, its 
severity, and a description of possible technical remediation. At the end of the stage, it reports 
the completion as shown in Figure 62. 

 

Figure 62: DevSecOps - passed stage in the CI/CD process 

 

TSOpen 

TSOpen is used to detect the presence of logic bombs in the APK and its dependencies (also present 
in the apk file). TSOpen can be used as a standalone tool or as a SaaS service. To be compliant 
with a DevSecOps pipeline, similarly to Approver, we specifically developed a DevOps plugin 
compatible with GitLab (SR1.1) to integrate the usage of the Approver SaaS instance with the GitLab 
CI/CD system. In particular, when TSOpen detects a security issue (i.e., in this case, the presence 
of a logic bomb), TSOpen will interact with GitLab to automatically open a security issue.  
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 Prototype for the DevSecOps pipeline of the SAML IdP Server 

To assess the security of the SAML IdP, we also deployed a DevSecOps scenario, as depicted in 
Figure 63. As described in Deliverable 5.2, the DevSecOps pipeline for the server software relies on 
a set of tools, namely Eclipse Steady and Project KB (SAP), SafeCommit (UNILU), Buildwatch 
(UBO), NeSSoS (CNR), and VI (UKON) to evaluate the security and risk requirements.  

The pipeline has been designed as a set of integration scripts that are attached to the GitLab 
repository hosting the mobile app source code. The different tools are either hosted in the Azure VM 
environment or available as remote services (SaaS) exposing REST APIs. 

In the following of this section, we detail the current status of each of the involved tools' integration 
process, and we discuss the next steps to finalize the prototype. A detailed description of the 
achieved results will be included in Deliverable 5.4. 

 

Figure 63: DevSecOps scenario for the SAML IdP Server 

 

Steady 

A dockerized version of Eclipse Steady runs on an Azure virtual machine (VM) managed by FBK 
(CINI). In the Azure VM, a Gitlab runner, an application that works with GitLab CI/CD to run jobs in 
a pipeline, is installed and connected to the Gitlab repository. At the end of the analysis made by 
Steady, a report is generated and available in the Gitlab repository where the SAML IdP source code 
is stored. 

Stages: 

 Build-maven: during this stage a shell script is executed by the Gitlab runner, hosted on the 
Azure Virtual Machine and make the build of the SAML IdP with Apache Maven. 

 Steady Analysis: in this stage, the APP analysis goal of Steady’s Maven plugin is executed 
in order to inspect and upload dependency information using the RESTful interface of 
Steady’s server-side components. On the server, information about methods of open source 
dependencies is compared with methods known to be vulnerable. Additional goals such as 
A2C or T2C can be executed in order to collect reachability information. 

 Steady Report: in this stage, the REPORT goal of Steady’s Maven plugin is executed in 
order to download and process the vulnerabilities identified in the previous stage, and create 
a result report in HTML, JSON and XML format. Additionally, the plugin can be configured to 
break the stage in case of vulnerabilities, such that it appears as “failed” (cf. Figure 64). This 
allows the user to spot the issues and take the proper actions in order to solve them. When 
the report has been generated, the artifact is available on the Gitlab repository. 
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Figure 64: DevSecOps - failed stage in the CI/CD process of Steady 

 

Steady offers a web GUI to navigate the report. This can be accessed by connecting in VPN to the 
Azure Virtual Machine in which Steady is running. 

 

SafeCommit 

SafeCommit is used to check whether a given commit performed by a developer introduces a 
vulnerability in the code base (hosted in the code repository). This tool will be integrated into Gitlab 
in a way that a security alert will be raised when a developer proposes a commit that could introduce 
a vulnerability.  

Buildwatch 

A dedicated machine is used to host Buildwatch. In order to trigger dynamic analysis, a Gitlab runner 

is leveraged. Buildwatch offers a simple REST API to which the runner may send requests for new 

analysis and corresponding poll results. 

Stages: 

 Gitlab runner requests a new analysis for a given commit. 

 Buildwatch uses Cuckoo to boot an appropriate virtual machine. 

 The software is build/tested according to the provided instructions. 

 Cuckoo records all system calls. 

 Based on the system calls, forensic artifacts are extracted. 

 Known, benign, or whitelisted artifacts are removed from the extracted artifacts. 

 Buildwatch provides the newly found forensic artifacts via the API to the Gitlab runner. 

 Results may be displayed as results of the Gitlab pipeline job. 

 

NeSSoS 

In scope of this scenario, we are going to use NeSSoS to evaluate the security practices of the 
network where the server is running to ensure that it is managed securely. As the scenario is focused 
on a single server, the “network” under evaluation is limited to one server and the assets this sever 
contains. Many of the questions (inputs for NeSSoS tool) relate to the more generic practices applied 
in the company managing the server in question (e.g., involvement of the top management in security 
process, awareness level of the personnel, physical security of the area, security policies and culture 
enforced in the organisation, contingency plans, etc.), but they must be answered as well as they 
have direct impact on security management of the server.   

NeSSoS tool is available on-line as a service and is free of charge. As for the process, security 
managers, responsible for security of the organisation (or the system in which the server is installed) 
should answer the questionnaire of NeSSoS in order to report the security practices applied in the 
organisation. Also, the NeSSoS tool will ask for the main assets managed by the server, its 
approximate quantity and possible impact in case of a security breach. Once the input is provided, 
the tool will provide the resulting risks and a report about estimated coverage of the basic security 
controls (as they are defined in ISO 27001/2:2013). The tool also has a capability to help the security 
analyst to improve security in a cost-efficient way. We would like to note that this capability should 
be used only if the server in question is indeed the only piece of the network. If the organisation has 
other IT facilities (e.g., other servers, valuable terminals, core business processes), the analysis 
should include them as well, otherwise, the tool will not be able to perform the cost-benefit analysis 
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correctly. The tool also has a functionality to use the inputs from other tools, which analyse concrete 
implementation of specific security features (e.g., vulnerability analysis). The possibility for other 
CAPE’s tools to provide such information and their integration with NeSSoS will be analysed and 
implemented in the future.  

 

VI 

In the scenario's scope, we use the visual investigation (VI) of security information to examine 
software projects' exposure. The vulnerability explorer enables assessing the number of 
vulnerabilities in projects from an organization's point of view. The demonstrator displays the 
exposures in open-source components on the level of a whole software development organization. 
For instance, the interface allows discovering the most/least-used open-source components, the 
most/least-vulnerable open-source components, the most/least-vulnerable applications, or 
most/least-relevant vulnerabilities. The demonstrator utilizes the API of Eclipse Steady from SAP. A 
dockerized version of the VI demonstrator will be provided to display the scanned packages.   
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Chapter 9 Roadmap and future work 

As stated in D5.1, the roadmap for the CAPE program is based on the demonstration use cases for 
the Connected Car and e-government verticals as well as the various independent use-cases and is 
realised in a timeframe aligned with the deliverables. The next and last deliverable will be the D5.4. 

 D5.4 Demonstrators evaluation, M36, LEO: This deliverable provides the demonstration of 
the two verticals described in T5.4. It is supported by an evaluation document. 

A high-level development roadmap considering the deadlines of WP5 deliverables D5.2, D5.3 and 
D5.4 is as follows: 

 January 2021 (M23): Early prototypes are available in D5.3. For each tool, a demo 

specification exists and has been included in D5.2. 

 January 2022 (M35): Final prototypes have been evaluated in the respective demonstration 

scenarios; its summary is ready to be included in D5.4. 

The timeline for the final prototypes of the T5.1 tools will be guided by the demonstration scenarios 
of the verticals and will focus on the integration on them: 

 M25-M26: refined design of the tools in order to reach the final version of the prototypes 

 M27-M28: implementation of the final prototype version of the tools 

 M27-M35: verification and validation of the updated prototypes 

 M29-M35: integration and evaluation of the framework tools on the various demonstration 
scenarios 

The timeline for the final prototypes of the Connected Car vertical (in Task 5.2) is as follows: 

 M25-M26: modelling of the requirements that have not been covered in the first iteration of 
the scenarios 

 M27-M28: verification of the new developments 

 M29: update analysis 

 M30: assessment activities  

The timeline for the evaluation activities in T5.4 is as follows: 

 M18-M21: Prototypes evaluability definition 

 M22-M25: Prototypes evaluability materials production 

 M26-M35: Prototype evaluability verification 

 

The following figure presents a timeline of the various activities that will be performed in the next 
steps of the CAPE tasks. 
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Figure 65: CAPE task roadmap planning



D5.3 – Demonstrator prototypes   

SPARTA D5.3 Public Page 93 of 96 

Chapter 10 Summary and Conclusion 

This deliverable contains contributions for each task and vertical in the context of the CAPE program. 

In the first contribution, we analysed the prototypes in the context of T5.1 associated with each CAPE 
tool. We described the prototypes, their objectives, their technical characteristics, security features, 
components and constraints. At the end, we detailed the experimental tests, test environments and 
test results for each prototype. 

For the second contribution, we contributed with methods and tools for the safety and security co-
analysis of the Connected Car Vertical in the context of T5.2. We wrote a protection profile for a 
Safety and Security Platooning Management Module. We implemented a formal security 
assessment framework for Platooning scenarios that can verify whether intruders can cause harm 
in an automated fashion. We identified three new attacks not reported in the literature. Moreover, we 
constructed executable models with proposed defenses based on plausibility checks. 

The third contribution covered the perspective of Task 5.3, describing the various interactions, data 
flows and synergies of tools, datasets and techniques developed in the context of Task 5.3. 
Particularly, it underlined the importance of publicly available datasets for security research. Two of 
such datasets are build and maintained in the context of the CAPE program, supporting the 
collaboration of academic and industrial research partners within and beyond the scope of SPARTA. 

For the fourth contribution, in T5.4 we described evaluation process concepts and correspondence 
between Common Criteria Evaluation Process and safety/security engineering process (based on 
the V-mode) has been proposed. Furthermore, an introduction to verticals evaluability has also been 
described to give an idea of how verticals will be evaluated in task 5.4 

The last contribution concerns the use cases “Connected and Cooperative Car Cybersecurity” and 
“Complex System Assessment including large software and open-source environments, targeting e-
Government services”. 

For the first use case, Vertical 1, we contributed with CACC platoon prototypes and evaluations of 
CACC platoons. We developed a collaboration between two labs, one at FTS and another at TEC, 
each with sets of rovers. We deployed code on the rovers that include the shared code between FTS 
and TEC. We carried out experiments with the rovers in both labs (FTS and TEC) thus validating our 
safety and security analysis (T5.2). We prepared two platoon demos with shared code between FTS 
and TEC labs. Experiments focusing on adaptive security for CACC have also been carried out in 
the CETIC lab. 

For the second use case, Vertical 2, we illustrated the two prototypes for evaluating the mobile app 
and the IdP server of the e-Government Services vertical based on the Italian national electronic 
identity card (CIE). In detail, in Section 8.2, we presented the technical aspects of the selected 
scenarios (namely, "mobile" and "server"). Furthermore, in Section 8.3, we described the two 
DevSecOps pipelines composed of a selection of SPARTA security tools to evaluate the security 
posture of the two components and discussed the future steps to complete the integration process. 

In terms of governance, we remark that the deliverable provides an example of how CAPE partners 
have successfully been able to collaborate towards integrated research and validation workflow. We 
stress that this is particularly important as evaluation and validation is the conclusion and an 
extremely important part of the research. It often is extremely expensive for individual researchers. 
The mutual exchange and joint elaboration of validation tools and processes is thus an important 
lessons-learned from CAPE. 

 

  



D5.3 – Demonstrator prototypes   

SPARTA D5.3 Public Page 94 of 96 

Chapter 11 List of Abbreviations  

Abbreviation Translation 

ACC Adaptive Cruise Control 

AI Artificial Intelligence 

API Application Programming Interface 

APK Android Package 

AST Abstract Syntax Tree 

C-ACC Cooperative Adaptive Cruise Control 

CI/CD Continuous Integration / Continuous Development 

CIE Italian national electronic identity card 

CPU Central Processing Unit 

CVE Common Vulnerabilities and Exposures 

CVSS Common Vulnerability Scoring System 

DAST Dynamic Application Security Testing 

FMEA Failure Modes and Effects Analysis 

FTA Fault Tree Analysis 

FTP File Transfer Protocol 

GSN Goal Structure Notation 

GUI Graphical User Interface 

HARA Hazard Analysis and Risk Assessment 

HSM Hardware Security Models 

HTML HyperText Markup Language 

HTTP(S) Hypertext Transfer Protocol Secure 

IdP Identity Provider 

IDS Intrusion Detection System 

IMAP Internet Message Access Protocol 

ISO International Organization for Standardization 

KAOS Keep All Objectives Satisfied 

NFC Near Field Communication 

NVD National Vulnerability Database 

OWASP Open Web Application Security Project 

PP Protection Profile 

PURL Persistent URL 

SaaS Software as a Service 

SafSecPMM Safety and Security Platooning Management Module 
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Abbreviation Translation 

SAML Security Assertion Markup Language 

SARIF Static Analysis Results Interchange Format 

SAST Static Application Security Testing 

SIEM Security Information and Event Management 

SMTP Simple Mail Transfer Protocol 

SoS System of Systems 

SR Software Requirement 

SSO Single Sign On 

SW Software 

SysML Systems Modelling Language 

TARA Threat Analysis and Risk Assessment 

TOE Target Of Evaluation 

UC Use Case 

UML Unified Modelling Language 

UR User Requirements 

URL Uniform Resource Locator 

VCS Vehicle Communication Device 

VCM Vehicle Control Module 

VM Virtual Machine 

XML Extensible Markup Language 

YAML Yet Another Markup Language 
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[5] M.Clavel,F.Dura ń,S.Eker,P.Lincoln,N.Mart ı́-Oliet,J.Meseguer,and C. Talcott. All About Maude: 
A High-Performance Logical Framework, volume 4350 of LNCS. Springer, 2007 

[6] AutoFOCUS 3 - Model-based development of embedded systems 
https://www.fortiss.org/en/publications/software/autofocus-3. Accessed: 08/12/2020 

[7] AutoFOCUS 3 - Focus on the System 
https://download.fortiss.org/public/projects/af3/help/index.html. Accessed: 08/12/2020 

[8] AutoFOCUS 3 - tutorial on how to deploy the generate C code into systems 
https://git.fortiss.org/ff1/lightrunner. Accessed: 08/12/2020 

[9] https://www.cybersecurityosservatorio.it  

[10] IBM Cost of Data Breach, 2019 

[11] Wirpo State of Cybersecurity Report, 2018 

https://www.sparta.eu/assets/deliverables/SPARTA-D5.1-Assessment-specifications-and-roadmap-PU-M12.pdf
https://www.sparta.eu/assets/deliverables/SPARTA-D5.1-Assessment-specifications-and-roadmap-PU-M12.pdf
https://www.fortiss.org/en/publications/software/autofocus-3
https://download.fortiss.org/public/projects/af3/help/index.html
https://git.fortiss.org/ff1/lightrunner
https://www.cybersecurityosservatorio.it/

	Executive Summary
	Table of Content
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Structure of the document

	Chapter 2 CAPE Tools
	Chapter 3 Prototypes for Assessment procedures and tools (T5.1)
	3.1 Introduction
	3.2 Prototypes Analysis
	3.2.1 Approver (RAA) - CINI
	3.2.1.1 Description and goal
	3.2.1.2 Technical characteristics
	3.2.1.3 Experimental test activities
	3.2.1.4 Results

	3.2.2 AutoFOCUS3 (AF3) – FTS
	3.2.2.1 Description and goal
	3.2.2.2 Technical characteristics
	3.2.2.3 Experimental test activities
	3.2.2.4 Results

	3.2.3 Buildwatch (BW) - UBO
	3.2.3.1 Description and goal
	3.2.3.2 Technical characteristics
	3.2.3.3 Experimental test activities
	3.2.3.4 Results

	3.2.4 Frama-C (FC) - CEA
	3.2.4.1 Description and goal
	3.2.4.2 Technical characteristics
	3.2.4.3 Experimental test activities
	3.2.4.4 Results

	3.2.5 Legitimate Traffic Generation system  (LTGen) - IMT
	3.2.5.1 Description and goal
	3.2.5.2 Technical characteristics
	3.2.5.3 Experimental test activities
	3.2.5.4 Results

	3.2.6 Logic Bomb Detection (TSOpen) - UNILU
	3.2.6.1 Description and goal
	3.2.6.2 Technical characteristics
	3.2.6.3 Experimental test activities
	3.2.6.4 Results

	3.2.7 Maude (MAU) - FTS
	3.2.7.1 Description and goal
	3.2.7.2 Technical characteristics
	3.2.7.3 Experimental test activities
	3.2.7.4 Results

	3.2.8 NeSSoS Risk Asessment tool (RA) - CNR
	3.2.8.1 Description and goal
	3.2.8.2 Technical characteristics
	3.2.8.3 Experimental test activities
	3.2.8.4 Results

	3.2.9 OpenCert (OC) - TEC
	3.2.9.1 Description and goal
	3.2.9.2 Technical characteristics
	3.2.9.3 Experimental test activities
	3.2.9.4 Results

	3.2.10  Project KB (KB) - SAP
	3.2.10.1 Description and goal
	3.2.10.2 Technical characteristics
	3.2.10.3 Experimental test activities
	3.2.10.4 Results

	3.2.11 Risk Assessment for Cyberphysical interconnected infrastructures (MRA) - NCSRD
	3.2.11.1 Description and goal
	3.2.11.2 Technical characteristics
	3.2.11.3 Experimental test activities
	3.2.11.4 Results

	3.2.12 Sabotage (SB) - TEC
	3.2.12.1 Description and goal
	3.2.12.2 Technical characteristics
	3.2.12.3 Experimental test activities
	3.2.12.4 Results

	3.2.13 SafeCommit (SF) - UNILU
	3.2.13.1 Description and goal
	3.2.13.2 Technical characteristics
	3.2.13.3 Experimental test activities
	3.2.13.4 Results

	3.2.14 SideChannelDefuse (FS) - CNIT
	3.2.14.1 Description and goal
	3.2.14.2 Technical characteristics
	3.2.14.3 Experimental test activities
	3.2.14.4 Results

	3.2.15 Steady (VA) – SAP
	3.2.15.1 Description and goal
	3.2.15.2 Technical characteristics
	3.2.15.3 Experimental test activities
	3.2.15.4 Results

	3.2.16 SysML-Sec/TTool (TTOOL) - IMT
	3.2.16.1 Description and goal
	3.2.16.2 Technical characteristics
	3.2.16.3 Experimental test activities
	3.2.16.4 Results

	3.2.17 VaCSInE (VCS) – CETIC
	3.2.17.1 Description and goal
	3.2.17.2 Technical characteristics
	3.2.17.3 Experimental test activities
	3.2.17.4 Results

	3.2.18 Visual Investigation of security information (VI) - UKON
	3.2.18.1 Description and goal
	3.2.18.2 Technical characteristics
	3.2.18.3 Experimental test activities
	3.2.18.4 Results



	Chapter 4 Prototypes for Convergence of Security and Safety (T5.2)
	4.1 Introduction
	4.2 Modelling and Implementation
	4.3 Technical characteristics Verification and Validation
	4.3.1 Formal Security Verification Framework
	4.3.2 Penetration Testing
	4.3.3 Simulation-based fault-injection

	4.4 Update
	4.5 Assessment

	Chapter 5 Prototypes for Risk discovery, assessment and management for complex systems of systems (T5.3)
	5.1 Introduction and overview
	5.2 Synergies and integration of individual contributions

	Chapter 6 Prototypes for Integration on Demonstration Cases and Validation (T5.4)
	6.1 Introduction
	6.2 Evaluation Process Concepts
	6.3 Introduction to verticals evaluability
	6.3.1 Vertical 1 - Connected and Cooperative Car Cybersecurity (CCCC) in the context of Euro NCAP
	6.3.2 Vertical 2 - Complex System Assessment Including Large Software and Open Source Environments, Targeting e-Government Services


	Chapter 7 Vertical 1 – Prototypes for Connected and Cooperative Car Cybersecurity (CCCC)
	7.1 Introduction
	7.2 Scenario 1: Basic Scenario
	7.2.1 Modelling and Implementation
	7.2.1.1 Specificities for FTS Rovers (FTS)
	7.2.1.2 Specificities for TEC Rovers

	7.2.2 Verification and Validation
	7.2.3 Assessment

	7.3 Scenario 2: Firewall updates
	7.3.1 Modelling and Implementation
	7.3.2 Verification and Validation

	7.4 Scenario 3: Verification tooling
	7.4.1 Modelling and Implementation

	7.5 Scenario 4: Safety and Security compliance assessment and certification
	7.5.1 Modelling and Implementation
	7.5.2 Verification and Validation

	7.6 Scenario 5: Fault-injection and analysis of faulty scenarios
	7.6.1 Modelling and Implementation
	7.6.2 Verification and Validation


	Chapter 8 Vertical 2 - Prototypes for e-Government Services
	8.1 Introduction
	8.2 Scenarios
	8.2.1 Scenario for the CIE ID APP
	8.2.2 Scenario for the SAML IdP

	8.3 Demonstrators prototypes
	8.3.1 Prototype for the DevSecOps pipeline of the CIE ID APP
	8.3.2 Prototype for the DevSecOps pipeline of the SAML IdP Server


	Chapter 9 Roadmap and future work
	Chapter 10 Summary and Conclusion
	Chapter 11 List of Abbreviations
	Chapter 12 Bibliography

