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Executive Summary

This document presents the roadmaps of the HAII-T Program. Roadmaps are defined both individually for
each Task and collectively for the integration process. The document starts by discussing the state-of-the-
art of the defense mechanisms for the legacy components. These components have a central role in most
Intelligent Infrastructure (II) and there exist a rich literature of attacks targeting them. Then, the focus moves
to security of the operating systems and software for the Internet of Things (IoT) and field devices. A secured
OS is a crucial to establish security properties of a system at a higher, application level. The technologies for
the orchestration of complex, secure-by-design II are also discussed. Secure orchestration ensures that the
security requirements are respected allover the II lifecycle. Then, other two crucial aspects of the secure design
of every II, i.e., resilience-by-design and privacy-by-design, are presented. A resilient infrastructure ensures
the continuity and the quality of service over time, while the privacy guarantees protect the confidentiality of
critical data against potential leakages. Finally, the integration roadmap is also presented and use cases,
challenges and milestones of the Program are identified.
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Chapter 1 Introduction

The development of modern II promises to raise the bar for several aspects of our everyday life. This includes
faster and improved services for the citizens as well as integrated solutions for industrial production and the
supply chain. The pillars of this evolution consist of several technologies including, e.g., IoT, Fog and Cloud
computing as well as telecommunication infrastructures.
As often happens, along with opportunities, these technologies also bring new risks. Perhaps the main con-
cern is the possible presence of vulnerabilities that may enable attackers to steal or affect sensitive data or
control devices remotely. Although security mechanisms exist, they are rarely portable to the II. A reason is
that these infrastructures are extremely complex and heterogeneous, made of myriads of objects using very
different hardware and software. Such an extreme diversity, together with the quick development of the modern
infrastructures, require appropriate countermeasures to ensure the security of the next-generation II.
Security requirements cannot be put aside when designing and building a II. As a matter of fact, when new
infrastructure is designed without security in mind, it can be hardly secured later on. For this reason, a security-
by-design methodology is needed so that security requirements can be evaluated at each stage of the lifecycle
of II. The goal is to obtain overall security guarantees in line with the state-of-the art security mechanisms
which, often, are difficult to be applied to technologies such as the IoT. Providing practical tools to support the
security-by-design approach is the objective of the HAII-T Program.
This document defines the roadmap of the five Tasks contributing to the HAII-T Program as well as the roadmap
that will drive the integration process. We start in Chapter 2 by discussing the state-of-the-art of the defense
mechanisms for the legacy components. Then, Chapter 3 will focus on security of the operating systems and
software for the IoT and field devices. In Chapter 4 we will discuss the technologies for the orchestration of
complex, secure-by-design infrastructures. Chapter 5 and Chapter 6 will deal with two crucial aspects of the
secure design of II, i.e., resilience-by-design and privacy-by-design. The integration roadmap is presented
in Chapter 7 where we will discuss the use cases of the Program as well as the integration challenges and
milestones. Finally, for each of the aforementioned chapters, we will draw the concluding remarks in Chapter 8
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Chapter 2 Hardening Legacy Components

Defense mechanisms on different abstraction levels became essential, especially in the era of mobile, IoT,
Industrial Cyber-Physical System (CPS), and Industrial Control System (ICS) devices. There exist a wide
range of attacks aiming at various vectors of such systems endangering both trust of delivered information and
safety. As such, these systems are expected to withstand state-of-the-art attacks, while, at the same time,
they are build on top of (potentially less powerful) legacy systems with limited architectural capabilities. Due
to this limitation, as part of the task 6.2, we focus on hardening legacy devices, ranging from microcontrollers
to legacy x86-based systems. Specifically, we focus on establishing defense mechanisms against different
attacks including those resulting from memory vulnerabilities (in particular, code-oriented attacks and data-
oriented attacks) and side channels.

2.1 Analysis of Existing Defense Mechanisms

In order to establish a strong defense, first, we analyze existing defense mechanisms targeting memory cor-
ruption (in particular control data and non-control data attacks) and fault injection attacks.

2.1.1 Defenses against Memory Corruption Vulnerabilities

Even if advanced programming languages are growing, most lines of software code are still written in C and
C++, since these languages permit low-level control without losing the advantages of high-level statements.
Although, the direct management of data structures and memory pointers opens the door to a wide range of
vulnerabilities. The lack of memory safety capabilities (such as a strong typization, present in other modern
languages) enables attackers to exploit these flaws by maliciously altering the program’s behavior or even
taking full control over the control-flow.
In C and C++, memory pointers are normal variables, that instead of containing data, contain addresses to
memory. As normal variables, they can be freely manipulated by the program which declares them: initialized
to a random value, incremented, decremented, reassigned, and so on. This may cause serious problems, as
programming errors may lead a pointer to point literally everywhere in the addressing space, and to overwrite
data outside the range it was initially thought for.
An interesting paper of Szekeres et al. [345] tried to give a systematization of memory corruption problems. In
the authors’ opinion, the corruption of a memory pointer always follows 2 main steps: first, a pointer is made
invalid by going out the bounds of its pointed objects or by being deallocated. At this point, the pointer has to
be dereferenced to trigger the error. When an out-of-bound pointer is dereferenced, a spatial memory error
occurs; when a deallocated pointer is dereferenced, a temporal memory error occurs.
The probably most famous vulnerability of this kind is buffer overflow, which is caused by incrementing or
decrementing a pointer without proper boundary checking on the data structure that is being accessed, with
resulting out-of-bounds writes which corrupts adjacent data on stack, heap or other zones. Similar problems
may rise when indexing bugs are present in the code, i.e., boundary checks over an index for a given data
structure are missing or incomplete. Indexing bugs are often caused by integer-related errors like an integer
overflow, truncation or signedness bugs, or incorrect pointer casting.
Temporal memory errors are instead often referred to as use-after-free vulnerabilities. Here, a pointer is deref-
erenced (used) after the memory area it points to has been returned (freed) to the memory management
system. After the free, the pointer still points to the deallocated region, which in the meanwhile can have
been written with other data. The consequence is that newly allocated data on the heap may be corrupted by
accessing erroneously to the memory using these dangling pointers.
Code-Oriented attacks are best described by the ability to redirect the execution flow of a system to executable
regions where the attacker can reuse individual instructions or whole functions to craft a malicious execution
path. That is, given a memory corruption vulnerability, the attacker is able to change variables that dictate the
execution path when triggered, such as return addresses or function pointers. Modifying the return address
can be achieved via buffer overflows into the stack layout, or format string vulnerabilities, where the return
address of the caller is stored, so that, the attacker is able to overwrite the benign return address with a
malicious destination. Other sensitive control flow dictators are function pointers. Overwriting function pointers
has attractive use cases for a malicious attacker in heap structures, where the User- or kernel space allocators
intermix objects with different functionality in contiguous segments of the memory. Therefore, heap overflows
or corruptions of free objects metadata allow an attacker to overwrite into different object adjacent to the
vulnerable object, and control function pointers to craft their malicious execution chain, when invoked. Both
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techniques require the attacker to trigger a memory address leak, which can be used to compute the addresses
of the malicious gadgets. Recent years have offered plenty of research against Code-Oriented attacks, which
make such attacks harder or impossible in certain states of the system. Techniques such as Data Execution
Prevention (DEP), stack canaries, ASLR, Position Independent Executable (PIE), Control Flow Integrity (CFI),
Return Address Guard, and others, have been proposed which mitigate Code-Oriented attacks with their own
contributions and trade-offs. ALSR and PIE require the attacker to obtain a memory address leak, otherwise
the address layout is random and hard to guess, which masks the vulnerability and cloaks the exploit payload.
However, less attention has been accorded to a new class of exploits called Data-Oriented attacks. Compared
to Code-Oriented attacks, this novel strategy does not leverage redirecting the execution flow of the system,
but rather corrupting selected memory segments that store sensitive data which an attacker can use for mali-
cious purposes. Assuming a system equipped with various hardening techniques that mitigate Code-Oriented
Attacks (such as the ones mentioned above), memory corruption vulnerabilities can arm an attacker with ar-
bitrary read and write capabilities that must not necessarily be used for redirecting the execution flow to gain
full control of the system. Instead, the attacker can leverage the capability to control arbitrary sensitive data
structures which hold metadata/identity information about the executing process/task, such as their user per-
missions, privileges, capabilities or private information such as encryption keys or identity certificates. Even
more, an attacker can consider altering the structures that describe the address space of the process, and
inject their own address space with malicious functionality.

Causes of Arbitrary Reads and Writes
One of the most attractive sub-system hunted for vulnerabilities that can lead to arbitrary reads and writes is
the heap memory allocator (aka the dynamic memory allocator), both in the User- and kernel space. Even
though the two execution modes provide two different types of allocators with different memory layout for the
chunk management, they share a common problematic design decision which makes the allocators prone to
critical mistakes. The risk is introduced by (1) the fact that the allocators allocate objects in regions of memory
adjacent to each other and (2) the memory resue optimization to keep metadata of freed objects within the
previously allocated object. The management data of freed objects is represented by pointers to the next
and/or previous freed objects, so that the allocator can server allocation requests in constant time and adjust
the freed object chain rapidly. An attacker that manages to corrupt any of these pointers in their freelists,
can trick the allocator into returning an address that points to a memory region of the attacker’s desire. This
technique represents a solid and popular way of obtaining arbitrary read and write capabilities that form the
grounds for Data-Oriented attacks. Another method for obtaining arbitrary control of memory regions is through
format string vulnerabilities, where the attacker is able to control the string passed to format-aware procedures,
which implement esoteric features, such as writing at the address stored by one of its parameters. We will not
dive deeper into these class of bugs, since they can be easily patched by compiler checks, annotations, and so
on. We are focusing on the vulnerabilities induced by mistakes in handling heap objects. The bugs that lead to
such vulnerabilities are explained in the following. They apply to both the User- and the kernel space.
Throughout this document, we consider a system that runs a Linux kernel distribution, and the vulnerabilities
described are presented in the context of the user space glibc allocator and the kernel space SLAB allocator
(the SLUB implementation).
Heap Overflows. Because of the layout of the memory allocators, where objects (either freed or allocated) are
adjacent to each other, an overflow caused by an allocated object into the next object can lead to corrupting
the freed object metadata. Moreover, in the case of the user space glibc allocator, overwriting one byte into
the next object, be it freed or allocated, is enough to trigger a malicious sequence of allocations, modifications
and frees to mislead the allocator into returning an arbitrary address to the attacker. In the first case, when
the overflowed object is allocated, the attacker can overwrite its size field, which on further freeing of the victim
object, results in merging the freed object with the previous one, which is in an allocated state. This leads to a
Use-After-Free vulnerability. In the second case, when the overflowed object is freed, the attacker can control
the next and previous pointers to whatever they desire, such that further allocations will return those addresses
to the attacker. In the kernel space, a one-byte overflow suffices as well, but an attacker must overflow into
a freed object, such that they alter the next free pointer field, which is the first field of the freed object. Once
more, they can control the address of the next free pointer to whatever address they desire, so that the allocator
returns, at a later point, the selected address. In both cases, for the User- and kernel space scenarios, a one
byte overflow suffices in most cases, which means that arbitrary overflows are even easier for an attacker to
exploit.
Use-After-Free (UAF). Both the User- and kernel space allocators store management metadata of the freed
objects in the object itself, but with additional tags to mark the object as free. Therefore, what used to be user
data, is now management data used by the allocator for objects. A critical mistake that lead to UAF attacks is
the fact that one or more references of the allocated chunk are replicated by the user, and, after freeing, those
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references are not destroyed and they still point to the location of the freed object in memory. Therefore, an
attacker that still has references to those objects, can use the object as if it was allocated, and overwrite the
free management pointers to obtain an arbitrary pointer to sensitive memory on further allocation requests.
Double-Free. The Double-Free bug leads to the Use-After-Free scenario described above, and it consists
of wrongfully freeing an object twice. Both the User- and kernel space allocators use freelists to chain freed
objects that allow for fast delivery of allocation requests. Therefore, if an object is freed twice, it is added in the
freelist twice, so that the next allocation requests will return the same address twice. Since the attacker has
two references to the same object, they can choose to call free on one reference, while keeping the second
reference to alter the free management information that was just added because of the first free request. This
leads to a UAF bug, allowing the attacker to control the next and/or prev freed objects pointers.
Invalid free. An attacker that is able to control the address that is passed on to the (k)free function has the
ability to craft a fake chunk in a memory region that they control, and instruct the allocator to free that chunk
as if it were previously allocated. When freeing, the allocator configures the pointers to the next and/or prev
freed objects, which reduces this scenario to a UAF case, since the attacker still has the reference to the fake
chunk, and is able to overwrite those free pointers.
Over/Underflowing Ref Counters. There exist data structures that are shared among entities, such as
threads, processes, functions during the runtime of a system, which have associated with them a Reference
Counter, in order to track how many entities have a reference to the objects. This is needed to determine
when to completely destroy the object, so that no other entity still has a reference to the object. The refer-
ence counters are fields stored in the data structure increased on acquiring the reference to the object, and
decreased when the user releases the object. When the reference object reaches the value of 0, the object
is destroyed, which consists of possibly calling the (k)free function, since the object was highly likely a heap
chunk. If the users can abuse the number of entities that are allowed to hold a reference to the object, they can
keep requesting a reference to that object, so that the object manager keeps increasing the object’s reference
counter, until it overflows and it reaches the value of 0, and then 1, even though plethora of references are
still held by user throughout the system. When the attacker requests to release the object, with a reference
counter of 1, the value is decreased to 0, the object is therefore freed, and the attacker still has references to
those object. Underflowing presents a similar strategy, but instead of requesting references to the object, the
attacker repeatedly releases the object so that its reference counter underflows from 0, -1, -2, and eventually
1, which mirrors the previous case. Both lead to UAF scenarios, since the attacker is able to control the freed
pointers of the reference counted object.
In the presence of a vulnerable user space process or a kernel space task, an attacker that has obtained
arbitrary read and write capabilities can leverage the following strategies to corrupt the memory of the system,
which can lead to various critical consequences:

Data Leakage
General Description: Once an attacker has obtained arbitrary read, they can inspect the whole address space
of the vulnerable process or task, being able to read arbitrary memory locations. If a sensitive application that
works with private user information, such as cryptographic keys or passwords, displays an arbitrary read vul-
nerability, the critical data that is kept in memory is at risk of being exfiltrated by the attacker. When met, these
attacks can compromise the entire security provided by the protocol which the vulnerable application imple-
ments. Also, user accounts can be unlocked, therefore, breaking the privacy of the affected users. Moreover,
in the presence of an arbitrary read vulnerability, an attacker is able to leak address space gadgets from the
vulnerable process or task, which allows them to proceed with the attacks described below and successfully
compromise the system. Without these leaked memory gadgets, the attacks described below would become
impossible or tedious.
Practical Application: The notorious Heartbleed bug, found in the OpenSSL cryptographic software library,
displays a memory corruption vulnerability that allows attackers to steal private secret keys kept in the library’s
memory space, from a remote machine located anywhere in the Internet. With private keys in possession,
attackers were able to intercept securely-encrypted traffic, and eavesdrop on sensitive conversations, docu-
ments or other data, therefore, breaking the security of the whole Internet. The attack is possible due to an
buffer over read that allows a remote attacker to send an arbitrary amount of crafted packets to the vulnerable
system/server and retrieve blocks of 64KB of memory from the process’ memory data segments.
For the next Data Oriented exploitation strategies we present a common Practical Application based on the
struct cred that is described after the General Description of each strategy.
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Data Modification
General Description: By employing a data modification strategy, an attacker is able to modify the content of
a sensitive data structure located in the memory of the process or task, given a memory address leak that
allows them to learn the exact location of the data structure in the memory. Modifying fields in sensitive data
structures can enforce the attacker with privilege escalation, use-after-free bugs, address space injection or
denial of service against the victim system.

Data Masquerading
General Description: Data Masquerading assumes the system contains sensitive data structures, allocated
for privileged tasks (struct cred init cred) or private to individual processes (structures that private
encryption keys). An attacker with arbitrary write capabilities can overwrite the pointer to the their equivalent
data structure with the pointer of the privileged/private data structure, given the address leaks of the victim data
structure and the address leak of the container data structure which stores the actual pointer. Such strategies
can lead to privilege escalation, address space injection, denial of service.

Data Forging
General Description: An attacker can craft its own data structure in the user space or in the kernel space where
he can control the values of the sensitive fields. In the presence of the aforementioned capabilities, arbitrary
write, the attacker can overwrite the pointer to its equivalent data structure with a pointer to the crafted data
structure, given an address leak that reveals the base data structure which holds the pointer to the sensitive
data structure. This strategy can lead to privilege escalation, address space injection, denial of service against
the target system.
Practical Application: In the following, we exemplify the attack strategies presented above on the sensitive
data structure struct cred, which contains fields that describe the permissions and capabilities of a user
and its processes in a Linux kernel system. The data structure struct cred is intensively used in many
permission-related security checks before accesses on various data structures, such as sockets, files, pipes,
shared memory, other tasks and so on. For example, struct cred is used by the Linux kernel when a task
wants to open a file on the filesystem to check weather the user that owns the task has the permissions to
access the file. Therefore, being able to control the struct cred of a task, a malicious user can bypass
the checks made by the kernel by impersonating privileged struct cred, which allows them to access
restricted files that contain sensitive information, such as cryptographic private keys or passwords. struct
cred contains identification fields that are used by the kernel to implement its Discretionary Access Control
(Unix/Posix Access Control Lists) and Mandatory Access Control (extended security policies per oject) security
checks when a task wants to access a resource. The most attractive fields are the UID (User ID), EUID
(Effective User ID) and the SUID (Saved User ID) fields, which are critical for determining if the process is
allowed to access the resource (file, socket, etc.) or not. A task that has an instance of struct cred with
these fields set to 0 has the most elevated privileges and can access any resources at any time. We call such
an instance of struct cred as the init creds, which is configured by the kernel at boot time, and represents
the credentials of the init process and tasks that belong to the root user, being the most privileged in the system.
Therefore, the interest of the attacker is to transform its task’s struct cred into instances of init creds, such
that, they can bypass any security checks and access any resource in the system. They can acheive this by
employing the strategies presented above. Before diving into the attacks, it is worth mentioning that the current
executing task is described by a kernel structure called ‘struct task struct‘, which also contains a pointer
to the struct cred as credentials of the executing task. Therefore, in order to be able to manipulate its
struct cred, the attacker must obtain (in most cases) an address leakage of the struct task struct,
so that they know where in memory the pointer to its struct cred is. In order leverage a Data Modification
scenario, the attacker must learn, besides the address of its ‘struct task struct‘, the address of its struct
cred. Nevertheless, under the assumption that the attacker has arbitrary read, leaking the address of the
struct cred is not a concern, and can be acheived in the same way as ‘struct task struct‘ was leaked. With
the memory address of the struct cred in hand, the attacker can target the UID, EUID and SUID fields
in the structure to clear their values to 0, therefore, escalating their privileges. When manipulating their own
struct cred is not possible, the attacker can opt for Data Masquerading. For this attack, the attacker must
learn the address of the init creds, which are the most elevated credentials in the system. Also, they need to
learn the address of the task struct that describes the malicious task. Once they have these two values,
the attacker can overwrite the pointer to its credentials with the pointer to the privileged credentials, therefore,
escalating their privileges by impersonating the root credentials. In case the address of the init creds is
protected from the attacker, but they still have the address of their task struct, they can still escalate their
privileges. They can achieve this by crafting a fake struct cred in a region of memory they control, with
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all critical fields, such as UID, EUID, SUID, set to the most privileged values. With the address of their task
struct in posession, they can overwrite the pointer to their original struct cred with the pointer to the fake
privileged creds structure, therefore, elevating their privileges. This attack might become more difficult in case
the attacker plans to craft the fake privileged credentials in the User Space memory given the presence of the
Kernel Page Table Isolation enhancement, which forbids the kernel to access User Space memory, without
specifically requesting it. They would have to find a region in the memory of the kernel that they control, or a
chunk of memory that accidentally makes up a valid and privileged struct cred.

2.1.1.1 Defenses against Code-oriented Attacks

Memory vulnerabilities described above may enable attackers to maliciously take control over the program by
forcing it to execute an unintended sequence of instructions. This exploit is generally called Arbitrary Code
Execution (ACE). ACE is achieved through tampering with the instruction pointer, in most of the architectures
referred to as Program Counter (PC), of a running program. The PC points to the next instruction to be
executed, therefore if an attacker controls its value, he also can decide the instruction to be executed next.
In ACE, the PC register value is corrupted to point to the attacker’s payload. Depending on the nature of this
payload, 2 types of ACE attacks can be distinguished:

1. The payload is injected together with the corrupted instruction pointer in the memory of the program
(Code-Injection Attacks, CIA);

2. The payload is composed of snippets of code already present in the memory of the program, but not
intended to be executed in that order (Code-Reuse Attacks, CRA).

The instruction pointer is corrupted through tampering with the operand of an instruction that copies it from
memory into the PC (indirect control-flow transfer instructions). The RETURN instruction, or indirect formats
of CALL and JUMP, are example of such instructions, but also any other instruction that treats the PC register
as a destination for a computing operation. For the purposes of an ACE attack, direct control-flow transfer
instructions are instead useless, since their argument is an immediate value that is used as an offset to be
added/subtracted to the current value of the PC, and therefore cannot be modified.
CIA exploits were made practically impossible after the wide adoption of main architectural countermeasures
like:
• Data Execution Prevention (DEP) [343]: memory regions allocated for data are marked with a NX flag

(no-execute) and cannot be loaded as instructions by the processor;
• Write XOR Execute [349]: no memory location can be both writable (W) and executable (X) at runtime.

On the contrary, CRA is a very strong threat still nowadays. In a paper of 2007 by Shacham et al. [328], the
authors first theorized that ”in any sufficiently large body of executable code there will exist sufficiently many
useful code sequences that an attacker who controls the stack will be able [...] to cause the exploited program
to undertake arbitrary computation”. The control flow can be diverted to execute a series of small sequences
of instructions, each ending with an indirect control-flow transfer instruction, known as gadgets. In a large
enough codebase (such as libc, compiled for every application written in C), there is a massive selection of
gadgets to choose from, and the attackers achieve the maximum of expressiveness. On the x86 platform, the
attack is made stronger by the fact that, since there is no fixed instruction length, any sequence of raw bytes
can be interpreted as an instruction, and the rogue return address can point even in the middle of an opcode,
transforming it into another.
The most famous attack paradigm belonging to CRA is Return-Oriented Programming (ROP). In ROP, the
attackers write their malicious code using, instead of instructions, the gadgets found in the code of the system
to be attacked as basic ”bricks”. These gadgets may perform any kind of general-purpose action, as copying
values from registers to others, loading values from memory, or doing arithmetics and logics. The common
property they must have is that they have to end with a RETURN instruction. Once individuated the set of
gadgets, attackers fill the stack with a list of fake return addresses exploiting a memory vulnerability. Each of
the injected addresses points to the beginning of each of the identified gadgets. Between addresses, attackers
may want also to place immediate data for their execution.
The attack starts when the function that contains the vulnerability returns: by executing the RETURN, the
processor copies the first corrupted value into the PC, and the program flow is redirected to the first of the
gadgets. Once the first gadget is finished, another RETURN is executed, that carries the flow to the second
gadget, then to the third and so on.
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Figure 2.1: Return address corruption, start point of ROP attacks.

Figure 2.2: A basic example of ROP attack.

In the last years, research community and companies started elaborating and adopting different types of solu-
tion to counter CRAs.
Address Space Layout Randomisation (ASLR). It is a countermeasure taken at link-time which randomises
the memory layout of the application, making it harder for an attacker to know the exact addresses of library
code, where to retrieve gadgets [50]. Actually, in 32-bit architecture the introduced entropy is too low, and
brute-force attacks can easily break the defense. Furthermore, since only the base address of each segment
is randomised, it suffers of information disclosure: gaining the knowledge of a single address leads to compute
the library segment base address in a straightforward manner.
Stack Canary (or Cookie). When a function is called, an additional word with a known value can be pushed on
top of the stack, which is placed between the return address and the local variables. When the function returns,
the value of the canary is checked, and, if it is found changed, the program is considered under attack and
terminated [109]. The canary can have a random value difficult to guess or can be composed of terminator
characters, making it difficult to manipulate using input function (such as gets()), since terminator character
breaks the input streams when recognised. However, canaries have been shown to be circumventable with
more targeted stack-smashing attacks [13].
Shadow Call Stack (SCS). Basically, at call-time, the return address is both saved on top of the normal stack
and on top of an additional shadow stack, accessible only by the processor architecture and not visible to the
programmer. At return time, the instruction pointer is popped from both stacks, and the values are compared.
If they are not equal, a violation fault is triggered [360][68]. This solution blocks any kind of stack-smashing
attacks, but it is not sufficient to fully protect an application, as it does not address memory vulnerabilities
present in other segments (heap, bss, data, etc), enabling attackers to still rely on other techniques such as
Jump-Oriented Programming (JOP) [57][91] or Call-Oriented Programming (COP) [314].
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Heuristic-based Approaches. They claim to detect CRAs by typically monitoring the number of branches
of the program and block it when suspicious behaviour is sensed. This defense are based on assumptions,
e.g., gadgets for ROP and JOP attacks usually consist of no more than 5 instructions. DROP [90], kBouncer
[274] and ROPecker [98] are examples of heuristic-based defenders. However, it has been demonstrated that
the heuristic can be easily thwarted by executing, between malicious jumps, longer sequences of non-jumping
instructions or branches considered as secure [163].
Control-Flow Integrity (CFI). Solutions presented so far can still be valid mitigation techniques, relatively
simple to implement, but each of them addresses the problem of CRA with respect to vulnerabilities only,
without an all-encompassing vision. A paper of 2005 by Abadi et al. [3] first tried to change perspective by
introducing the concept of Control-Flow Integrity as basic defense against CRAs, regardless of the vulnerability
that may cause them. The concept behind CFI is monitoring the program at runtime to detect abnormal
diversion from what is stated in its Control-Flow Graph. Each node in the CFG represents a basic block,
which is a group of non-jumping instructions executed sequentially. Edges represent branches in the control
flow, caused by JUMP, CALL or RETURN instructions. The CFG is defined before the execution, through a
static analysis of the source code/binary code, or by execution profiling, a test run which creates the possible
execution paths. Then, at runtime, the possible control-flow transfers are restricted to the static CFG.
CFI policies are clustered into coarse-grained if the monitoring is not done by strictly enforcing the CFG, but
based on simple program flow rules, such as ensuring that instructions targeted by a RETURN are preceded
by a CALL, or that indirect CALL formats only target prologues of functions. Fine-grained policies, instead,
check that the execution traverses valid edges of the pre-computed CFG only.
Coarse-grained solutions result in being not so different from heuristics, as both aim at distinguishing the rogue
behaviours from those that most probably are benevolent. But ”most probably” does not mean ”certainly”,
especially when we are dealing with clever attackers. Recent works [120][171] showed how it is possible to
induce such security policies to believe that actions are within the rules when they are not. In [82], the authors
showed that just 70 KB of binary code retrieved in 10 different executables within /usr/bin of Linux have been
sufficient for mounting fully CALL-preceded ROP attacks.
The most common fine-grained CFI technique is the one originally introduced in Abadi’s paper, based on label
instrumentation. It relies on inserting unique label IDs at the beginning of each basic block. Before each indirect
branch, a the destination basic block’s label ID is compared to a label ID which is stored inside the program.
Since unique label IDs are used, control flow tampering causes the check to fail, since the destination label ID
will not match the label ID stored inside the program. The control flow checks are performed using code checks
which are inserted at the end of each basic block containing an indirect branch. This technique guarantees
very high protection, although it often incurs in performance overhead for checks, which in many cases (e.g.,
real-time systems) can be unaffordable.
Another defense based on code instrumentation is Control-Flow Locking (CFL) [56], which consists in inserting
lock code before indirect transfer instructions and unlock code at each of their valid target. The lock code sets
a lock variable to a value, while the unlock code, before proceeding with the execution, verifies whether the
value is the lock one. The lock code also verifies if the just-executed code was unlocked and thus allowed
to run, otherwise it notifies a violation. CFL suffers of lack of isolation with respect to the security variables,
e.g., the lock variable, which can be corrupted with more advanced attacks that break even strong memory
protection mechanisms.
Hardware-based CFI solutions try to overcome overhead and isolation limits typical of pure-software solutions.
In fact, the program runs normally and the CFI checks are performed much faster and almost transparently.
Furthermore, the data structures containing CFG critical information belong to the monitor exclusively, without
the possibility of accessing by the main execution.
Literature has indulged in this theme. In [229], it is proposed the encryption at load-time of the indirect branch
target instructions, and the addition of a processor module that decrypts on-the-fly these addresses before
loading into the instruction register. The execution obviously crashes if a badly-decrypted instruction is run,
and to mount a redirection attack the attacker must know the encryption key (extracted from a processor PUF,
so generated everytime and never stored). In [292], the authors propose a similar method which involves
encrypting with a lightweight version of AES the return addresses at call time before pushing them, and de-
crypting them at return time. Others propose to solve the question at a higher level of abstraction, e.g., marking
code memory pointers as compile-time-generated or run-time-generated [94], encrypting and decrypting them
on-the-fly [223], or using special instructions for their load and store and placing them in a different special
stack to isolate them from buffer overflow vulnerabilities [155][302].
Others [10][67][123] have proposed the insertion of a call shadow stack into the architecture, implementing their
solution on the RISC-V soft processor. In [123], the monitor is also equipped with a table of the destinations
allowed for each indirect transfer, and gets the status of the monitored program through a parallel interface with
the main core which basically carries out the instruction register on a bus.
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Another technique relates calculating the allowed sequence of basic blocks before the execution and then
verifying it at runtime by continuously computing the hash of the blocks. Authors in [377] propose as an
hardware trusted module parallel to the main processor that does this by reading the program counter and
instruction register. The same is proposed in [127] by inserting cheking modules directly connected to the
pipeline stages. [119] and [88] propose to install validation modules between the processor and the instruction
cache to sniff the instruction flow.
Possible modifications or security extensions have also been studied for the branch buffering and prediction
modules present in most processors [331][380][222].
Others have offered solutions that go in the direction of modifying the ISA (Instruction Set Architecture) of the
machine to directly give the programmer the possibility of inserting CFI-dedicated instructions in the program
to be protected. The processor is therefore equipped with internal data structures as label stacks to protect
backward edges and label registers to protect forward edges, and the instruction set is augmented with the
opcodes necessary to manage them. Examples are the works presented in [121][102][341], where changes
were made to the original design of some SPARC soft processors.

2.1.1.2 Defenses against Data-oriented Attacks

Contrary to the plethora of defense mechanisms targeting control data oriented attacks, defense mechanisms
against non-control data (i.e., data-oriented attacks) are yet to become popular. Data-oriented attacks [186,
192, 342] avoid changing the control-flow. Instead, they focus on modifying non-control data to subvert the
targeted application. In the following, we discuss four state-of-the art defenses against data-oriented attacks,
namely SeCage [235], MemSentry [209], PrivWatcher [93], and PT-Rand [122].

SeCage
SeCage[235] focuses on reducing the data disclosure damage provided by memory corruption vulnerabilities,
by compartmentalizing the sensitive software’s critical code and data, which is separated from the trivial code
and data that don’t represent a danger for the secrets of the application. They isolate these components so
that, secrets and critical data are only accessible to critical code. In order to achieve this isolation SeCage lever-
ages virtualization techniques such as Extended Page Table (EPT) memory views and VMFUNC instructions.
They define compartmentalization candidates by using static and dynamic analysis on the target application,
together with programmer-expected flagging (labeling) of secrets, to split the application into a main compo-
nent and a set of secret components. They guarantee that the secrets of one compartment are only accessible
to code contained in that same compartment, by configuring at inception time an isolated memory view per
compartment. Therefore, each compartment is described by a separate EPT. The transition from the main
comportment into one of the secret compartments is done via trampoline segments of code, which jump via
the VMFUNC instruction into a different memory view. SeCage allows two types of trampoline codes, either from
the main compartment to a secret compartment, or the other way around. In the secret component they have
all the data segments mapped, including secret and non-secret data, while they only map critical code, and
keep the trivial code un-mapped. This is why, the Trusted Computed Base of SeCage is relatively small, and
they can claim no vulnerabilities in the secret compartments. Also, they keep interrupts disabled while the CPU
runs in the secret compartment, so that, a potential infected kernel, can’t leverage interrupts to interfere with
the secret views. At the rug of the gates of a secret compartment, the underlying hypervisor checks the defined
policies to determine if the piece of code trying to take the trampoline is authorized to do so or not. Specifically,
the hypervisor checks if the function requesting the ticket to the secret compartment is present in the set of
functions curated by the static analysis. They enforce this check by mapping the equivalent data pages of
the secret data to non-present, which triggers a VMEXIT just before the trampoline gets executed, because
the software tries to access an EPT-unmapped data page. This redirects the execution flow to the hypervisor
which checks the policies. SeCage assumes a strong adversary model that could control both the user-space
and the kernel-space. Secret data such as cryptographic keys or password, stored by user-space applications
(such as OpenSSL, CryptoLoop, and so on) are robust against an attacker that obtained full control of the
software, while the application is protected by SeCage. This is due to the fact that any malicious attempt to
bypass their security mechanisms (such as a counterfeit VMFUNC instructions) is checked via the hypervisor
intervention. However, this is one major drawback of SeCage, which acts as a monitor at load and runtime of
applications, that constantly need to jump the trampoline. Since the hypervisor must check a list of statically
analyzed functions before each secret code call, doesn’t scale to large systems that present a large code base
with many functions. Moreover, static analysis can overestimate the number of secret compartments, which
increases the Trusted Computed Base of the system. which increases the chances to encounter vulnerabilities.
Also, static analysis can be imprecise to miss functions that define SeCage’s policies in the hypervisor.
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MemSentry
Since recent research developments have motivated CPU vendors to develop hardware extensions for isolating
a system into multiple security domains, MemSentry [209] is proposing a framework that combines such novel
features to implement memory isolation on x86-64 systems. The most notorious hardware extensions that
contribute to the framework are Intel’s Memory Protection Extensions (MPX), Memory Protection Keys (MPK)
and VMFUNC instructions. They differentiate between two memory isolation techniques into deterministic and
probabilistic protection, and classify their approach as deterministic memory protection. Deterministic mem-
ory protection tends to be more robust in the context on domain-based isolation, since the isolation method
guarantees that the isolated part cannot access anything outside the isolation border, and vice-versa. On the
other hand, probabilistic isolation emulates the deterministic isolation by information hiding of sensitive seg-
ments in memory, but which is vulnerable to memory disclosures. To further modularize deterministic isolation,
MemSentry defines two types of memory compartmentalization: address-based and domain-based isolation.
Address-based isolation splits the address space into partitions and memory accesses are configured to only
access the allowed partitions. Domain-based isolation defines areas in the address space that are completely
inaccessible from the outside, but they can be toggled on or off, allowing temporary access to authorized en-
tities. First, they present a domain-based isolation implementation option using Intel’s EPT and the capability
to switch between them via VMFUNC instructions. Specifically, they define a nonsensitive domain and a set of
sensitive domains, which are mapped one-to-one on a set of EPT memory views. By default, the nonsensitive
domain is active and only special authorized instrumentation points are allowed to switch to the sensitive do-
mains via the VMFUNC instruction, which doesn’t require hypervisor intervention. Second, MemSentry presents
Intel’s MPK as an alternative for domain-based memory isolation. They configure the virtual addresses of sen-
sitive domain with Protection Keys that represent restrictive privileged access in the special registers used to
store access permissions per protection key. However, at the time of the writing, processors were not equipped
with MPK functionality, so MemSentry emulates the feature. Moreover, MPK does not provide configuring ker-
nel virtual addresses (since all of the higher bits of the kernel VAs are ’1’), and the feature is limited to only
16 isolation domains. MemSentry also implements the second isolation alternative, that comprises into split-
ting the address space into memory partitions which forces a sub-set of all loads and stores to access only
certain partitions. They achieve this using the Intel MPX feature allows the application developer to specify
and enforce bounds for a range bounded by two 64-bit addresses, which are checked against a certain value
by specialized instructions. Their approach is to map isolation domains into memory ranges, by specifying a
set of upper and lower bounds to delimit the memory isolation domain. However, the hardware feature only
supports 4 bound-values register, while additional bounds are kept in memory. This limits the method to only
two isolation domains, since a larger number would require their bounds to be stored into memory, making the
vulnerable to memory corruption vulnerabilities.

PrivWatcher
PrivWatcher [93] is a data-oriented attack mitigation framework which focuses on isolating process credentials
in the Linux kernel. Their framework provides both integrity verification and protection of process credentials
in the presence of memory corruption vulnerabilities, which blocks the attacker’s attempt to escalate their
privileges that potentially leverage one of the malicious strategies presented in the previous sections. One
of the pre-requisites of PrivWatcher is that they can execute in an execution domain which is more privileged
than the kernel’s, for example, at the hypervisor level. PrivWatcher’s approach to achieve protection of process
credentials consists of three components. First, they propose separating the allocation of process credentials,
so that sensitive non-control fields are not intermixed with unprotected data fields. Second, they implement a
dual reference monitor that satisfies the Time of Check to Time of Use (TOCTOU) policy, which guarantees that
the checks made when a modification of the process credentials occurs, are performed in the same execution
context as when the sensitive fields are used. Third, they define a set of heuristics to provide data integrity
verification, which aims to detect malicious kernel modifications of the process credentials. At a high level, they
define a Read Only Safe Region, non-writable to the kernel, where credentials are isolated so that none of the
attacks described above work. In order to update or modify the process credentials, the kernel needs to make
an explicit request to the PrivWatcher mediator, which processes the request based on the kernel access
control policies. In order to implement the first component, PrivWatcher doesn’t interfere with the entity in
charge of the process credentials memory chunks, namely the kernel dynamic allocator, but rather intervenes
when a reference to the cred structure is assigned to a pointer, by creating a duplicate in the safe region
and freeing the original un-protected structure. This component bypasses the memory overwrite scenario. To
tackle the other attacking cases, PrivWatcher provides techniques to enforce the TOCTOU policy. Namely, they
provide a one-to-one association between the cred and the data structure that defines the context of currently
executing process, i.e. the task struct. They do so, by extending the cred with two additional pointers: a
forward reference to the protected copy from the safe region and a backward reference to the task struct.

SPARTA D6.1 Public Page 10 of 112



D6.1- Security-by-Design Framework for the Intelligent Infrastructure

Whenever the privileges of a process are set, or when the kernel performs ssecurity checks for accessing
sensiutive resources, PrivWatcher make sure that the following conditions are met: the process credentials
belong to the safe region and that the back reference and the CR3 address space value match the PGD
address in the task structmatch. The third component of PrivWatcher is satisfied by not non-root processes
that execute non-suid binaries to escalate their privileges. The threat model that PrivWatcher targets, is,
unfortunately, solely focused on the process credentials referenced in the task struct. Their solution is not
generic to arbitrary memory regions, which leaves a system equipped with PrivWatcher, vulnerable to other
attacks vectors, such as modifications in other objects from the kernel heap or modifications in the address
space (paging tables) of the malicious process.

PT-Rand
To tackle the limitations of PrivWatcher, which is failing at protecting the paging tables of a process for mod-
ifications, PT-Rand [122] comes with a promising technique that provides address space robustness against
malicious overwrites in the paging structures, which enables an attacker to perform address space injection
attacks in the presence of a memory corruption vulnerability, Their approach relies on a hypervisor-less sys-
tem that protects paging structure with minimally induced performance overhead. Address space injection is a
critical attack that an attacker could use in a vulnerable kernel, since it allows them to twist the memory man-
agement functionality to replace benign code pages with malicious code pages. Thus, even in the presence
of fine-grained CFI mechanisms, the attacker is able to obtain malicious code execution from the user space.
The high level design of PT-Rand consists of two techniques: randomizing the location of the page tables in
memory, based on a randomization secret, and obfuscating the virtual addresses of pointers that reference the
paging structures, by replacing them with their equivalent physical addresses, which would reduce the damage
of a data disclosure vulnerability. They assume an attacker that employs arbitrary read and write capabilities,
while code injection is mitigated by CFI mechanisms. In order to achieve their security goals, PT-Rand allo-
cates the kernel paging tables at boot time, based on a randomization secret generated from hardware entropy
generators, and map these paging tables at an unpredictable virtual-to-physical offset computed based on the
random token. They patch the paging table structures allocator wrappers to return the address of the physical
page whenever a paging structure is requested, so that, in the presence of a leak, without the randomization
secret, the attacker is not able to inherit the virtual address of the page. To isolate the randomization secret,
PT-Rand uses a privileged register on the CPU, which is neither accessed by the kernel in its original codebase
nor accessible to user space processes. Therefore, under the assumption that the attacker doesn’t have arbi-
trary code execution capabilities, the privileged register is only accessible to dedicated kernel regions. While
their approach proves high robustness against guessing attacks, in an attempt from the attacker to brute-force
the location of the randomized paging tables, the PT-Rand mechanism is critically dependent on the random-
ization token stored in the privileged register. They rely on the fact that they completely eliminate the possibility
of register spilling, by patching the compiler and checking the codebase of the Linux kernel to never access the
register in cause. Moreover, similar to PrivWatcher, their approach is subjective to a particular data structure,
the paging tables, without further extensions on arbitrary memory isolation.

2.1.2 Defenses against Fault Injections

An evaluation of the already existing defenses mechanisms against fault injection attacks requires an accurate
analysis of the threat. This threat analysis, focused on the Instruction Skip fault model, is provided in subsection
2.1.2.1. Then, the effectiveness of the main defense mechanisms against Fault Attacks (FA) is discussed in
subsection 2.1.2.2 according to the previous threat analysis.

2.1.2.1 Threat analysis - Fault injection attacks against microcontrollers

This subsection provides a state-of-the-art of fault injection attacks against microcontrollers, mainly focused
on EM perturbations and laser as injection medium. This task further gathers and analyzes experimental data
related to attacks that leverage EM and laser fault injections in microcontrollers. The reported experiments
allow to derive a very strong fault model, which shows that an attacker may be able to erase an arbitrary
number of instructions from a microcontroller program at runtime.

2.1.2.1.1 Study of the Instruction Skip Fault Model
A Fault Model (FM) generally describes the main properties of a FA scheme, often expressed in terms of
requirements of synchronization (requirement to fault a particular step of an algorithm or program) and of
extension (requirement to limit the fault extension, e.g. to a single bit or a single byte). In this work, we
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consider the FM related to EM and laser fault injection. It may be defined at different levels of abstraction from
transistor or gate level to the assembler or algorithm level. We studied the FM of microcontrollers experiencing
instruction skips.
An instruction skip is a fault that results in skipping, meaning not executing, one instruction of a microcontroller
program at runtime (as if the program flow had skipped over the faulted instruction).
Several works studied the EM-induced instruction skip FM. Most of them assessed single instruction skips (in
the same 8-bit microcontroller we used as target for [42], and on a 32-bit microcontroller for [261]). To the
best of our knowledge, the only works reporting several successive instruction skips are [301] and [403]. [301]
assessed four successive skips of instructions stored in the target instruction cache while [403] succeeded in
faulting instructions stored in the target’s pipeline. Their ability to induce successive skips was linked to the
micro-architecture of their targets.
Several works also deal with laser-induced instruction skips. [66] obtained single instruction skips with high
accuracy and high success rate (on the same microcontroller we studied) and used it to perform a successful
differential fault attack on AES. Still on the same target, [214] reports instruction skips based on resetting
one or two bits of the targeted instruction opcode. The authors of [359] induced instruction skips on a more
complex 32-bit cortex-M3 microcontroller. They were able to inject two single instruction skips distant from
58 ms to defeat a protected CRT-RSA algorithm. In terms of target complexity, [363] reports injection of single
instruction skips into a quad core ARM cortex A9 microprocessor running at 1.4 GHz clock frequency. Hence,
the state-of-the-art in laser-induced instruction skip was limited to single instruction skips (with a repetition rate
in the range of tens of ms).
There is to date very few explanations of how an instruction skip is induced at the gate level, with the no-
table exception of [27]. It describes how increasing progressively the stress applied by a clock glitch to a
microcontroller induces an increasing number of bit-reset faults into an instruction opcode. It results in (1)
instruction modification at low stress or (2) in turning the instruction into an actual nop at high stress (i.e. the
no operation instruction). Instruction modification achieves an instruction skip if the modified instruction
has no effect on the code operations (instruction skips are often actual code modification); the same is true for
turning an instruction into a nop. An analysis of single instruction skips due to instruction modification induced
by laser is reported in [105]. It relates how faulting one bit of an instruction opcode led to two successful FAs.
Our research objective was to reproduce EM and laser-induced instruction skips on a microcontroller and to
study the main characteristics of its FM: accuracy, extent, success rate, time between successful skips, etc.
Our aim was also to assess whether the single instruction skip fault model could be extended further to multiple
instruction skips. This latter aim was of interest because defenses are based on the known FMs. Hence, a
defense based on a too narrow FM may reveal vulnerabilities at test time. From previous experiments and
taking into account the results of [27, 65, 66], we focused our experiments toward achieving instruction skips
by turning the target instructions into nop instructions. Our experiments were carried out with the same 8-bit
microcontroller studied by [27, 42, 65, 66, 214] for comparison purposes and also to ease the analysis of the
obtained results.
Test setup: We chose a simple target for the purpose of being able to analyse easily its answers to fault
injection: an 8-bit non-secure ATmega328P microcontroller designed in the old CMOS 0.35µm technology. It
has 2 kB RAM, 3 kB Flash and 1 kB EEPROM memories; a Harvard architecture with a 2-stage fetch-execute
pipeline. It runs at 16 MHz and has 32 general purpose registers. Registers r16 to r25 were used during our
experiments.
We studied the effect of EM and laser-induced faults on dedicated test codes mostly written in assembly
langage. Our intent was to induce and analyze instruction skips by examining their effect on the assembly
instructions of the test codes. For each test series, we used two trigger signals for synchronization purposes
(two outputs of the test chip):
• a synchronization trigger signal to accommodate for the latency of the laser source,
• a core trigger signal to synchronize fault injection with the part of the assembly code of interest.

The listing in Fig. 2.3 provides a description of the test code we used to tune our settings in order to induce
instruction skips. The core part of the test code (encompassed by the core trigger) is a series of ten ld
rX,Z+ instructions, each one corresponding to a load in a destination register rX of a byte value stored in
RAM memory at address Z with a post increment of Z. Prior to that, the ten destination registers, r16 to r25,
are initialized at 0x55 and an array of ten byte values 0x39 to 0x30 are stored in RAM with Z storing the
address of its first element. Registers r16 to r25 are read back after the synchronization trigger is reseted
(the two top wavefroms in Fig. 2.4.a and 2.5.a are the synchronization and core triggers). The top part of Table
2.1 displays the values read back from r16 to r25 for a fault-free execution
As an example, the right column of the test code core part in Fig. 2.3 displays the effect of a laser shot
turning the ld instruction of line 9 into a nop instruction. The effect of such a laser-induced instruction skip
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Figure 2.3: Test code for instruction skip analysis

is highlighted in the bottom part of Table 2.1: the initialization value 0x55 is read back from r19 (in red), and
because an increment of address Z is missing, all the values read back from r20 to r25 are shifted (in gray).

Table 2.1: Registers r16 to r25 readback values, for a fault free execution (top) and for an instruction skip
targeting r19 (bottom, highlighted in red).

Register 16 17 18 19 20 21 22 23 24 25
Fault free 0x39 0x38 0x37 0x36 0x35 0x34 0x33 0x32 0x31 0x30

Faulted 0x39 0x38 0x37 0x55 0x36 0x35 0x34 0x33 0x32 0x31

2.1.2.1.2 EM-induced Instruction Skips
Injection Setup: the EM pulse injection setup we used is described in [251]. The EM disturbance that induces
a fault is generated thank to a voltage pulse generator: it delivers a square voltage pulse with a transition time
of 2 ns, a maximum amplitude of ±400 V in absolute value, and a minimum width of 6 ns. The voltage pulse
edges are converted into current variations in a coil found at the tip of a handcrafted injection probe. The probe
is made of three turns of copper wire around a ferrite core about 500 µm in diameter. The swift current variation
induces an EM perturbation at the root cause of the injected faults. A trigger signal generated by the device
under test synchronizes the voltage pulse with the operation of the microcontroller. The voltage pulse was set
to −200 V and 100 ns.
The left part of Fig. 2.4 displays the trigger signals of the test code (two top waveforms) and an image of the
EM perturbation (third waveform). The trigger signals are both drawn for a fault-free execution (in red, denoted
normal operation) and for an EM-injection inducing an instruction skip of the ld instruction into register r19 (in
blue). Because execution of a ld instruction takes two clock periods contrary to a nop instruction which takes
one clock period, each consecutive instruction skip shall correspond to a reduction of the test code of one
clock period. This phenomenon is displayed in Fig. 2.4.a for a single instruction skip. The test code execution
time is shortened as well as the duration of the triggers signals: the fault free execution triggers in red last one
clock period more than the faulted execution that is drawn in blue.
In terms of accuracy, we also tested whether this single instruction skip fault model was still valid while targeting
the ld instruction of the other test registers. Our aim was to assess an attacker ability to target arbitrarily a
single instruction of a program. To do so, we varied the time delay between the EM-perturbation and the
synchronization trigger signal to span the whole test code. Figure 2.4.b reports the obtained results. It displays
the skipped registers as a function of the delay. It reveals that an attacker is able to inject EM-induced single
instruction skips into a running microcontroller with high timing accuracy. For each instruction, we were able to
find an injection timing leading to 100 % success rate.
Some experimental results (not reported here) suggested that several consecutive instructions may be skipped
simultaneously. For the purpose of verifying this assumption, we again carried out our experiments with a
voltage pulse amplitude increased to -250 V. The corresponding results are displayed in Fig. 2.5.a. It shows
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Figure 2.4: EM-induced single instruction skip: effect on execution time (a), ability to choose the skipped
instruction (b)

that this increase makes it possible to skip two consecutive instructions with a still high timing accuracy (i.e.
the ability to choose the two skipped instructions).
We also studied the tuning of an another parameter of the voltage pulse: its duration. And indeed, different
voltage pulse durations leaded to different number of instruction skips as reported in Fig. 2.5.b. Up to four
successive instruction skips were obtained (the maximal number we were able to induce).

r19 & r20

(a) Faulted registers as a function of EM
injection time

Voltage pulse width [ns]

(b) Number of EM-induced instruction
Skips as a function of the voltage pulse

duration

Figure 2.5: EM-induced instruction skip: ability to skip two consecutive instructions (a), effect of the voltage
pulse duration (b)

EM-induced Instruction Skips Fault Model : these experimental results demonstrate that a very high accuracy
is achievable: we were able to choose and skip a single instruction into a test sequence with a 100 % success
rate. Moreover, we were able to increase its extent to skipping four successive instruction skips which adds to
its strengh (unlike [301, 403], the ability to skip consecutive instructions was not linked to the micro-architecture
of the target).

2.1.2.1.3 Laser-induced Instruction Skips
Injection Setup: our laser injection setup (it is described in [138]) has a nanosecond range laser source able
to output a laser pulse with a 50 ns to 1 s tunable duration. It has a latency of less than 300 ns (i.e. the time
interval between the trigger signal and the moment an actual laser pulse hits the target). Its wavelength is
1,064 nm (or near infrared, NIR). The laser source max power is 3 W (measured at the fiber optic output) which
is enough to inject faults into the target. We performed our experiments with a ×20 objective lens: it outputs a
laser spot diameter of 5µm. The laser pulse was set to 0.4 W and 75 ns for the first experiments.
Similarly to EM-injection, we were able to find settings that makes it possible to induce a single instruction skip
with a 100 % success rate. Figure 2.6.a displays the trigger signals of the test code (two top waveforms) and
an image of the actual laser shot (third waveform). The trigger signals are both drawn for a fault-free execution
(in blue) and for a laser-induced instruction skip of the ld instruction into register r19 (in red).
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We also tested the ability the skip any instruction of the test code by varying the time delay between the laser
shot and the synchronization trigger signal. Figure 2.6.b reports the obtained results. It displays the skipped
registers as a function of the delay. It reveals that an attacker is able to inject laser-induced single instruction
skips into a running microcontroller with high timing accuracy. For each instruction, we were able to find an
injection timing leading to 100 % success rate.
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Figure 2.6: Laser-induced instruction skip at 0.4 W and 75 ns: effect on execution time (a), ability to choose
the skipped instruction (b)

At some timings, two consecutive instructions were skipped (e.g. at 1,390 ns or 1,625 ns in Fig. 2.6.b), sug-
gesting that several consecutive instructions may be skipped simultaneously. For the purpose of verifying this
suggestion, we again carried out our experiments with a laser duration increased to 125 ns (two clock cycles)
and a delay step set to 20 ns. The corresponding results are displayed in figure 2.7.a. It shows that increas-
ing the laser duration to 125 ns makes it possible to skip two consecutive instructions with a still high timing
accuracy (i.e. the ability to choose the two skipped instructions).
We also tested whether increasing the laser pulse duration would make it possible to skip an arbitrary number
of consecutive instructions. The laser power was kept constant at 0.4 W, and the delay was set to target the ld
instruction of register r19. The test series were carried out for a pulse duration ranging from 50 ns to 410 ns
with an increment step of 30 ns. Figure 2.7.b reports the obtained results.
A first instruction skip was obtained for a laser pulse duration of 80 ns. Then, the number of instruction skips
increased progressively with the pulse duration up to 7 consecutive skips at 350 ns. On average an addi-
tional instruction skip was obtained for every 60 ns increment of the laser pulse duration. For each number of
instruction skips between 1 and 7, we were able to find settings leading to a 100 % success rate.
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Figure 2.7: laser duration from 50 ns to 410 ns, 0.4 W laser power

Another test code was used to test further the ability to skip successive instructions with an increased duration
of the laser pulse (see [138]). The laser power and delay were set to 0.5 W and 800 ns. As we increased pro-
gressively the laser pulse duration, an increased number of instructions were skipped, for which the shortening
of the trigger signals was in accordance with the number of skips. Table 2.2 gives the number of obtained
successive instruction skips for a selection of laser pulse durations.
It took a 20,400 ns long laser pulse to skip 300 instructions. We did not test the number of skipped instructions
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Table 2.2: Number of obtained instruction skips vs laser pulse duration
Laser pulse duration (ns) 1,000 2,000 5,000 10,000 20,400
Number of instr. skips 17 33 82 143 300

beyond 300. There is a maximal number of instruction skips set by the endurance to laser illumination of the
target circuit. Indeed, our device was destroyed when accidentally exposed to a continuous laser pulse at the
same 0.5 W power. However, the device we used for these experiments showed no sign of fatigue after several
tests at 20,400 ns laser pulse duration.
Our laser source has a repetition rate of 50 ns. It makes it possible to induce several instruction skips in the
course of a program’s subroutine. In order to assess the feasibility of this fault injection technique, we targeted
a 4-digit PIN verification algorithm (described in [137]). It is protected against side channel timing analysis
by a constant-time implementation: every of the four digits entered by the user are compared with those of a
reference PIN.
We targeted successfully the four corresponding comparison loops as illustrated in Fig. 2.8: four carefully
synchronized 60 ns long laser pulses were used to gain identification with a false user PIN.
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Figure 2.8: Bypass of a verify PIN algorithm with four separate laser pulses

Instruction Skip Fault Model
This research work assesses on experimental basis an extended fault model for EM and laser-induced instruc-
tion skips. The main characteristics of this fault model are:
• its accuracy, or ability to choose a single skipped instruction with a 100 % success rate provided a precise

synchronization is obtained (EM and laser),
• its extension, or ability to skip an arbitrary number of successive instructions for laser injection (in case

of EM injection the number of instruction skips is limited to four),
• its flexibility, or ability to skip several sections of the targeted firmware (for laser injection).

Simply put, laser fault injection may offer an attacker the ability to erase chosen parts of a microcontroller
firmware at runtime. This experimental assessment speaks in favor of considering this fault model when
designing defenses. A task that may prove difficult to complete given the assumption that any part of a software
defense might be skipped as well.

2.1.2.2 Analysis of Existing Defenses against Fault Injection Attacks of Microcontrollers

Microelectronic devices are prone to errors due to non-intentional causes (radiations, EM coupling, etc.) that
leads to the design of fault-tolerant systems [210]. The related countermeasures, either hardware or software,
provided the basis of the first defense mechanisms against fault injection attacks [30]. Though, fault attacks
are intentional attacks carried out by an attacker for the purpose of extracting information (e.g. a cryptographic
key) or gaining an unauthorized access (e.g. bypass a verify PIN algorithm).
Since then, many defense mechanisms have been introduced [33]. In this work we only consider those that
may apply to the legacy component microcontrollers that can be found in connected devices or industrial CPS.
As a result, we do not consider hardware countermeasures such as detectors (e.g. light sensors to detect laser
illumination, voltage glitch monitoring, etc.) that would require a redesign of the microcontrollers: we focus on
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software countermeasures. We also address, on a lesser extent, hardware-assisted software defenses that
apply to open core architectures (i.e. RISC-V ISA).

2.1.2.2.1 Existing software countermeasures against fault attacks
This subsection describes the main usual software defenses used to thwart fault attacks.

Randomization
The instruction skip FM described in subsection 2.1.2.1 assesses the ability for an attacker to skip a chosen
instruction (or group of instructions) with a 100 % success rate provided an accurate synchronization of the
injection process w.r.t. the target’s activity is achieved. This is a strong requirement that suggests to use
desynchronization as a countermeasure. Indeed, introducing a certain level of randomization into a program
execution [30] will deny an attacker the ability to target specifically any of its instructions. Randomization can be
built from random numbers of dummy instructions inserted in the course of a program, or by jumping randomly
between different of its subparts (when compatible with the considered algorithm). As an illustration, inserting
randomness in the PIN verification algorithm whose attack was reported in the previous section (illustrated in
Fig. 2.8) would have prevented it from succeeding.
However, randomization is not an absolute defense:
• it only delays an attack success if the attacker is allowed to carry out several attack attempts in a row

(thus degrading the attack success rate),
• some attack schemes do not require an accurate timing of fault injection to succeed (e.g. the attack of a

RSA algorithm reported in [359]).

Redundancy
Redundancy is a long-established defense against faults [30, 33, 210]. It consists in executing several times
the same subprogram and to compare the outputs. It is based on the assumption that an attacker is not able
to induce an identical fault into each execution. It exists several variants of redundancy, the more common are:
• code duplication with comparison that makes it possible to detect fault injection,
• code triplication with majority vote that provides the ability to correct faults injected in one execution,
• duplication with inverse computations (e.g. for an encryption algorithm: perform the encryption and then

decrypt the obtained cipher, any difference from the initial input indicates that a fault was injected) that
further reduces the ability of an attacker to induce several times the same fault because the target’s
computations are different.

However, redundancy-based countermeasures suffer from a high overhead in execution time which is at least
doubled or tripled (and possibly in code size as for duplication with inverse computations). Moreover, the
previous state-of-the-art in fault injection reported an ability to skip two instructions sufficiently away in time
(several ms for laser injection [359], and possibly less for EM injection given the 50µs repetition rate of the
used voltage pulse generators).
As a result, duplication techniques applied at instruction level were introduced for the purpose of choosing
carefully the protected instructions. In addition, it may save code overhead (all instructions are not equally
sensitive), allow quasi-immediate detection or mitigation of the injected fault. These defenses were built on the
assumption that a fault (an instruction skip in our case) is restricted to a single instruction.

Initial code Redundancy-based defense

ldr r1, [r0] ldr r1, [r0]
ldr r2, [r0]
cmp r1, r2
bne <error>

Table 2.3: Redundancy-based software defense against fault injection - fault injection detection [32]

Barenghi et al. introduced in [32] a framework based countermeasures solution applied at the instruction level
of a program. Three techniques within the framework are considered: instruction duplication, instruction tripli-
cation, and a parity check method. The main principle of this defense is based on duplication and comparison.
It is illustrated in Table 2.3 for a load instruction of a value stored in RAM into a register: ldr r1, [r0] .

SPARTA D6.1 Public Page 17 of 112



D6.1- Security-by-Design Framework for the Intelligent Infrastructure

A second register r2 is used in the duplicated instruction. Then two additional instructions are used to com-
pare the values stored in the two registers and branch into an error handler if the content of the two registers
differs (hence revealing a store instruction was faulted). This defense is designed to provide data and code
integrity. The authors detailed these countermeasures with tests on a AES implementation and suggested that
the framework is employable on ARM processor family, starting ARM7 that use ARMv3 architecture. From the
overhead point of view, execution time and code cost might be high.
Moro et al. proposed in [260] a variation on this countermeasure based on duplication without detection to cope
with the single instruction skip fault model. It is exemplified in the top part of Table 2.4 for an instruction adding
1 to the content of a register and storing the result in a second register. A simple duplication of this instruction
is sufficient to assure a mitigation against a single instruction skip (i.e. assuring that the correct result is stored
in the destination register even if one of the two instruction is skipped). This defense was suitable for this
specific instruction because its duplication did not change the result, a property called idempotence.

Initial code Idempotent instructions Duplication-based defense

add r1, r0, #1 add r1, r0, #1
add r1, r0, #1

add r1,r1,r2 add r3, r1, r2 add r3, r1, r2
mov r1, r3 add r3, r1, r2

mov r1, r3
mov r1, r3

Table 2.4: Duplication-based software defense against the single instruction skip fault model [260]

Duplication of the addition instruction in the lower part of Table 2.4 was not feasible without changing the
result because the same register r1 is used both as a source and a destination register. However, using an
additional register r3 in a move instruction turns into an idempotent series of two instruction that can be safely
duplicated (see resp. the mid and last columns of Table 2.4). The authors formally verified the efficiency of this
countermeasure on a 32-bit ARM Cortex-M3 microcontroller, based on an ARMv7-M architecture that runs the
Thumb-2 instruction set; the application tests were applied to the AES and SHA-0 algorithms. The overhead,
when applying this countermeasure, is important as reported by the authors: it may be higher than 100 %
in clock cycles number and 200 % in code size. Hence, they suggest as a solution that it can be applied in
selected sensitive parts of the target program to reduce the overhead.
This countermeasure was applied by Barry et al. in [35] on a modified Low Level Virtual Machine (LLVM) com-
pilation tool as a generic mechanism to protect a code. The authors introduced a new approach that generate
for all instructions an equivalent idempotent instructions and then proceed with the related duplication process.
They also proposed an instruction scheduling mechanism that proceed to rearrange the execution order of the
modified instructions to ensure a better execution time and an increased resistance to instruction skips. With
this approach, it was possible to reduce the execution speed overhead and code cost by approximatively the
half from the results obtained by [260].

Control Flow Integrity
The instruction skip fault model provides an attacker with the ability to tamper with the Control Flow Graph
of a program at runtime (e.g. by skipping a jump or branch instructions). A usual defense against such CFG
modifications is the use of Control Flow Integrity techniques. Following the work of Abadi et al. [3], CFI makes it
possible to detect violation of a program CFG. The various variations of this technique are described in the CFI
paragraph of subsection 2.1.1.1 dedicated to defenses against code-oriented attacks. They can be harnessed
to mitigate CFG modifications induced by fault injection (e.g. as suggested in [289]).
A counter-based CFI technique introduced by [8] and later improved by [218, 289] is an inspiration for the
defense mechanism we are developing. It is based on counters initialized at the beginning of any basic block
(BB) of the CFG. Increment instructions are inserted between the BB instructions to count them. The counter
value is then checked (at the end of the BB) against a fault free reference and a conditional branch into an error
handler is taken if a difference is found [8]. [218] moved the counter check to the beginning of the destination
BBs and interleaved it with initialization of the target BB instruction counter to extend this defense beyond BBs
to the edges of the CFG.
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Hardware-assisted software countermeasures
Danger et al. provide in [119] a solution based on extra hardware implemented block named Code and Control-
Flow Integrity (CCFI). The method is presented as a generic countermeasure and is not intrusive since it does
not need any modification of the core. This extra block is composed of two parts: a first part is used to store
metadata related to the code and control flow information, and the second module is needed for the integrity
check of both the code and the control flow. This method was tested on an implementation of PicoRV32 based
on RISC-V ISA (three-stage pipeline). Their evaluation showed that it provided protection against simulated
fault attacks. Yuce et al. demonstrate in [404] the efficiency of a new proposed countermeasure. The evaluation
was proceeded by comparison of the protected code to both its unprotected version and its protected version
using the instruction duplication method. The presented countermeasure is based on a hardware detector
combined with a software block that handle the fault flag and run the application specific fault response.

2.1.2.2.2 Theoretical analysis of software countermeasures against fault attacks
The efficiency of the software countermeasures reported in the previous subsection is still to be assessed
experimentally against the instruction skip fault model we introduced in subsection 2.1.2.1. However, we
propose a first theoretical assessment in the following.
Randomization: In essence, the extended instruction skip fault model we introduced seems not to endanger
the randomization countermeasure. It is true for EM-based fault injection that makes it possible to skip only
a few successive instructions with a low repetition rate. On the contrary, laser-induced instruction skips may
target as high as hundreds of successive instructions. Depending on how randomization is implemented, its
relevance can be diminished or offset.
Redundancy : Full software redundancy as described in [35] can be defeated by both EM and laser injection.
The 100 % success rate we highlighted (provided an accurate synchronization is obtained) suggests that an
attacker would be able to induce the same fault into the redundant parts of the target. Instruction-level redun-
dancy, as in [260], was designed to mitigate EM single instruction skip attacks on the assumption that the EM
fault model was restricted to single instruction skips. Our experiments demonstrate that this assumption does
not hold in practice: either EM or laser attacks are able to skip duplicated instructions with a 100 % success
rate (as displayed in figures 2.5.a and 2.7.a).
CFI: CFI introduced a further level of useful complexity against fault attacks (especially if it also uses redun-
dancy [289]). However, this defense is not absolute against an attacker who is able to erase several sections
of arbitrary length of the targeted code. In a white box approach, the attacker would be able to select accu-
rately the instructions to be skipped in order both to perform his attack and to deactivate the protections (e.g.
the branch instructions into error handlers). This theoretical attack scenario is based on strong assumptions,
though it is not beyond feasibility with an iterative attack that would defeat one software countermeasure after
another.

2.2 Devising General Defense Mechanisms

Based on the thorough analysis, we device defenses for present and future devices against data-oriented and
code-oriented attacks due to memory corruption vulnerabilities and against fault injection attacks.

2.2.1 Defenses against Data-oriented Attacks through Virtualization

We propose a hardened system that leverages virtualization features to reduce the damages that memory cor-
ruption vulnerabilities (in particular data-oriented attacks) can introduce. We suggest to unify the techniques of
the state-of-the-art research presented above and bridging their limitations to induce higher security. Specifi-
cally, we design and publish selective memory protection (xMP) [288], a technique that can be applied to isolate
arbitrary memory regions in disjoint protection domains while, at the same time, providing integrity of the point-
ers that reference data in these isolated protection domains. We implement primitives that developers can use
to protect sensitive data in both kernel and the user space. We exemplify our primitives on the highly critical
data structures, namely paging tables and process credentials (struct cred), in the Linux kernel space. In
the user space, we isolate and protect data structures used by security-sensitive libraries (e.g., OpenSSL), that
maintain cryptographic material in memory. Further, we complement the data structure isolation features by
additionally establishing a pointer authentication feature that grants access to the isolated data structures only
in the right context. We implement the pointer authentication feature by using the Linux kernel implementation
of SipHash, a Keyed-Hash Message Authentication Code implementation. In pointer authentication of xMP
base its Keyed-Hash Message Authentication Code (HMAC) on a secret, that itself is isolated in an exclusive
memory protection domain, so that only authorized code can access it.
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2.2.1.1 Selective Memory Protection using EPT-based Isolation

Virtualization introduces a software layer occupied by the so called hypervisor that runs at a higher privilege
level than the kernel and the user space tasks. Therefore, a hypervisor represents a good candidate for en-
hancing the security of the lower privilege layers. Modern CPU architectures extend their ISA with instructions
that allow hypervisors to support the governance of virtual machines (or simply guest’s). For this, such archi-
tectures introduce additional hardware-enforced data structures that help hypervisors in managing the shared
hardware resources used by the virtual machines. These data structures (among others) enforce isolation
between the guests of the virtualized system, which is needed because virtual machines can not be allowed
to access each other’s address space, and they must be given the impression that they have full control over
the system (much like processes in the user space of a kernel host).
The data structures used to isolate the guests’ memory address spaces additionally comprise a set of Second
Layer Address Translation (SLAT) tables, named EPT on Intel. EPT represent an additional layer of paging
structures used to translate the guest physical into machine (or host) physical addresses. Generally, a transla-
tion of a guest virtual address into a guest physical address (with help of the in-guest page table) maps a Guest
Virtual Address (GVA) into a Guest Physical Address (GPA). Consequently, after walking the EPT, the GPA
results in the Host Physical Address (HPA). This allows hypervisors to segment the physical address space
into isolation domains associated with every VM guest running in the system. Nevertheless, the system does
not restrict a hypervisor from configuring more than one EPT for a VM. For example, on Intel CPUs, the virtual-
ization extensions allow to configure up to 512 EPT pointers in the Virtual Machine Control Structure (VMCS)
(the central data structure that configures virtual machines). In other words, instead of using only one, global
view on the guest’s physical memory, a hypervisor is able to configure different views on the guest’s physical
memory (e.g., by marking a GPA as present in one EPT, while in another EPT it is marked as non-present).
This technique can be applied to guard critical in-guest data structures. Assuming a critical data structure
resides on a particular guest physical page, one of the EPTs can be configured to restrict access permissions.
Thus, it becomes possible to establish protection domains that guard the particular data structure. Such a
protection domain can reside in two states: (i) the protection domain is in the relaxed state with a relaxed
access setting for the GPA in the respective EPT (e.g. rwx), while (ii) the protection domain in the restrictricted
state imposes a more restrictive configuration in a different EPT (e.g. r–). That is, to define one protection
domain, we have to employ two EPTs (to implement the relaxed and the restricted state, respectively).
Moreover, Intel CPUs provide a virtualization extension instruction called VMFUNC that allows kernel and user
space to switch to a particular EPT, without any hypervisor intervention. Therefore, when attempting to access
a memory region that is isolated in domain X, the guest can use the VMFUNC instruction to switch the current
EPT. That is, the VMFUNC instruction allows guests to define custom policies that define when to enter (or
leave) the defined protection domains.
To implement this feature, in xMP [288], we leverage the Xen altp2m subsystem for configuring multiple EPT
for a virtual machine and make use of its interface to the Linux kernel to maintain guest physical addresses in
individual memory protection domains (represented through different EPT). To place a particular GFN inside
a protection domain, we relax the GFN’s memory access permissions in the associated EPT, and restrict its
memory access permissions in every other EPT. To ensure that the attacker does not have access to the
isolated memory regions, we also define one EPT that restricts access to all other domains. This memory
view is enabled by default, so that potential data-oriented attacks cannot illegally modify the contents of the
protected data-structures without first having to enter one of the protection domains. Yet, since the attackers
do not have the necessary means (including access to the isolated secret key that is used to authenticate the
entered protection domain) to switch the protection domains, xMP has the power to prohibit such attacks.

2.2.1.2 Pointer Authentication

While the isolation of sensitive data structures is a necessary step, the pointers can still be adjusted by adver-
saries with arbitrary write primitives. As such, to ensure that pointers cannot be (illegally) redirected, we can
authenticate them before they are de-referenced.
Pointer authentication represent an effective security feature implemented by the ARM architecture to ensure
memory pointer integrity. The ARM architecture has already implemented the PAC! (PAC!) extension, however,
x86 lacks a similar functionality. In order to complete the protection of arbitrary memory, with xMP [288], we
propose a lightweight, yet reliable pointer authentication implementation in software, which complements the
memory isolation protection. If we take the highly sensitive data structure that holds the process credentials
(struct cred) as an example, assuming the content of these objects is protected via the EPT management
technique described above, the pointers that reference struct cred are still vulnerable to overwriting, since
we don’t isolate every parent structure that stores them.
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A strong attacker equipped with arbitrary read and write capabilities, can learn the pointer of the privileged
(and through xMP isolated) struct cred, and use it to overwrite the pointer to the struct cred residing in
the associated thread control block (represented through the data structure struct task struct on Linux)
to elevate their privileges and compromise the system, even though the struct cred object are isolated.
Therefore, we need to make sure that pointers to sensitive objects can not be reused in a context different from
the one they were originally configured in. Pointers to struct cred instances are kept in the task struct
of a task. Therefore, we need to bind a struct cred to its corresponding task struct, which prevents the
struct cred to be used in another task struct. Generally, a pointer to a sensitive object must be bound
to the parent object that stores the pointer. Recursively, the parent object must be bound to the grandparent
object, and so on, until the last ancestor is found in the composite chain, that is not reference by any other
object in the hierarchy. In Linux, the process credentials maintained by struct cred is referenced by a
pointer stored in the task struct representing the thread, which in turn is referenced only by CPU registers,
and, therefore, we treat it as the top of the hierarchy that doesn’t need to be authenticated (as it is immutable
for every thread).
In order to implement pointer authentication, we leverage the lightweight SipHash functionality present in the
Linux kernel, which is designed as a secure cryptographic hashing function, but optimized to work efficiently on
small data, such as 8-byte pointers. SipHash works with 128-bits keys to compute HMACs. We then, we equip
the first (unused) 15 bits of pointers to sensitive data structures with the resulting (trimmed) HMAC. Therefore,
we use the most-significant 15 bits of a pointer to store its immutable HMAC. Whenever the pointer is used, we
require the context (parent data structure which hosts it) to be given as well, so that we can authenticate the
HMAC and authorize the use of the pointer. In case of an inconsistency (resulted, e.g., through a malicious
corruption of the pointer), the kernel crashes. The strength of a cryptographic has function relies in the secrecy
of its private keys. Therefore, we assign a secret key for each protected data structure, and we isolate it in the
memory domain used to isolate the data structure. Only authorized regions of the kernel are able to access the
key, and we eliminate pointer references to the key, by statically injecting at compile time its memory address
in the operands of the instructions that use it. The 15-bit HMAC does not represent a danger for a brute force
attack, since the attacker has only one shot into guessing the HMAC, after which the kernel crashes.

2.2.1.3 Kernel Space

In the following, we describe practical applications of the virtualization- and pointer authentication based tech-
niques described above on sensitive data structures used by the Linux kernel to protect them in the presence
of memory corruption vulnerabilities.

2.2.1.3.1 Page Tables
Attackers with arbitrary read and write capabilities can run data-oriented attacks against page tables. This can
be done by (i) revealing the location of the page tables of a specific process in memory, and (ii) overwriting
page table entries to introduce new, malicious, mappings. This capability enables many attack vectors that
grant illegal execution. For instance, by clearing the Supervisor Mode Execution Prevention (SMEP) bit in the
page table entries, the attacker could allow user space pages to be executable in kernel space, and therefore,
redirect the kernel’s control flow to injected malicious payload in user space. This can be addressed by placing
the paging structures in dedicated protection domains (that are protected by EPT).
As such, we extended xMP [288] to protect pointers to page table structures, which we isolate in dedicated
protection domains. For that, we extended the Linux kernel buddy allocator, in order to establish an interface
between the Linux kernel and the Xen altp2m subsystem. This allows us to isolate guest physical pages. By
further adjusting the Linux kernel page table management system, we manage to isolate all pages that belong
to the paging structures of every process in dedicated protection domains. Whenever the kernel needs to
adjust the paging structures and (legally) modify their entries, we switch to the specific protection domain that
grants write-permissions to the paging structures.

2.2.1.3.2 Process Credentials
An attacker with an arbitrary write primitive could subvert the system by illegally modifying the process creden-
tials (struct cred). Instances of struct cred are allocated from the kernel heap, using the kernel slab
allocator. With few exceptions (kmalloc), the slab allocator groups objects of certain type across one or mul-
tiple pages. Such pages are thus referred to as slab caches. For instance, the data structure struct cred
is allocated from the cache that is called cred jar. To be able to protect all data structures of a certain type,
we adjusted the slab allocator to communicate with the modified buddy allocator, in order to isolate entire slab
caches in dedicated protection domains. For instance, to protect illegal write-accesses to instances of struct
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cred, we define the protection domain such that its contents can be read, yet, not written to. Whenever the
kernel needs to modify the fields of a struct cred instance, it switches to the specific protection domain,
satisfies the write, and finally switches back to the default view (to restrict the domain).
In addition to protect the integrity of pointers to process credentials, we apply the pointer authentication feature
(described above). Also, to avoid a potential redirection to high-privileged process credentials, we bind the
struct cred pointers to the associated task struct (representing the thread) so that they can not be
reused in a different context.

2.2.1.3.3 Linux Namespaces
The Linux namespace subsystem isolate the visibility to selected global resources. In this way, namespaces
represent the building blocks of OS-level virtualization. We foresee a high degree of compatibility between
Linux namespaces and xMP. Therefore, we introduced a new Linux namespace that aims at improving con-
tainer isolation by registering the paging tables of processes that belong to different namespaces into different
disjoint memory protection domains. Therefore, a compromised container that is able to alter its own paging
structures, is not able to manipulate the paging structures of other containers or the paging structures of the
kernel itself. We introduced a new namespace, that causes the process to move its paging structures into the
foreseen protection domain. Children of this process join the parent’s paging table namespace and, therefore,
maintain their paging structures in the same memory protection domain.

2.2.1.4 User Space

Similar to protecting critical data structures in kernel space, the memory isolation and pointer authentication
features of xMP can be equally applied to sensitive data in user space. For instance, cryptographic libraries
maintain cryptographic material in memory and thus can become subject to attacks. Recent vulnerabilities
(Heartbleed) have revealed that sensitive tools with memory corruption vulnerabilities highlight the need for
memory protection primitives in user space. Therefore, we applied our hardening techniques on popular open-
source cryptographic libraries, such as OpenSSL, ssh-agent, mbed TLS and libsodium. We implemented
system calls on the kernel side, that allow user space applications to create disjoint memory isolation domains,
in which sensitive data can remain safe. Whenever the process needs to read or write a sensitive data structure,
it must explicitly switch to the allocated isolation domain, execute the access, and switch back to the default
domain.

2.2.1.5 Evaluation

As taken from [288], we measured the performance impact of xMP protecting the kernel’s page tables (PT)
and process credentials (Cred). We used a set of micro (LMbench v3.0) and macro (Phoronix v8.6.0) bench-
marks to stress different system components We measured the overhead of protecting (i) each data structure
individually, and (ii) both data structures at the same time (which requires two disjoint protection domains).
Table 2.5 illustrates the LMbench latency and bandwidth overhead results, to clarify the performance cost at
the system software level. In most cases the overhead is low for both protected page tables and process
credentials. When using xMP to protect page tables, we notice that the performance impact is related to
functionality that requires access to page tables [288]. When protecting the process credentials (struct
cred), we observe that although the kernel accesses the struct cred protection domain, the overhead for
creating new processes is low. Yet, the same protection domain is heavily used during file operations, which
require access to struct cred for access control. Besides, the performance impact of the two protection
domains is additive in the setup protecting both page tables and process credentials (PT+Cred) [288].
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Table 2.5: Performance overhead of protection domains for page tables, process credentials, and both,
measured using LMbench v3.0 [288].

Benchmark PT Cred PT+Cred

La
te

nc
y

syscall() 0.42% 0.64% 0.64%
open()/close() 1.52% 75.74% 78.93%
read()/write() 0.52% 150.84% 149.27%
select() (10 fds) 2.94% 3.83% 3.83%
select() (100 fds) 0.01% 0.31% 0.30%
stat() -1.22% 52.10% 53.33%
fstat() 0.00% 107.69% 107.69%
fork()+execve() 250.04% 9.36% 259.59%
fork()+exit() 461.20% 7.78% 437.31%
fork()+/bin/sh 236.75% 8.49% 240.64%
sigaction() 10.00% 3.30% 10.00%
Signal delivery 0.00% 2.12% 2.12%
Protection fault 1.33% -4.53% -1.15%
Page fault 216.21% -2.58% 216.56%
Pipe I/O 17.50% 32.87% 73.47%
UNIX socket I/O 1.16% 1.45% 2.25%
TCP socket I/O 10.23% 20.71% 37.13%
UDP socket I/O 13.42% 21.98% 41.48%

B
an

dw
id

th

Pipe I/O 7.39% 7.09% 17.49%
UNIX socket I/O 0.10% 6.61% 13.40%
TCP socket I/O 6.89% 5.83% 14.53%
mmap() I/O 1.22% -0.53% 0.83%
File I/O 0.00% 2.78% 2.78%

Table 2.6: Performance overhead of protection domains for page tables, process credentials, and both,
measured using Phoronix v8.6.0 [288].

Benchmark PT Cred PT+Cred

S
tre

ss
Te

st
s

AIO-Stress 0.15% 5.87% 5.99%
Dbench 0.43% 4.74% 3.45%
IOzone (R) -4.64% 26.9% 24.2%
IOzone (W) 0.82% 4.43% 7.71%
PostMark 0.00% 7.52% 7.52%
Thr. I/O (Rand. R) 2.92% 7.58% 10.13%
Thr. I/O (Rand. W) -5.35% 3.01% -1.29%
Thr. I/O (R) -1.06% 19.54% 20.08%
Thr. I/O (W) 1.34% -1.61% -0.27%

A
pp

lic
at

io
ns

Apache 6.59% 9.33% 11.14%
FFmpeg 0.14% 0.43% 0.00%
GnuPG -0.66% -1.31% -2.13%
Kernel build 11.54% 1.84% 12.71%
Kernel extract 2.89% 3.65% 5.91%
OpenSSL -0.33% -0.66% 0.99%
PostgreSQL 4.12% 0.32% 4.43%
SQLite 1.10% -0.93% -0.57%
7-Zip -0.30% 0.26% 0.08%

Table 2.6 presents the results for the set of Phoronix macro-benchmarks [288], split into stress tests, targeting
one specific system component, and real-world applications. Overall, with only a few exceptions, the results
show that xMP incurs low performance overhead, especially for page table protection.
Further, as discussed in [288], we evaluated the overhead of in-process memory isolation using our xMP-
protected versions of the Nginx and mbed TLS servers (Figure 2.9). We used the server benchmarking tool ab
to simulate 20 clients, each sending 500 and 1,000 requests [288]. To compare our results with related work,
we run the Nginx benchmarks with the same configuration used by SeCage [235].
In most cases, the results show that the throughput and latency overhead is small. In contrast to to SeCage,
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Figure 2.9: Performance impact of xMP on Nginx with varying file sizes and number of connections (X-axis:
[file size (KB)]-[# requests]) [288].

with up to 40% overhead for connections without KeepAlive headers and additional TLS establishment, xMP
does not have similar issues in such challenging configurations[288]. The average overhead for latency and
throughput is 0.5%. For mbed TLS, we used the ssl server example to execute an SSL server hosting a
50-byte file. On average, the overhead is 0.42% for latency and 1.14% for throughput.

2.2.2 Defenses against Code-oriented Attacks through Hardware-based Monitoring

As previously shown in 2.1.1.1, Control-Flow Integrity (CFI) seems to be the most promising defense technique
to counter Code-Oriented Attacks. CFI is different from the other techniques first because of its being at a
different level of abstraction: instead of trying to hide or eliminate memory vulnerabilities to prevent corruption
of code pointers, the worry is about making these corruptions ineffective. CFI by itself does not obviate the
problems of memory corruption, and yet this is one of its strongest points. Despite the wide range of tools
today available, making the memory invulnerable is still an open problem, which spans all stages of production
and activity of an application, from proper training of the programmers to the most advanced runtime protection
techniques. Given a program, it is practically impossible to ensure with certainty that it is not vulnerable, at
least from a formal point of view. The protections are often limited to only one part of the memory (e.g., stack,
heap), despite of the others, or they are made in opposition to a particular theat model, while all the others are
forgotten. CFI is strong because it succeeds in abstracting from these complications and look at the problem
from another perspective.
Ensuring that the control flow is always consistent with the intended one, means involving, somewhere, a
component that can verify that the transfers that the program is making at runtime are valid. This component is
referred to as CFI monitor. Different kinds of CFI monitors can be implemented, first in software or in hardware.
Comparing these two kinds of monitor, drawbacks and benefits can be highlighted, and the choice of one rather
than of the other depends also on the overhead introduced, and on the impacted resources. There is no doubt
that software techniques are more modular, more adaptable to different platforms and more easily modifiable.
However, they certainly involve an extra occupation of memory, data or code, as well as the need to keep
sensitive data on CFG isolated from the rest of the execution environment, which is not always feasible. On
the other hand, hardware techniques will be more difficult to port, but they provide:
• higher efficiency, since validity checks are made faster and in parallel with respect to the execution;
• greater isolation from the execution environment;
• sometimes, total transparency with respect to the program performed.

All these features make the hardware-based CFI a very important sector in which to invest for the defense of
information systems. Despite the great variety of solutions proposed as we have seen in 2.1.1.1, the research
is not to be considered limited to finding more efficient forms of hardware CFG monitoring, but must also go in
the direction of alleviating the main intrinsic drawback of these solutions: the fact that they are not soft.
In fact, for example, none of the presented hardware-based solutions can be applied to a device that is already
operating in the field, since each of these requires an even minimal hardware patch, only possible when a
new version of the device is released. Some authors boast of not modifying the internal structure of the
processors, although they know very well they are using a linguistic stratagem: installing a CFI verifier between
the instruction cache and the core is not that much different from inserting an additional module in the pipeline,
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because an intrusion is still required in the original design, which means redesign, even if the processor in
itself is the same as before.
Therefore, it is advisable to look for solutions that combine the advantages of having a hardware-based de-
fense, for the reasons explained above, and the portability advantages of soft solutions. In this regard, FPGAs
should be taken into great consideration. These reconfigurable components are the main candidates for the
role of hardware-based CFI monitor, also due to their increasing use in computer architectures. According to
latest Gartner1 research about the future of Infrastructure and Operations [2], FPGA will be part of the top 10
technologies to drive innovation through 2024.
The most recent strategies depict a primary interest of using FPGA in server-side hybrid chips. Nevertheless,
the rise of 5G technology, the consequently spread of IoT and OT infrastructures and the need for real time
insights and localised actions, are forcing to deploy edge-computing solutions to process data closer to the
source of generation. It is expected that, over the next few years, hardware vendors will focus on delivering
computing hardware to execute complex, compute-intensive functions at the edge. In this context, hybrid chips
based on CPU and FPGA components, will be the easiest and most power/cost-effective way to meet the
new edge computing hardware requirements. Although there are still a few examples on the market, mostly
provided by FPGA vendors who embed ARM or NIOS cores in their devices, hybrid CPU+FPGA chips are
expected to become increasingly popular in the next years.
FPGA and CPU devices are already employed in many projects as separate components interconnected
through a parallel bus and mounted on the same electronic board. In most of the cases, the FPGA is mapped
as a memory device whereas the CPU acts as a master of the system. However, the mobile terminals market
is driving a new trend, which aims to replacing the parallel bus with serial differential lines in order to reduce
the final device size and, at the same time, to increase the data transfer rate. In terms of architectural access,
we are talking of a migration from memory-mapped devices to port-mapped devices. In any case, since the
new serial buses affect the memory components, it is expected that the CPU will adapt the instruction set to
atomically manage the memory access with a single-instruction paradigm, either mapping the LOAD/STORE
instructions to the new serial buses or introducing IN/OUT instructions to manage the serial memory access.
CINI is working on these CPU-FPGA cooperation aspects for devising a generic and lightweight defense tech-
nique, which is based on monitoring the software run by a CPU by exploiting a standard parallel communication
interface with an FPGA, external or internal to the chip, which hosts a CFI monitor as a core synthesized onto it.
The technique uses a minimal binary instrumentation based on single STORE machine instructions to commu-
nicate to the monitor the information about the status of the CFG. Basically, the program informs the monitor,
before branching, about its position within the code, and communicates it again immediately after the branch.
These two positions are coupled inside the FPGA monitor, which checks whether the pair is contained in a ta-
ble that contains all the valid edges. If the pair is not found, or the second position is never sent to the monitor,
it means that an attack has been launched, and the attacker has jumped elsewhere, to a code section which
is different from the one originally established by that branch instruction, so the execution is interrupted. The
solution is suitable for any type of platform, future but also already in the field (legacy ). The technique does
not require the modification of the internal structure of the microcontrollers, but just requires the availability of
an FPGA, without the need to fabricate new silicon to start adopting the defense. Using a mixture of binary
instrumentation and hardware-based supervision, the technique entrusts the binary enforcement with the sole
task of informing the monitor about the status of the CFG through simple additional STORE instructions at
critical points, and the hardware monitor with the conservation of the information about the CFG and the part
of computation for the validation, thus obtaining advantages in terms of both isolation and performance.
In addition to the benefits introduced by the use of the FPGA, the technique is also innovative for the fact that it
deals with a problem often forgotten in the literature on the topic. The problem is the protection of the execution
context, put at the same level of importance as the protection of the branches, as in the opinion of the authors,
if the former is absent, the latter loses meaning.
The problem was first presented in [246]: the execution sometimes undergoes deviations that cannot be cal-
culated a priori with respect to the statically-defined CFG. These deviations are caused by the execution of
Interrupt Service Routines (ISRs) in response to an interrupt hardware signal forwarded to the processor. In the
abovementionend work, it is shown the impossibility to include these “phantom edges” in the CFG, because
neither the source nor the target is known, and therefore it is not possible to protect them. However, these
edges connect to code that, like the other, may contain vulnerabilities and may open the door to attacks. The
result is that edge protection, to be effective, must be accompanied by context protection during the execution
of the ISRs. The monitor must know the status of the program context as soon as the control flow enters an
ISR, and must ensure that it has not changed when the canonical execution is restored.

1https://www.gartner.com/
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2.2.3 Defenses against Fault Injection Attacks for Present and Future Devices

The software defenses against fault injection attacks (described in subsection 2.1.2) are mostly based on code
redundancy and control mechanism of the integrity of the control flows of microcontrollers. A first theoretical
analysis of their efficiency, against the extended instruction skip fault model we reported, revealed potential
weaknesses. Indeed, the ability of an attacker to arbitrary skip instructions into the targeted code offers him
the ability to skip also the instructions used to implement the countermeasures themselves. As a consequence,
this problem does not have a straightforward solution in the software domain. It requires to resort to hardware
assistance despite our objective to propose a software solution that is applicable to legacy microcontrollers
(we do not want to introduce a defense that would require a hardware redesign of these microcontrollers). To
that end, we propose a hardware-assisted solution that can be applied to legacy component: it derived from
[8, 218] but uses hardware counters in spite of software ones.
Our approach takes advantage of embedded hardware timers or performance counters to measure the duration
of a given section of a microcode (i.e. how many clock cycles it lasts). The measured duration is then compared
to a reference value corresponding to a fault free execution (computed at compilation time). Any difference
between the measured and reference durations reveals an ongoing instruction skip attack. As a matter of
example, the instruction skip attack exemplified in Fig. 2.6 that results in a modification of the target execution
time (as shown by the shortening of the trigger signals) would have been detected. This mechanism is based
on the assumption that instruction skipping has an effect on the execution time of the running microcode and no
effect on the hardware counters (that are not incremented by vulnerable software instructions). This technique
makes it possible to implement a Control Flow Integrity (CFI) algorithm that ensures the integrity of the Control
Flow Graph (CFG) and that of the instructions inside the CFG basic blocks. A first experimental validation of
this approach on a verify PIN algorithm is in progress. Applied in conjunction with other mechanism it mitigates
the threat of a PIN bypass also when using the full possibilities of the instruction skip fault model.
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Chapter 3 Securing Operating System Software

3.1 Embedded OS Primitives for Future-proof Security

3.1.1 IoT crypto primitives

Strong cryptography is essential to protect communications and to authenticate online entities, including de-
vices and the software that they run. For the conventional internet, the community has converged on standard
protocol suites like TLS, which are composed of lower-level cryptographic primitives: algorithms such as hash
functions, authenticated encryption, key exchange, and digital signatures. Securing communications always
involves a trade-off between system security and the computational resources consumed to provide that se-
curity: even the most efficient cryptographic algorithms still cost power, memory, and CPU cycles. On low-end
IoT devices, the challenge of optimising this trade-off is exacerbated by extreme resource constraints: mem-
ory in kB, power in mW or less, CPU in MHz, with no memory protection/management unit (MPU/MMU) or
floating-point unit (FPU) in hardware.
Moving towards IoT, therefore, specific approaches must be developed to provide tiny crypto primitives without
sacrificing speed and security. Cryptographers divide primitives into two broad clases: symmetric and asym-
metric (public-key). Symmetric primitives, which include message authenticators and symmetric encryption
tend to be highly efficient; still, the computational footprint of standardized symmetric algorithms like AES may
be too big for some IoT applications. Some algorithms, such as Keccak, have been designed with variants
using less internal state memory, which can reduce their impact on lower-end IoT devices. Going further in
this direction, NIST is currently operating a competition and standardization process for so-called lightweight
primitives, which have a drastically reduced computational footprint at the cost of lower security levels. We
thus have a good range of maturing symmetric primtiives for IoT applications.
The main challenge is to push the limits of public-key systems towards much lower-end IoT hardware, providing
algorithms and implementations for strong security that are versatile, portable, and energy-efficient. Public-key
primitives, which include key establishment, identification, and digital signature protocols, typically involve in-
tensive calculations in mathematical structures, and thus have a much larger computational footprint than their
symmetric cousins Compared with the progress already made for symmetric primitives, IoT-focused public-key
systems are still in their infancy.
Our goal here is to identify and further develop efficient signature and key establishment algorithms that are
capable of being run on the widest possible range of low-end IoT devices.
A further and even greater challenge is posed by the global movement towards post-quantum cryptographic
primitives: that is, algorithms which can be run on conventional computers, but which are expected to resist
attacks from adversaries equipped with quantum computers. Such adversaries would easily overcome all
currently-deployed public-key cryptography on the internet (for example, RSA signatures, which are the most
widely-deployed signatures on the internet, could be efficiently forged using Shor’s quantum factorization al-
gorithm). Securing symmetric cryptosystems for a post-quantum world mostly implies increasing key sizes,
which entails a moderate increase in computational footprint that might be challenging, yet far from prohibitive,
for IoT systems. But securing public-key systems means completely replacing the underlying primitives, and
most of the candidate algorithms under consideration by NIST have far heavier resource requirements than
conventional public-key systems. Our goal here is to find, evaluate, and integrate the few public-key candidates
capable of being run on low-end IoT devices; this represents a major challenge not just for the future security
of IoT, but also the security of the wider internet.

3.1.2 Formally Verified Crypto Primitives

In the context of IoT, the devices are under the control of potential malicious users. Therefore, cryptographic
primitives are particularly vulnerable to side-channel attacks, e.g. timing [73, 206], power analysis [207]. To
protect the confidentiality of cryptographic keys, there exist software counter-measures mitigating side-channel
attacks [45, 300]. For instance, the cryptographic constant-time programming discipline [45] mandates that
conditionals and memory accesses to be independent from secret data. This discipline effectively mitigates
cache attacks which are a class of timing attacks exploiting the fact that a cache miss is much slower than
a cache hit. Another counter-measure is masking [300] where the secret is split into k+1 shares and the
computation is performed in such a way that an attacker probing the memory and accessing k shares is unable
to reconstruct a single bit of the secret. This countermeasure improves the robustness against power analyses.
To be effective, software countermeasures need to be preserved by the compilation process. However, existing
optimising compilers only preserve functional properties and, therefore, there is no guarantee that security
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countermeasures are still present in the binary [135].
Our objective is to design compiler algorithms which preserve security properties and, in particular, protections
against side-channel attacks.

3.1.2.1 Semantic Modelling of Side-Channels

A first task consists in accurately modelling side-channels. The difficulty is that side-channels attacks exploit
very low-level properties of the hardware. They may exploit details of the micro-architecture but also the spacial
placement of transistors and the physical properties of the circuit. Therefore, it seems impracticable to obtain
a precise model of the hardware. Moreover, an accurate model would only capture a single machine and
therefore would not give a robust guarantee across the high variety of IoT devices.
We propose to explore an alternative approach where side-channels are modelled at a high level of abstrac-
tion. This approach, pioneered by Barthe et al. [37] is robust with respect to the implementation of the micro-
architecture and versatile enough to accommodate a large range of side-channels. It consists in instrumenting
the source and the assembly semantics of the compiler with a leakage function which models what the exe-
cution of the program leaks to an attacker. The objective is to model at assembly level what is leaked by the
hardware and gives its counterpart at source level. In order to counter timing attacks, actually cache attacks,
the leakage function formalises the ”constant-time” programming discipline and leaks to the attacker the result
of conditional branches and memory addresses. The strength of the model is that it is robust with respect to the
micro-architecture of the memory hierarchy and only makes the assumption that the cache content depends
on the sequence of conditions and memory accesses which are leaked to the attacker.
Beside constant-time, we will explore other attacker and leakage models. Attacks based on leakage due
to speculative execution have received a lot of attention. Here, a difficulty is to properly model speculative
mechanisms at a high level of abstraction. There are other models of interest are ”probing models” [48] where
the attacker is given access to a fixed number of observations across the program execution. These models are
relevant to model security properties which ensure that sensitive information that is erased from the memory
in a timely manner but also to reason about the security of countermeasures based on masking. One of the
stronger model is the Hamming Weight Model [207] where the execution leaks at any time a function of the
number of bits that are set to 1 by the program. Experimentally, it has been verified that power consumption is
correlated to the Hamming Weight. A program secure in this model is therefore robust to power analyses.

3.1.2.2 Security of Compiler Optimisations

For a given model of attacker, we will revisit compiler optimisations and assess their security. It is well-known
that optimisations may break the security of secure programs and make software counter-measures ineffec-
tive. For instance, compilers may introduce conditionals and thus defeat the purpose of the constant-time
programming discipline. Reordering of computations may increase the lifetime of secrets and therefore make
a seemingly secure source code vulnerable to probing models.
Our goal is to categorise compiler optimisations depending on their robustness to side-channel attacks. For
optimisation that are not secure, we will work at designing a replacement that is secure while aiming for
competitive performance. The outcome will be an effective secure compiler where all the compiler passes are
secured. Representative passes are translation passes which decompose high-level source constructs (e.g.
splitting of source expressions to 3-address code), dataflow optimisations (e.g. constant propagation, common
expression elimination), register allocation, and generation of assembly code.
To be robust to certain side-channel, we anticipate that there may be compiler passes requiring some substan-
tial redesign. For instance, a secure compiler in the Hamming Weight Model is a challenge because resource
reuse e.g., overwriting a register, generates a leakage that needs to be preserved. In certain cases, it may
be impossible to have a secure compiler achieving the exact same level of security. In that case, we intend to
investigate probabilistic models where the advantage of an attacker observing the target program is negligible
compared to an attacker observing the source program.

3.1.3 Embedded primitives for secure multi-tenant IoT software

Traditional embedded system approaches for modular software updates range from differential binary patches,
to dynamic linking of binary modules. More recently alternative approaches have emerged, such as a small,
updatable on-the-fly scripted runtime container 1, interpreted directly on low-end IoT devices. This paper

1E. Baccelli et al. ”Scripting over-the-air: Towards containers on low-end devices in the Internet of Things.” IEEE PerCom, 2018.
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introduces a prototype of Javascript container on RIOT, enabling basic sensor, GPIO, timer, CoAP APIs within
the container.
Indeed, recent progress has shrunk minimal resource requirements for embedded interpreters – for example
JerryScript 2 and MicroPython 3. In a first phase we will compare the tradeoffs (w.r.t. metrics such as speed,
memory, energy budgets) offered by such a microcontainer approach using different APIs and script languages.
Such approaches are promising because it both eases development of high-level logic on microcontrollers, and
offers natively some isolation of the module’s logic.
However, specific mechanisms are needed in order to harden such isolation so that it amounts to bona fide
sandboxing of the software module. Sandboxing is desirable in cases where the module and the rest of the
system are managed by different stakeholders. Here, by sandboxing a module, we mean characteristics such
as limiting its ability to interact with hardware, limiting its ability to interact with OS (in particular, cannot crash
of DoS the system), and denying access to private data (crypto keys, ...).
Sandboxing approaches can be broadly categorized as follows: (i) hardware-based, relying on an MPU, or
on TEEs such as ARM TrustZone-M, RISC-V MultiZone etc. (ii) software-based, using some kind of virtual
machine e.g. intepreted code in JS, Lua, MicroPython, or some alternative approach such as WebAssembly
(iii) hybrid, using both a VM and protection in hardware via an MPU or a TEE, (iv) offline, using methods such
as static analysism formal verification etc.
In this task we want to explore the potential of a software-based approach for safe execution of untrusted
code while being as hardware independent as possible, and fitting low-end IoT devices resource constraints
(memory in kB, small energy budget etc.) Using RIOT as base, we thus plan to both explore ways to guarantee
strong isolation of micro-containers in javascript, micropython etc. and explore the potential of WebAssembly
for microcontrollers 4 in this context.

3.2 Low-power & Secure Network

This section describes the planned work that concerns IoT network security. The planned work is strongly
influenced by the past and future standardization activities within the IETF and gathers the design of new
protocols 3.2.1, as well as the evaluation and security analysis of existing end-to-end solutions (3.2.2).

3.2.1 Zero-touch secure low-power network bootstrap

The last couple of years have witnessed a significant progress on secure communication protocols for the
IoT. The IETF has taken steps in standardizing new solutions for protecting the communication channel, like
OSCORE [158], TLS 1.3 [144] or EDHOC [327], and 3-party authorization protocols, like the ACE framework
for constrained environments [326]. These new solutions have been demonstrated as much more efficient than
their predecessors TLS 1.2 [346] or OAuth 2.0 [116] as used in the Web, and are expected to be deployed with
the next generation of IoT products.
A common assumption for all of these solutions is that the trust relationship between the entities involved
in the communication has already been established through common keying material (e.g. pre-shared keys,
raw public keys, root trust certificates). At manufacturing time, the trust relationship is typically established
between the IoT device and the manufacturer. The domain where the IoT device will be installed is not known
at the manufacturing time, and before the IoT device can join a given domain, it needs to be provisioned
with domain-specific credentials. Bootstrapping this trust relationship between the IoT device and the domain
owner is a non-trivial task with the IoT devices lacking a user interface. Companies typically resort to out-of-
band channels (e.g NFC, ad-hoc wireless network, pre-shared keys printed on the back of a device, serial port)
or proximity-based authentication, requiring the user to go through a cumbersome process when installing a
new IoT device. This opens up various vulnerabilities as the “bootstrapping” solution ends up being designed
in-house, without a thorough review of the community and security experts.
As part of this task, we will leverage and complement the work done in the IETF LAKE standardization group 5

that is chartered to specify a lightweight authenticated key exchange protocol for IoT use cases. We will use
the LAKE outputs to design and contribute to the standardization of a solution that allows an IoT device to join
(mutually authenticate, authorize, be configured with domain-specific parameters) a network in a new domain,
with zero pre-configuration of the IoT device required by the user. For a device to join a new domain without
any user input, coordination between the manufacturer and the domain is needed and we plan on enabling

2E. Gavrin et al. ”Ultra lightweight JavaScript engine for internet of things.” ACM SIGPLAN, 2015.
3https://micropython.org/
4https://github.com/intel/wasm-micro-runtime
5https://datatracker.ietf.org/wg/lake/about/
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it with our solution. A challenge is to make such a solution both flexible and efficient in terms of bandwidth
consumption and code footprint. We will use the existing IETF work like EDHOC, OSCORE, Constrained
Join Protocol (CoJP) [372] and BRSKI [287] as our starting point to achieve mutual authentication, message
protection and parameter distribution during the execution of the protocol. We will define the missing pieces
when these protocols are applied in the use case of zero-configuration network bootstrap and contribute to
their standardization in the IETF.

3.2.2 Light-weight end-to-end security at transport layer and above

End-to-end encryption (E2EE) is a widely used communication protection approach in which only the end
parties can read the messages; it can provide, depending on the protocol, confidentiality, integrity and authen-
tication.
IoT devices are always in need of communicating with applications in order to provide the data required by
the particular use case, so network communication is critical for IoT. Because of this criticality, data exchange
between IoT devices or between an IoT device and an application server over the network must be made
secure.
The main goal addressed by CNIT is: how to embed crypto primitives into end-to- end security protocols?
For concreteness the work has been focused on the integration of E2E on the Riot OS. Two options have been
considered and are planned to be analyzed:

1. Transport Layer;
2. Application Layer.

In terms of approach, it is advisable to reuse already existing cryptographic protocols as much as possible. The
main protocol used today in desktop applications is TLS (TLS 1.2 [346], TLS 1.3 [144] and the TLS UDP-based
implementation DTLS 1.2 [145]), however given the context of this project and the nature of the devices where
these protocols will run (IoT devices), these protocols result to be quite overwhelming not only because they
require CPU power, but also for memory footprint (especially when asymmetric encryption is used) and network
bandwidth consumption. Given the very strict requirements for a general IoT device, other solutions need to be
analyzed; depending on the use case, a memory footprint of 100KB can be pretty big for a constrained device
whereas in a desktop environment there are usually GBs of memory and this is not a problem.
CNIT addressed the issue of implementing (D)TLS above CoAP [156]. CoAP [405] is an application protocol
designed for IoT communication, and “is a specialized web transfer protocol for use with constrained nodes
and constrained (e.g., low-power, lossy) networks.”, meaning that it has features specifically designed for low
overhead and low general complexity in order to minimize CPU, memory and network bandwidth consumption.
Being CoAP an application protocol, this implementation concerns the first option analyzed by CNIT, i.e., E2E
security at the application layer. There are many advantages to using this configuration:
• IoT devices can leverage standard E2E security protocols (i.e. (D)TLS) to establish secure E2E encrypted

connections;
• Many applications already leverage (D)TLS ;
• There is no need to invent a new cryptographic system (negotiation, authentication, ...);
• Automatically support new cipher suites by simply upgrading the cipher suites in TLS;
• Leverage a low-overhead application layer specifically made for IoT devices.

CNIT implemented DTLS 1.2 [145], TLS 1.2 [346] and TLS 1.3 [144] all with PSK configuration above the
CoAP protocol, leveraging the WolfSSL [382] open source library. The memory footprint of WolfSSL with TLS
1.3 PSK was found to be around 100KB (tested on an ARM Cortex-M4 and an ARM Cortex-M0) while 60kB
ca. of Flash is required for TLS1.2 PSK on these same platforms (samr21 and nrf52dk boards): this can be
generally fine, but depending on the use case and especially on IoT devices, these numbers can be pretty big.
The other goal is the implementation of OSCORE [158] on Riot OS. OSCORE provides end-to-end protection
between endpoints communicating using the CoAP protocol by protecting the CoAP requests and responses
with the COSE protocol [193] thus providing “E2E encryption, integrity, replay protection, and binding of re-
sponse to request”. It was designed for very constrained nodes and networks and it features small messages
size and low code and memory requirements in addition to those required by CoAP.
The main advantage of this implementation would be that all the protocols are specifically designed for the IoT,
while the main disadvantage is that communication with other nodes implementing a different protocol, e.g.
(D)TLS, is not immediate and needs more work.
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Benchmarks
Firstly a comparison among (D)TLS implementations is on the roadmap. The metrics are the following:
• memory footprint
• network traffic consumption
• CPU power
• Energy consumption

This last metric is quite interesting because of the impact of energy on IoT devices, the main actors in this task.
Then a broaden comparison with non-PSK configurations is on the roadmap, meaning measuring not only
(D)TLS PSK with AES-128 but also asymmetric ciphers configurations, e.g:
• PSK with AES 256 CCM
• ECDSA-ECDHE with AES-128-CCM and P256r1
• ECDSA-ECDHE with AES-256-CCM and P512r1

The two last configurations are interesting in the sense that asymmetric encryption allows for key exchange
during negotiation, meaning that it’s not required to store pre-shared keys on the devices. There are pros and
cons and a detailed comparison with the specified metrics will highlight the better configuration.
Switching to the transport layer, COSE/OSCORE approach also has to be evaluated and compared to (D)TLS
implementation using the same metrics described before.

IoT implementation goals
(D)TLS implementation was found to require an actually big memory footprint for a constrained node. To
address this issue CNIT aims for a compression of the TLS implementation in order to gain a minimal memory
footprint; there exists an IETF draft called Compressed TLS (cTLS) [299] which aims in this direction: “(cTLS) is
isomorphic to TLS 1.3 but saves space by trimming obsolete material, tighter encoding, and a template-based
specialization technique. cTLS is not directly interoperable with TLS 1.3, but it should eventually be possible for
a cTLS/TLS 1.3 server to exist and successfully interoperate.”. Both cTLS and a custom tightening of (D)TLS
will be taken into consideration, implemented and measured in accordance to the same metrics described
before. The latter requires a very specific cut of the unnecessary TLS source code, accurate tightening of the
components and a guarantee that the core of the TLS protocol will remain functional.

Security analysis
To implement (D)TLS above CoAP, the WolfSSL library was used. A forward-looking and very interesting work
is a security analysis and vulnerability assessment of this library. Even if it is opensource there is no guarantee
that the crypto primitives do not leave subtle vulnerabilities such as:
• Side channel vulnerabilities
• Padding oracle type vulnerabilities

Those vulnerabilities can lead to fully compromise the security of the communication. This security assessment
would require two different analysis of this library, a black-box one and a white-box one. The first one aims to
experimentally assess the security of the crypto functions assuming that the source code is not known while
the latter will focus on source code review and static code analysis.

3.3 Securing the Supply Chain of OS Software

3.3.1 Automated security assessment & policies for IoT application update software binary bundles

3.3.1.1 Software Updates for IoT Devices

The IoT software update process is an essential operation for maintaining a suitable level of efficiency and
security of IoT devices. Over the last few years, the research community has been working on the definition
of several IoT update processes [208], among which the software update for resource-constrained devices
is still an open research challenge [6]. Resource-constrained devices, as specified in RFC 7228 [63], use
microcontrollers (like the Arm Cortex-M) on which they run a real-time operating system such as Contiki,
FreeRTOS or RIOT [173], just to cite a few. To this aim, several firmware update solutions have been proposed
in the last years, like FOSE [131], The Update Framework (TUF)6, and Uptane [215]. However, most of the

6https://github.com/theupdateframework/tuf
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proposed mechanisms are tied to specific operating systems or hardware architectures, and thus, they are not
general-purpose.
To overcome such limitations, the Internet Engineering Task Force (IETF) is defining a standard for firmware
updates called Software Updates for Internet of Things (SUIT) [188]. The main goals of SUIT are interoper-
ability (w.r.t. the platform and the firmware distribution technology) and end-to-end security.

3.3.1.2 Security Issues in SUIT

The SUIT information model [189] defines a collection of security threats for the update process. As discussed
in [407], such threats can be categorized into: (i) tampered firmware, (ii) firmware replay, (iii) offline device
attack, (iv) firmware mismatch, (v) flash memory location mismatch, (vi) unexpected precursor image, (vii)
reverse engineering, and (viii) resource exhaustion. Although the SUIT model suggests a set of security
requirements and countermeasures, it is worth noticing that all these threats are related to the integrity and
the confidentiality of the update process only, while the content of the update is inherently assumed as trusted.
Therefore, the SUIT workflow allows an ISM to upload a firmware image containing security vulnerabilities or
malicious behaviors. Furthermore, SUIT allows the ISM to transfer its authority to another entity, e.g., a third-
party developer, that can deliver to the ISM some components of a software update (e.g., the executable of the
application to be updated) or triggers the update process directly. In this case, the ISM has no mechanism to
assess the content of the external software components, and must fully trust the external entity.

3.3.1.3 Automated Security Analysis of IoT Software Updates

To reduce the impact of unreliable updates, we argue that the SUIT update process needs to rely on a method-
ology to assess the security of the firmware image and in particular, of the IoT application. Such a methodology
must be able to automatically evaluate the behavior of the firmware according to a set of security requirements,
in order to allow the same ISM to deliver only validated and certified software updates. The security require-
ments can be defined directly by the same ISM, the IoT device manufacturer, or by a trusted third-party entity
involved in the update process, like a Network Operator or a Device Operator, as defined in the SUIT standard.
We also argue that the methodology should work as a black box (i.e., without requiring the source code),
in order to be systematically applied to any executable provided by third-parties. Finally, we argue that the
analysis process must be carried out on the firmware image before it is submitted to the SUIT pipeline, in order
to leverage the security mechanisms provided by SUIT to prevent any further modification of the image.
In order to mitigate the aforementioned security concerns, CINI proposes a novel verification solution called
the IoT Application Verification Framework (IoTAV). IoTAV allows to automatically evaluate the security of
the IoT applications included in firmware images in a black-box fashion. In detail, IoTAV enables the definition
of a set of security requirements codified as a security policy, that are then automatically evaluated on the
application executable using state-of-the-art model checking techniques. IoTAV can be seamlessly included in
the existing update pipeline, like the one defined in SUIT. IoTAV is able to detect malicious updates, thereby
discarding those that doe n comply with the security policy and notifying the ISM, without affecting the normal
operation in case of secure updates (solid arrows).
IoTAV can be adopted transparently by current IoT software updates workflows. Furthermore, CINI started
the development of a working prototype for RIOT environments and tested the methodology on a set of actual
RIOT OS applications. Experimental results indicated that the approach is viable in terms of both reliability and
performance, leading to the identification of 26 security policy violations in 31 real-world RIOT applications.
During the project, CINI will continue the refinement of the IoTAV framework by i) completing the prototype
for the RIOT ecosystem and ii) going through an extensive testing and integration phase against real-world
scenarios.

3.3.2 Integrated prototype of secure IoT software update for RIOT

We plan to integrate the various security mechanisms (output from efforts described in this section) incre-
mentally extending a prototype based on RIOT, which enables generic and secure software updates on a large
variety of low-end IoT devices featuring microcontrollers. An initial version of this prototype has been published
7. which complies with the SUIT draft specification 8 for authentication and integrity of RIOT firmware update,

7K. Zandberg et al. ”Secure Firmware Updates for Constrained IoT Devices using Open Standards: A Reality Check,” IEEE Access,
2019

8draft-ietf-suit-manifest-00
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end-to-end, over a network which can contain low-power segments, as well as ”regular” Internet segments.
Most recently, the corresponding code as upstreamed in RIOT master branch 9.
More in details, we plan to:

1. Integrate IoTAV in the prototype’s update repository checks;
2. Influence next versions of SUIT specs & update implementation;
3. Integrate support for new (formally verified) IoT crypto primitives and new secure transport protocols,

output of the work described in this section;
4. Extend the prototype with mechanisms to support and securing multi-tenant cases.

As much as possible, when applicable, we plan to upstream implementation to RIOT master branch, following
workflows similar to what became the current SUIT support in RIOT 10.

9https://github.com/RIOT-OS/RIOT/tree/master/examples/suit update
10https://github.com/RIOT-OS/RIOT/tree/master/examples/suit update
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Chapter 4 Secure Orchestration of the Intelligent Infrastructure

From the orchestration point of view, the Intelligent Infrastructure (II) architecture covers an extensive scale,
from microcontrollers to the cloud, using remote web services and the web as the main platform. Thus,
an II application is not only the code which runs on, e.g., IoT devices. All application components need to
communicate using different protocols depending on the communication model: thing to application server,
thing to human, or thing to thing communication. To program these applications today the developer needs to
master a mix of technologies and be capable of ordering the reactive nature of heterogeneous devices, taking
security and privacy into account. Several frameworks to simplify IoT development exist, however they are often
not designed with security in mind and key security issues, such as key management, identity management
and access control as addressed in an ad hoc way.

4.1 Security Orchestration Framework

4.1.1 Intelligent Infrastructure Lifecycle

IIs are systems of the highest complexity in terms of dimensions and variety of the involved technologies.
In many cases, they consist of many subsystems that have been combined and integrated through several
subsequent phases. These phases contribute to a continuous development cycle similar to that depicted in
Figure 4.1.
The development process starts from a design phase. In theory, the design of a new II might start from scratch
and include each part of the II to be constructed. In practice, however, the design can also be partial, i.e.,
only limited to a subsystem, and incremental, i.e., refining an already existing II. The collection of the various
specifications produced during the design phase goes under the name of a blueprint. Among them, security
specifications must be included and correctly integrated with all the other functional and non functional require-
ments. The validation phase has the role to highlight inconsistencies and errors in the blueprint. These checks
include various verification mechanisms that can lead to a correction of the blueprint or even to reject it (thus
going back to the design phase). When the blueprint is validated it can be used for the actual deployment of the
II under construction. The actual deployment process changes with the type of II and may include instantiating
virtual machines in a cloud infrastructure, installing various types of software and physically assembling hard-
ware components. If the deployment is successful, the II is ready for testing. Although up and running, in this
phase the infrastructure is not yet in production mode an is must be tested (either partially or entirely). Tests
aim at spotting out flaws and violations of the blueprint specifications, including the security ones. If the test
highlights no criticality, the infrastructure can pass to the production phase. In this phase the II runs and it is
monitored to collect data, prevent and react to incidents. The collected knowledge improves the understanding
of the II and contributes to the development of the present, as well as future, II.

4.1.2 Infrastructure Provisioning

In this section, we briefly recall the two infrastructure provisioning paradigms involved in our proposal.

4.1.2.1 Infrastructure-as-a-Service (IaaS)

IaaS [249] aims at providing a flexible and reconfigurable infrastructure development platform. In particular,
an IaaS provider allows for a direct control over machines, operating systems, applications, and networking.
By relying on virtualization technologies, IaaS platforms hide the underlying, physical infrastructure (a.k.a.
bare-metal).
Each II consists of many different elements including hosts (e.g., servers and desktop clients), software (e.g.,
operating systems and applications) and network facilities (e.g., routers and firewalls). Conveniently, IaaS
providers expose APIs for creating, deleting, and reconfiguring these elements. This makes IaaS a suitable
paradigm for defining and deploying part of a II. In this setting, the building blocks of any theater are virtual
machines (for computing and storage) and virtual switches, routers, networks, and network ports (for imple-
menting the network infrastructure). Although some elements may not allow virtualization, a virtual network
can also be connected with some physical resources outside the IaaS platform. For instance, an infrastructure
can be connected to the Internet through a gateway.
Figure 4.2 represents the deployment of a fictional II on an IaaS provider. The virtual II is depicted on the
top layer. Intuitively, all the elements are virtual with the only exception of the Internet which is only partially
simulated. The real Internet is accessible through a gateway that directly connects to the external network. A
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Figure 4.1: An abstract representation of the II lifecycle.

management network responsible for the cross-layer connectivity lays below. Such a network is necessary to
support the orchestration and monitoring of the II.
On an IaaS provider, instantiating the II described above requires the following operations.

1. Create the virtual networks, e.g., Server and DMZ.
2. Create all the virtual machines, e.g., db and www.
3. Connect each virtual machine to the proper networks, e.g., db to Server.
4. Install all the operating systems and applications, e.g., DBMS on db.
5. Finalize the infrastructure by adding configurations, artifacts, and users.

All these operations are carried out by submitting the corresponding commands, e.g., via some APIs, to the
IaaS provider. Nevertheless, as the complexity of the infrastructure increases, handling these design and
deployment operations without a systematic approach quickly becomes cumbersome and error-prone.

4.1.2.2 Infrastructure-as-Code (IaC)

In the last years Infrastructure-as-Code (IaC) [23] emerged as the main infrastructure design approach. A IaC
framework uses a specification language to model the desired infrastructure. A provisioning tool, namely the
orchestrator, takes as input the specification and automatically deploys the infrastructure on an IaaS provider.
We propose the following example to clarify the structure of a generic IaC specification language.
Figure 4.3 provides a class diagram representation of the infrastructure introduced above. The box at the
bottom, labeled with Primitive, contains (some of) the primitive classes defined by a generic IaC provider.
These classes abstractly define the building blocks of the infrastructure, e.g., machines and networks.
The Network class allows for the creation of virtual networks. Each virtual network is a collection of virtual
subnetworks, i.e., the Subnetwork class. A virtual subnetwork is labeled with two properties, i.e., address and
netmask, that specify the network address and the netmask of the subnetwork.
The Compute class represents a generic host, e.g., a virtual machine. An instance of Compute must declare
its image, i.e., the installed OS, flavor, i.e., the hardware profile, and init script, i.e., the instructions to correctly
configure the host. There can also be dependencies between Compute objects. For instance, the www server
depends on the db server. Typically, the orchestrator is responsible for resolving the existing dependencies,
e.g., by creating the Compute objects in the right order.
Finally, Compute objects can be connected to one or more subnetworks. This behavior is modeled by the
Port class that defines a generic network port for connecting to a subnetwork. Each port can also carry a
(fixed) IP address specified in the address and netmask properties. In the diagram, the db Server port and
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Figure 4.2: Layered view of a virtualized II.

www DMZ port are instances of the Port class and connect the db and www server to the two subnetworks
with addresses 192.168.2.100 and 198.51.100.5, respectively.

4.1.3 TOSCA

The Topology and Orchestration Specification for Cloud Applications (TOSCA) [268] is a YAML-based1 OASIS
standard language for designing the topology and the life-cycle of a cloud application. A TOSCA-enabled IaaS
provider must have a suitable TOSCA orchestrator.2 TOSCA implements the concepts of Figure 4.3 by means
of a rich type system. Briefly, the main constituents of TOSCA are the following.

Node types. They define an infrastructure component, e.g., a server or a network, or a component element,
e.g., a software installed on a server. A node type can include properties, attributes, capabilities and re-
quirements. Properties represent some static, node-specific feature, e.g., the hostname. Attributes resemble
properties, but they are used to store a value that is set by the orchestrator after the instantiation, e.g., think of
a dynamically assigned IP address. Requirements and capabilities define what the node needs and (option-
ally) provides to the others. Requirements and capabilities mainly serve as the joints for the relationships (see
below).

Relationship and capability types.
They are used to connect nodes and, as it happens for node types, can include properties and attributes,
e.g., the credentials for the authenticated service exposed by the node we are connecting. A relationship has
a direction, and it connects the requirement of a source node to the capability of a target node. Moreover,
each requirement can put a constraint on the types of both the target node and capability. For instance,
a WordPress web application requires to connect to (i) a database (ii) endpoint, i.e., a network database

1http://yaml.org
2Existing TOSCA-enabled orchestrators often accept a slightly extended version of the TOSCA standard, i.e., a TOSCA dialect. If not

differently stated, the examples in this paper refer to the ARIA TOSCA dialect [20].
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Figure 4.3: A generic IaC specification for the example II.

Figure 4.4: An excerpt from the (TOSCA-style) diagram for the virtual II.

(See [268] for more details). To model this, the WordPress node includes a requirement database endpoint.
The database endpoint requirement constrains the type of the target node to be Database and the type of the
target capability to be Endpoint. These two constraints capture (i) and (ii), respectively.

Interfaces. Nodes and relationships may have interfaces. An interface defines a custom operation to be invoked
by the orchestrator. Two kinds of interfaces exist, i.e., standard and on demand. A standard interface defines
a task related to the life-cycle phases of a node (e.g., create, start, and stop). For instance, one can add a
standard, create interface to a compute node to ask the orchestrator for installing a certain software package
when the node is created. Instead, on-demand interfaces introduce new tasks. The orchestrator permits to
invoke the tasks through the definition of a new workflow. For instance, the on-demand interface can be used
to implement an application-specific logic (see [313, § 7.3.2]).
A node template is a specification of a cloud application obtained through the composition of the elements
mentioned above. In particular, each element is obtained by instantiating its base, namely normative, type.
Roughly speaking, the TOSCA normative types provide a set of primitive classes (see Figure 4.3). Designers
can define their own types by extending the normative types. As discussed in [70], the type inheritance enables
some well-know mechanisms, e.g., type substitution and reuse, that simplify the design process.
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To make a concrete example, consider the diagram depicted in Figure 4.4. It is an excerpt of the specification
for the virtual II introduced in the previous section. In particular, it specifies the infrastructure of the web server
(www) and the hosting network (DMZ). The www server runs on a virtual machine, an instance of the Compute
node type. The hardware configuration of www and its operating system image are set by using the flavor and
image properties, respectively. The DMZ network is an instance of the Network node type. A DMZ subnetwork,
instance of Subnetwork node type, is in relationship, DependsOn, with the DMZ network and allows to specify
its block of IP addresses in the cidr property. Moreover, the DMZ subnetwork provides the Bindable capability
for supplying connections to the DMZ network. The www connectivity is represented by www DMZ port, an
instance of the Port node type which also includes the fixed ip property for assigning a fixed address to the
connected node. The node www DMZ port is the source of two relationships, namely BindsTo and LinksTo.
The former connects the Bindable requirement to the Bindable capability of the Compute node www. The latter
connects the Linkable requirement to the Bindable capability of the DMZ subnet Subnetwork node.
The syntax of the TOSCA language is YAML-based. Node instances are collections containing (i) the entity
type, (ii) a key-value dictionary of properties, and (iii) a list of requirement bindings. A relationship between
two nodes exists when a requirement of a source node instance is bound to the name of the target.

1 www:
2 type: Server
3 properties:
4 image: ubuntu1604
5 flavor: medium
6 requirements:
7 - port: www_DMZ_port
8 www_DMZ_port:
9 type: Port

10 properties:
11 fixed_ip: 198.51.100.5
12 requirements:
13 - network: DMZ
14 - subnet: DMZ_subnet

15 DMZ:
16 type: Network
17 DMZ_subnet:
18 type: Subnet
19 properties:
20 subnet:
21 cidr: 198.51.100.0/24
22 requirements:
23 - network: DMZ

Figure 4.5: An excerpt of a TOSCA specification.

Consider now the YAML specification given in Figure 4.5. It is the TOSCA encoding of the diagram of
Figure 4.4. Node www (line 1) represents the compute entity for the web server. It is an instance of the
aria.openstack.nodes.Server (line 2) type, i.e., a subtype of tosca.nodes.Compute denoting a vir-
tual machine that runs on an OpenStack IaaS. 3 This node contains two properties: the name of the base
operating system image (line 4) and the flavor (line 5) of the virtual machine. A port requirement (line 7) per-
mits to establish a relationship with the Port node www DMZ port (line 8). The port assigns a fixed IP address
to the virtual machine using the property fixed ip (line 11). Also, the port is related with the DMZ Network
node (line 13) and DMZ subnet Subnet node (line 14). The IP addressing configuration of DMZ subnet is
specified in the subnet property (line 20).

4.2 Formal Verification of Protocols

In this sub-task security relevant parts of protocols are verified via formal verification.
The general goal is to consider applications of formal methods for verifying IoT protocols and additionally
provide an overview of used methods. In order to select the most relevant protocols and to ensure their
significance, scenarios in common smart building use cases should be selected. These scenarios should point
to the emerging trends in IoT in every-day infrastructures, that are more and more exposed to different cyber
threats, and that can affect everyday life to a significant extent.
IoT protocols selected from proposed scenarios will, in the following project stages, be analyzed and formally
verified using selected methods. Protocols analysis will include the identification of security-critical parts for
specific protocols. Based on this analysis the protocols will be modelled, formally described and finally verified.
In case of a successful verification, no changes of the protocol are necessary. If a potential attack trace is found,
the results should form the starting point for a suggestion to improve the respective protocol.
Initially, the selected scenario is a Smart Home environment, and it is part of the smart building use case – the
common use case for T6.3.
The reason for choosing the Smart Home scenario, is the fact that the usage of IoT devices in Smart Home
applications is getting more and more prominent, and will in future affect a large part of the population.

3For brevity we may omit namespaces such as aria.openstack.nodes.
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4.2.1 Formal Methods

Formal methods are mathematical approaches to address different requirements, specification, and design
level problems in software and hardware engineering. The most common application areas include safety-
critical or security-critical components verification.

4.2.1.1 Formal Verification

Formal verification is the act of proving or disproving the correctness of an intended software/hardware com-
ponent with respect to a certain formal specification or property, using formal methods. These methods can
provide security guarantees by mathematically ascertain the correctness of designs. There is a diverse set of
mathematical and logical methods that can be used for that purpose.
These methods are particularly useful in order to get quantitative statements about safety and security proper-
ties of digital systems [39, 203]. There are two basic types of formal method tools:

• Model checkers – they exhaustively and automatically verify a system’s model in its model’s state space
with respect to a given specification

• Theorem provers – they often require human expertise to guide a proof of correctness by providing the
design and specification characteristics as algebraic constraints or theorems [22, 203].

Although model checkers are usually more convenient to use and target to a specific problem domain and
verification of properties in this field, they are also limited in the range of problems that they can handle.
Formal verification can be useful in a huge range of security testing fields to prevent attacks or minimize
the attacking vectors. Possible checks usually include the verification or falsification of security properties,
functional correctness, and the proposed extensions of protocol’s specifications or implementations. Addi-
tionally, these methods can help to detect bugs or programming vulnerabilities. Even hardware Trojans can be
detected with Formal Verification.
Functional checks
Include checks on functional correctness (if the specification fulfils the desired goals e.g. delivering data,
correctness of algorithms, if processes are clearly specified in a protocol specification) but also a qualitative
and quantitative analysis, including statements of performance of processes.
Security properties
Formal verification can also be applied to ensure the completeness of security goals, e.g. authentication,
confidentiality, integrity, non-repudiation and encryption.
Proposed extensions
If an attack trace is found, usually an extension of the protocol is proposed. By addressing this, the new version
of the protocol is formally verified.

4.2.1.2 Formal Verification Tools Overview

An overview of different tools used in literature for verifying protocols in Smart Home environment is given in
text bellow. Related review studies (e.g. [22, 39, 184, 185, 281, 284]) also provide a general introduction to
model checkers. Additionally, for better overview, an application and comparison of subset of them, including
Scyther, Tamarin and ProVerif, applied to the LTE protocol, can be found in [176].
PRISM4

Probabilistic model checker developed by University of Birmingham for the quantitative analysis of system
properties exhibiting stochastic behavior [181, 216, 217]. PRISM supports several probabilistic models and
their extensions, such as Discrete-Time Markov Chains (DTMCs), Continuous-Time Markov Chains (CTMCs),
Markov Decision Processes (MDPs), Probabilistic Automata (PAs) and Probabilistic Timed Automata (PTAs).
It also includes engines for quantitative abstraction-refinement [202] and statistical model checking [177, 400].
PRISM has been used for quantitative verification in a wide spectrum of application domains, ranging from
wireless communication protocols to quantum cryptography and systems biology5 [217].
ProVerif6

A command line tool for automatic security analysis of cryptographic protocols based on a representation by
Prolog rules [51, 52, 53, 54]. ProVerif, as input language, uses a typed variant of the pi calculus and is able to

4https://www.prismmodelchecker.org/
5https://www.prismmodelchecker.org/casestudies/
6https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
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proof reachability properties, correspondence assertions and observational equivalence. It is especially useful
for the analysis of secrecy and authentication properties, and additionally properties as privacy traceability and
verifiability.
Scyther7

A tool developed for the automated verification or falsification of security properties [112] and the user manual
[111]. The tool was developed under the perfect cryptography assumption, i.e. it assumes that all cryptographic
functions are perfect and the adversary learns nothing from an encrypted message unless he/she knows the
decryption key. Therefore, the tool can be used to detect problems arising from the way the protocol was
constructed by using the backward search algorithm based on a symbolic representation of sets of protocol
runs.
Tamarin8

A model checker and theorem prover for symbolic modeling and analysis of security protocols [38, 248]. It gen-
eralizes the backwards search used by Scyther and enables: protocol specification by an expressive language
based on multiset rewriting rules, property specification in a guarded fragment of first-order logic allowing
quantification over messages and timepoints, and reasoning modulo equational theories.
AVISPA9

A tool suite, is a push-button tool for the automated validation of Internet security-sensitive protocols and appli-
cations [21, 350, 369]; AVISPA stands for Automated Validation of Internet Security Protocols and Application;
The main advantage of the AVISPA tool suite is that different verification techniques can be performed on the
same protocol specification.
UPPAAL10

A toolbox for verification of real-time systems developed by the Department of Information Technology at Up-
psala University, Sweden in collaboration with the Department of Computer Science at Aalborg University in
Denmark[43, 44]. The toolbox is especially useful for systems that can be modelled as a collection of non-
deterministic processes with finite control structure and real-valued clocks, communicating through channels
or shared variables. Therefore, typical application areas include real-time controllers and communication pro-
tocols, in which timing aspects are critical.

4.2.2 Smart Home Scenario

In Smart Home network applications, numerous IoT devices are used in order to improve every-day life, by us-
ing e.g. smart HVAC (Heating, Ventilation and Air-Conditioning), motion sensor and smart wearables. Different
vendors nowadays try to agree on good practices in security implementation. Nevertheless, different connec-
tion types, the usage of wireless communication and systems set up by non-security experts allow attackers to
intercept communication quite easily.

4.2.2.1 Description

Smart Home system can be used to make life easier by control heating, curtains, light systems, security
systems, washing machine, television, stereo, etc. Even intelligent, private power supply systems, like solar
power systems, with power storage and charger for electronic cars can be included.
The proposed scenario focuses on a system with most commonly used Smart Home devices – a simple
Smart Home system with a smart HVAC, a motion sensor and smart wearables. The different devices are
communicating via suitable protocols to the home server/hub. The home server is located in the home area
network (or local area network) and communicates through a gateway to the Internet and outside users. Via
smartphone or tablet the user can get access to the home network and can monitor or configure the system.
In case of an unusual event the user will be notified immediately.

4.2.2.2 Cyber Attacks

In order to emphasize potential hazards and importance of security aspects in the Smart Home domain, this
section lists some typical attacks in this domain.
Typical cyberattacks for Smart Home are the following:

7https://infsec.ethz.ch/research/software/scyther-proof.html
8https://infsec.ethz.ch/research/software/tamarin.html
9http://www.avispa-project.org/

10http://www.uppaal.org/
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• Eavesdropping, i.e. spy on system.
• Replay attack, where (parts) of messages are recorded to use it at a later stage.
• Man-in-the-middle attack, where the communication between two communication partners is intercepted,

and potentially changed during transmission (modification attack ).
• Denial-of-Service attack.

In the first three attacks (private) data is exposed by the attacker, which is one of the huge risks in Smart Home
applications. In case of a Denial-of-Service attack parts or the whole Smart Home system become unavailable.

4.2.2.3 Protocols

Widely used protocols in Smart Home applications are ZigBee, Z-Wave, EnOcean, Thread, KNX, LoRaWAN,
Bluetooth, Bluetooth LE, Insteon, LTE and potentially 5G. Since wireless devices are more prominently used
in Smart Home applications than wired devices, our research in Smart Home scenario, focuses on wireless
protocols.
An overview of Smart Home protocols is given in Table 4.1.

ZigBee Z-Wave KNX

Range Local (<100m) Local (<100m) Local (<150m)
Data Rate 250 kbps 40–100 kbps 250 kbps
Spectrum 2.4 GHz 900 MHz unlicensed 868 MHz, 2.4 GHz
Power usage Low Low Low
Standard ZigBee spec., IEEE 802.15.4 ITU-T G.9959 EN 50090, ISO/IEC 14543-3
Alliance ZigBee Alliance Z-Wave Alliance KNX Association
Year 2003 2003 1991

EnOcean Bluetooth Bluetooth LE

Range Local (<100m) Local (<100m) Local (<100m)
Data Rate 125 kbps 2 Mbps 1 Mbps
Spectrum 900 MHz, 2.4 GHz 2.4 GHz 2.4 GHz
Power usage Low Medium Low
Standard ISO/IEC 14543-3-10 IEEE 802.15.1 IEEE 802.15.1
Alliance EnOcean Alliance Bluetooth SIG Bluetooth SIG
Year 2012 1999 2011

LoRaWAN 6LoWPAN Thread

Range Metro (>10km) Local (<100m) Local (<100m)
Data Rate 50 kbps 250 kbps 250 kbps
Spectrum 900 MHz unlicensed 2.4 GHz 2.4 GHz
Power usage Low Low Low
Standard Proprietary IETF/RFC 4944, IEEE 802.15.4 Thread spec., IEEE 802.15.4
Alliance LoRa Alliance 6LoWPAN IETF WG Thread Group
Year 2015 2007 2014

LTE 5G Insteon

Range Metro (>30km) Metro (>30km) Local (<100m)
Data Rate 100 Mbps 10 Gbps 38 kbps
Spectrum Licensed cellular Licensed cellular 900 MHz unlicensed
Power usage Band dependent Band dependent Low
Standard 3GPP Release 8 and 9 3GPP 5G Proprietary
Alliance GSMA – Cellular Carriers 3GPP ITU-R Smartlabs
Year 2010 2018 2005

Table 4.1: Overview of Smart Home protocols

The initial Smart Home protocol priority list selected for SPARTA research in security-by-design (formal verifi-
cation) aspect are:

SPARTA D6.1 Public Page 41 of 112



D6.1- Security-by-Design Framework for the Intelligent Infrastructure

1. EnOcean11 12

2. Z-Wave13

3. ZigBee14 15

4.3 Formal evidence language for the II

Today’s ICT technologies such as Internet of Things (IoT), Industry 4.0, and Smart Grids, edge, cloud, etc., are
enabling important new business capabilities and opportunities for organizations. However, such technologies
are also straining organizations’ ICT infrastructures to the breaking point as most organizations struggle with
an inflexible, non-standardized and overloaded existing infrastructure. The business consequences of this situ-
ation are significant. Teams may not be able to collaborate effectively; security may be compromised; customer
service and transaction times can suffer, which may lead to the loss of business. Given these challenges, or-
ganizations are actively moving towards an Intelligent Infrastructure (II), which is an ICT infrastructure that is
more automated, service-oriented and intelligent. An intelligent infrastructure comes with enabling technolo-
gies to monitor, learn, predict, manage, optimize, protect and self-heal systems across data center, network,
workplace, security and operations capabilities. The building blocks for developing and operating intelligent
infrastructures are already known - standardization, consolidation, automation, virtualization and service orien-
tation. The challenge, however, lies in putting those components together in an integrated whole and managing
them securely, efficiently and effectively toward business goals.

4.3.1 Evidence-based security frameworks

An evidence-based approach for increasing the trust of systems has been successfully been applied in central-
ized settings for safety-critical systems, e.g., in the avionics and nuclear domains 16. Indeed, the safety-cases
developed by the centralized processes have made it possible for critical aircraft systems to be certified by
certification authorities and for countries to allow their citizens to fly the aircrafts. Moreover, whenever there is
an accident, processes to determine the root cause and its underlying evidence have maintained user’s high
trust levels on aircraft. For intelligent infrastructures, however, this evidence-based approach that has been
successful to increase trust is not currently applied. This is due to the challenges described above related to
the de-centralized and dynamic nature of II components and services.

4.3.2 Formal evidence language

In an intelligent infrastructure, it is common for its components to spread out and run, for example, on mobile
edges rather than being deployed on a single platform. At the same time, services often move around with
their consumers in mobile edge computing. In such highly dynamic service deployment scenario, it is important
to maintain technology-agnostic formal security arguments for services supported by evidence. The security
evidence required in one environment, e.g., highly unsecured environment, may not be the same as another
environment, e.g., trusted secure environment. In addition, these security evidence descriptions must carry
their associated security policies with them to be able to decide whether existing security evidence are usable
and sufficient when upscaling or moving a service.

4.3.3 State of the art for evidence languages

There have been various approaches towards evidence-based security assurance for systems, such as in-
telligent infrastructure systems, with de-centralized and dynamic components and services. Arguably, the
best-known framework is the PCC approach and its derivations, e.g., Proof Authorization Code, etc. In PCC,
mobile codes would provide a formal proof for their security.
We provide below a brief overview of different initiatives and projects with the aim of building evidence-based
security assurance.

• MOBIUS [36] was an initiative to build Proof Carrying Code Framework for mobile code [238]. The essen-
tial features of the MOBIUS security architecture include (1) innovative trust management: dispensing

11https://www.enocean-alliance.org/what-is-enocean/enocean-wireless-standard/
12https://www.iso.org/standard/59865.html
13https://www.itu.int/rec/T-REC-G.9959
14https://zigbee.org/download/standards-zigbee-specification/
15https://standards.ieee.org/standard/802_15_4-2015-Cor1-2018.html
16The purpose, scope and content of safety cases http://www.onr.org.uk/operational/tech_asst_guides/ns-tast-gd-

051.pdf
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with centralized trust entities, and allowing individual components to gain trust by providing verifiable
certificates of their innocuousness; and (2) static enforcement mechanisms: sufficiently flexible to cover
the wide range of security concerns arising in global computing, and sufficiently resource-aware and
configurable to be applicable to the wide range of devices in global computers.

• CYBER-TRUST is a project aimed at building a Cyber-Security Intelligence framework for IoT systems 17.
The project focuses on the mitigating zero-day vulnerabilities and accomplish this by maintaining a vul-
nerability profile of IoT systems. The project is aimed at providing trusted transaction processing and
coordination between IoT devices, ensuring security by identifying Data Communication Safeguarding
critical files and software binaries, and minimizing the damage caused by tampered devices and mal-
ware as well as single points of failure collection and storing of forensic evidence.

• DARPA-ARCOS is an initiative by the American DARPA agency in the area of efficient evidence cre-
ation and maintenance for software re-certification 18. According to its coordinator, the American Navy
re-certification due to a change of single line of code takes an year and costs around 5 Million USD.
The initiative’s main goal is to advance the process of certification where a structured argument is built
attesting the security risk of a system by building arguments by automating the evidence generation for
new and legacy systems, so to scale the process of certification and reduce costs.

• C3ISP is an initiative proposing the increase of trust of ICT applications by sharing in a privacy preserving
way data and analysis on data 19. C3ISP’s mission is to define a collaborative and confidential information
sharing, analysis and protection framework as a service for cyber security management. The initiative
also puts a greater emphasis on regulatory aspects, “compliance by design”, proposing languages for
security policy specifications.

• FutureTrust is a project proposing Open-Source mechanisms and models for trustworthy global transac-
tions. Their main focus is on system inter-operability, electronic signatures to build certificates that can be
used across different systems 20. While this project focuses on cross-system certificates, rather than the
actual evidence generated, its concepts can be applied to develop a cross-system evidence language.

• LighTEST is an initiative proposing to create a global cross-domain trust infrastructure where the trust
of electronic transactions is delegated to trusted authorities 21. The specification of trusted authorities
and the delegation relation between authorities can be used to make distinctions between self generated
security evidence structures and evidence structures from a delegated authority.

• AF-Cyber was an initiative proposing a logical framework for the specification of formal security argu-
ments 22. The core of this project is a logic-based framework for performing attribution of cyber at-
tacks, based on forensics evidence and an intelligent methodology for dynamic evidence collection. The
structure of such dynamic evidences will be helpful in developing an evidence language taking dynamic
security aspects into considerations.

4.3.4 Semantic modelling aspects

One critical aspect to consider while developing such an evidence language for security assurance is the defi-
nition of a common language among the different involved stakeholders, both in terms of format and semantics.
This is aimed at enabling the evidence language to specify security and accountability metrics of the services
and components (both software and hardware) of a given intelligent infrastructure. In order to achieve this
goal, the definition of a combined ontology that merges these currently separated services and components
is a key enabler for an evidence language. This ontology will be focused in the creation and traceability of
different evidences that will be used to implement accountability mechanisms throughout the entire intelligent
infrastructure.
For cybersecurity, for instance, several ontologies and frameworks have been proposed [1, 262, 348]. One of
the most extensive ones is the Unified Cybersecurity Ontology (UCO) [344], based on hierarchical classification
of all the possible cybersecurity events by defining concepts such as means of attack, consequences, attacks
themselves, attackers, attack patterns, exploit targets and other relevant indicators.
As corroborated by previously [1], these cybersecurity ontologies and in particular UCO represent an adequate
starting point and provide enough flexibility to be completed with innovative metrics and indicators coming from
different sources enabled by state-of-the-art technologies. In conclusion, an evidence language needs to

17CyberTrust https://cyber-trust.eu
18DARPA-ARCOS https://www.darpa.mil/program/automated-rapid-certification-of-software
19C3ISP https://c3isp.eu
20C3ISP https://cordis.europa.eu/project/rcn/202698/factsheet/de
21LighTEST https://www.lightest.eu
22AF-Cyber https://cordis.europa.eu/project/rcn/210306/factsheet/en
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create a semantic model merging cybersecurity with domain-specific concepts to enable cross-domain ac-
countability and auditing in the presence of de-centralisation and dynamism - defining features of an intelligent
infrastructure.

4.3.5 Evidence and certificate formats

Security evidences from a given service or component needs to be abstracted and made light-weight to be
exchanged among services and components. Therefore, development of an evidence language must also
take into consideration the corresponding security certificate format into consideration. The communication
of formal certificates has been investigated by the Mobius [36], ProofCert 23 and Dedukti [24] projects. In
the former, certificate formats have been proposed to support the PCC framework. Therefore, their formats
represented only evidence in the form of formal proofs. ProofCert proposed Foundational Proof Certificates
based on solid substructural proof theory results and logic programming. Dedukti proposed formats for theorem
provers, such as HOL, Coq, by splitting the deduction content of formal proofs from the computation part.
An evidence language needs to build on both ProofCert and Dedukti: Firstly, its certificates needs to increase
the trust of systems by a wider range of types of evidence, and not only formal proofs. This can be done by
advancing the mechanisms for checking the validity of certificates. Secondly, an evidence language needs to
validate the communication of certificate in intelligent infrastructures by advancing the integration of certificates
with technologies such as Internet of Things (IoT), DLT, Industry 4.0, and Smart Grids, edge, cloud, etc.

4.4 Multi-layered security model for Fog computing

4.4.1 The overview of Fog computing paradigm

Fog computing is a new paradigm of Cloud computing which aims to address some specific issues which
cannot be solved using traditional Cloud computing architectures. The OpenFog Consortium established in
2015 defines Fog computing architecture as “a horizontal, system-level architecture that distributes computing,
storage, control and networking functions closer to the users along a cloud-to-thing continuum” [272]. Fog
computing architecture consists of 3 layers: a) Cloud; b) Fog; and c) Edge devices. The Edge layer would
include all low power data collecting nodes like sensors, actuators, as well as smart devices in cases when
they are used to capture data rather than to process it. The middle Fog layer is made of local medium power
devices which collect and process data, make local decisions, controls actuators in the Edge layer and act as
data gateway to the Cloud services. The top layer belongs to a Cloud with powerful servers in remote large
scale data centers.
Bonomi et al. [61] lists the specific requirements of an IoT solution which are best addressed by using the Fog
computing architecture:

1. Edge of the network placement, low latency communications and location awareness. The Fog comput-
ing is capable to provide good solution in cases where low latency between data collection and solution is
required. This architecture also works in cases of Internet connection failures and Cloud based services
outages.

2. Wide-spread geographical distribution. It opposes the idea of Cloud Computing which is very centralized.
Fog Computing services and applications are widely distributed over the network.

3. Mobility. It is essential for a number of Fog applications and services to have a direct connection with
mobile devices. Mobility techniques such the LISP protocol are required for this.

4. Very large number of nodes. A large number of the Edge nodes is available due to generous geographical
distribution.

5. Predominant role of wireless access. It enhances the mobility.
6. Strong presence of streaming and real time applications. Real-time communication is prioritized in the

Fog Computing over the data batch processing.
7. Heterogeneity. Fog nodes are very different by their form which are used in different environments.

Multi-Layered Fog computing architecture and its main properties by layers is summarized in Fig. 4.6 on the
following page.
Data life cycle in Fog Computing architecture starts with data acquisition inside the Edge node layer. The data
is transferred to the upper Fog layer to be stored and/or processed. Fog nodes are also able to send feedback

23ProofCert https://team.inria.fr/parsifal/proofcert/
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Figure 4.6: Properties distribution in the Multi-layered Fog Computing architecture [401]

data and control commands back to the Edge layer. If more resource intensive data processing is required the
Fog node devices send data to the Cloud based services.
The main application areas of the Fog architecture according to the [397] are:

1. Smart Home. The development of Internet of Things leads to situations where home owners use lots
of home automation devices and sensors connected to their home network. These devices are often
produced by different manufactures and it is hard to make them compatible with each other. Fog Com-
puting allows one to ingrate all these devices into one platform. It can provide 1) a unified interface to
integrate different devices; 2) adaptive computation power and storage; 3) real-time data processing at
low-latency.

2. Smart Grid. Smart meters which are integrated in different locations are meant to measure the readings
in a real-time manner. The centralized hub collects and analyses any status related data. It also sends its
commands to stabilize the power grid as a response to the change of power demand. Fog Computing can
help providers to break the complex global grid into micro-grids. This will contribute to scalability, lower
expenses, better security, and lower latency. Switch to Fog computing architecture could also help to
integrate renewable power generators as wind turbines, solar panels, etc. In this case the Fog Computing
layer would be responsible for the micro-grid and communications with surrounding Fog devices.

3. Smart Vehicles. Fog Computing architecture could be used for vehicular networks. The Fog Computing
nodes could be installed by independent entities alongside the roads. These should communicate with
each other and interact with passing vehicles. Other Fog computing application areas for smart vehicles
include traffic light control, parking management, traffic data sharing, etc.

4. Health data Management. Health related data contains priceless and private information. Fog Computing
might enable the patients to have their sensitive health data processed locally. Data can be uploaded to a
Fog node as a smartphone or local network connected PC. If a patient needs help in a medical laboratory
or a doctor’s room, the preprocessed data could be securely transmitted to cloud based storage.

4.4.2 Main issues of the Fog computing

The Fog computing paradigm solves several shortcomings of cloud computing by providing solution in the
situations where low latency and jitter, mobility support, constrained devices support, context and proximity
awareness is required. On the other hand Fog computing also introduces some new challenges in various
fields, including data privacy and security.
Distributed service infrastructure in the Fog layer may be owned by different entities and using different soft-
ware and hardware which requires effective collaboration and communication solutions. The new standards
which define how different components of the architecture can communicate are still under development. Fog
layer services are often implemented as virtual machines, so solutions for lightweight virtual machine lifecycle
management (creation, deployment, migration, context preservation, etc.) are also very important. Resources
are residing in different locations distributed over various devices, so the effective mechanism for service dis-
covery and orchestration is required. Another big issue is the mobility of both the Edge nodes and the Fog
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nodes, which causes the need for specific protocols and solutions which could enable the synchronization of
various states of services devices on the heterogeneous infrastructure [304] hosting the Fog services.
Security assuring functions must be installed in every Fog computing based solution to make it responsive,
available, survivable and trusted [244]. All edge paradigms, including Fog computing, uses lots of different
building blocks (such as various wireless communication protocols, constrained devices and networks, dis-
tributed and peer-to-peer systems, virtualization platforms, etc.) to comprise the final solution. It is essential to
protect not only the building blocks themselves, but also to orchestrate the diverse security mechanisms [304].
One needs to have the full, unified and transversal view of all security mechanism available in heterogeneous
infrastructure in order to ensure effective and secure integration and interoperability. Moreover by ensuring the
security of all building block individually we do not necessary ensure the security of the solution as the whole.
Additionally Fog computing paradigm introduces specific requirements e.g. the security methods and protocols
should not be centralized as central infrastructure may not be available due to the strict requirements for the
latency or simply be offline due to malicious attacks. On the other hand some Fog Edge devices may be
constrained [63] and support only the simplest authentication protocols and limited connectivity. One not only
needs to ensure sufficient security in all building blocks based on different architectures and technologies but
also to ensure secure global connectivity and accessibility in a heterogeneous ecosystem [303].
According to [290] security problems specific to Fog computing could be grouped into three parts by the place
of occurrence in the overall Fog architecture: security threats in Edge or sensing layer, security threats in
network infrastructure and security threats in Fog layer. The remaining part of Fog architecture, the Fog to
Cloud part, doesn’t introduce any Fog specific challenges.

4.4.2.1 Security threats in the Edge layer

Edge layer uses various sensing technologies forming wireless sensor and actuators networks and different
communication means, such as wireless networks, radio-frequency identification, near-field communications,
etc. [355]. Security threats in the Edge layer include:
Edge node capture and tampering. Edge sensors and actuators may be captured and analyzed, important end
user data may be extracted. Authentication keys may be captured thus compromising security of the whole
solution.
Spoofing attack. Attacker may send malicious data to the Fog layer by pretending to be the legitimate sensors.
Signal jamming. Attacker may generate strong signal causing the interference in the wireless communications
of the devices.
Malicious node and data. Attacker may add malicious node to the sensors network and generate malicious
data thus causing undesirable behavior of the whole system.
Denial of service (DoS) attack. Attacker may flood the sensor nodes with lots of malicious packets. This
attack may exhausts batteries of the constrained devices and utilize all the network resources thus causing the
reduced responsibility and availability of the whole solution.
Node outage. Some of the nodes are cut down causing degraded performance of the whole solution.
Replay attack. Original data packets may be captured and resent pretending to be the new data. If the
authentication of the data sources is not strong enough this attack may cause undesirable behavior of the
whole system.
Existing solutions for these challenges include: Mutual authentication of Edge and Fog nodes and authorization
of the data; usage of strong cryptography and steganography for data encryption and integrity protection;
spread spectrum communications; jamming report generations; usage of error correction codes and collision
detection.

4.4.2.2 Security threats in Network Infrastructure

Network infrastructure is used to transmit data from Edge layer to Fog layer, various local area network tech-
nologies and physical transfer media, such as wired or wireless networks, Wi-Fi, Bluetooth low energy, Zigbee,
etc. may be used here [254]. Classical security triplet of Confidentiality, Integrity and Availability (CIA) is at risk
at this layer. Different technologies introduce different security challenges:
Selective forwarding. Some selected packet may be dropped by malicious software causing degradation of
QoS of the whole system.
Black hole and Wormhole attacks. Malicious routing information may be inserted into network, causing selected
packets to be routed to the sink hole and dropped or collected and stored in different storage location for further
analysis.
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Various flooding attacks (Hello Flood, Acknowledge Flooding, etc.) may be used to flood the network channel
with malicious data causing network congestions.
Heterogeneity and scalability of network infrastructure caused by migrating nodes and numerous different
network technologies and security protocols introduces difficulties in coordination of all transfers making the
solution more vulnerable.
Possible solutions for these issues are: usage of standard TLS/DTLS, IPSec security protocols where possi-
ble; installing firewalls and intrusion detection systems; link layer encryption; multipath routing; strong identity
verification and continuous data packet authentication; secure decentralized authentication information man-
agement.

4.4.2.3 Security threats in the Fog layer

In the Fog layer data is collected, stored and processed. Thus causing security problems related to data
integrity and confidentiality in storage and during processing. The service provisioning and availability is also
very important. Fog Nodes usually are managed remotely which enables owners to control numerous devices
in an efficient way at the same time enabling the attackers to launch various network-based attacks. Fog layer
devices frequently have classical wide spread security problems often encountered in web applications, web
services and related technologies.
Multi-tenancy related issues. Frequently Fog Nodes support multi-tenancy, where the same service may serve
multiple user groups (tenants). This requires strict isolation of virtual machines, runtime environments and/or
data pools related with different user groups.
Sniffers, Loggers, Phishing Attacks. These attacks may be used trying to capture passwords, logins, keys and
other important information from sessions of user interaction with Fog devices.
Injection attacks. Attacker may use these techniques to cause malicious code execution and/or loss of data on
the Fog nodes.
Session hijacking. Attacker may try to steal sensitive information from user trying to use her identity to gain
access to personal information and get administrative rights to Fog nodes.
Physical damage and tampering. Unlike cloud servers Fog nodes sometimes are physically exposed and
vulnerable to physical attacks. Even if the device itself is secured, some not wireless input/output interfaces
may become the targets of hardware tampering and eavesdropping.
Data security. Fog nodes collect, store, process and send aggregated results and/or commands to cloud layer
services or actuators in the Edge layer. Data, metadata and software must be protected in Fog nodes during
all three states of its life: data in use (while it is processed residing in operative memory), data in rest (stored
on non-volatile media), and data in motion (while being transferred through the network infrastructure).
The already existing solutions for these challenges include: safe programming and testing during the develop-
ment of the software; usage of antivirus software on the end users computers; extensive data verification on
the Fog node; effective access control, identification and authentication; extensive session inspection; secure
data encryption during storage and network transfer.

4.4.3 Existing solutions to Fog computing related issues

One of the duties of the Fog Computing is to connect its components, but managing such complex, hetero-
geneous and constantly changing network, ensuring the connectivity of its components and providing relevant
services is not easy task. The authors of [398] propose to use emerging concepts such as Software-Defined
Networking (SDN) and Network Function Virtualization (NFV) which can help to create a flexible and easy-
to-maintain network. These technologies might help Fog Computing to improve its network scalability at the
reduced costs.
The authors of [338] propose to use SDN concept and implement it with physically centralized control with
Fog devices acting as the centralized controllers. In such scenario each node on the Fog layer is expected
to work as a router for other closely located Fog nodes. Each Fog node also has to support the mobility of
End nodes. SDN integration in such solutions causes issues related to the ability to cope with mobility and
potentially unreliable wireless connection.
NFV technology replaces the network functions by virtual machines. The key element of this concept is virtu-
alization. The virtual machines are dynamically created, removed and moved between Fog nodes as required.
The advantages of NFV in the Fog Computing is the ability to virtualize relevant gateways, network switches,
firewalls and intrusion detection devices. The newly introduced issues are the throughput and latency of virtu-
alized devices and the proper placement of the virtualized devices in the dynamic constantly changing network.
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The framework based usage of SDN and Fog Computing architecture as solution for issues related to Vehicular
Ad-hoc Networks (VANETs) is proposed in [204]. The authors claim that the upcoming 5G network will help
to cope with different communication requirements and addition of centralized and flexible approach of the
SDN and Cloud-RAN (CRAN) will help to increase flexibility and implement effective resource allocation and
distribution techniques.
A model-driven framework proposed by authors of [366] is designed to develop a Personalized Health Mon-
itoring system. The purpose of such system is to integrate different medical instruments in order to ensure
an uninterruptable remote monitoring of the patient health while using an internet communication. The model-
driven framework has a multi-layered structure with feature-based modeling and feature model transformations
positioned at the top. Meanwhile the application software generation is located at the bottom. Intermedi-
ate levels serve to narrow down any design options in order to be able to apply the model transformations.
These transformations enable creation of customized models which are required in order to come up with the
implementation layer.
Service orchestration is another option for Fog Computing. The paper [69] proposes a orchestration solution
based on Docker Containers. There is number of container orchestration solutions currently available like
Kubernetes, Mesos Marathon, Docker Swarm as the authors admit but they are not flexible enough. Their
solution adds two basic components: Fog Orchestrator (FO) and Fog Orchestration Agent (FOA) to the Fog
layer nodes to adapt traditional Cloud services orchestration solutions to the needs of Fog computing.

4.4.4 Fog orchestration solutions

Fog computing paradigm extends cloud computing and inherits several important properties such as resource
orchestration, multi-tenancy, elastic provisioning, etc. [197]. In such implementations Fog nodes use their
computational resources to provide required services to the Edge nodes. If the orchestration framework is
designed correctly it allows to partition required services between different Fog nodes and/or some Cloud
based services in such way, that delay-sensitive tasks are executed by physically close Fog nodes and resource
hungry non real-time tasks are executed by cheap and powerful Cloud services. This sort of affinity-aware
software offloading is shown in Fig. 4.7.

Figure 4.7: Fog and Cloud service partitioning example

Authors of [197] provide an overview of the Fog services orchestration framework which bridges the gap be-
tween the infrastructure and the applications. They propose to use classic architecture introduced by National
Institute of Standards and Technology (NIST) [231] and already widely adopted in modern cloud computing
systems, such as OpenStack. This three layer Cloud computing orchestration framework (see Fig. 4.8 on the
following page) could also be successfully used in Fog computing.
The central role in this three layer architecture plays the control layer or central controller which makes deci-
sions how to efficiently allocate available IoT applications and services to the lower layer of Fog nodes. Several
new challenges specific only to Fog computing paradigm are needed to be addressed: scalability of the control
layer, affinity based service provision, and heterogeneous nature of the Edge and Fog nodes.
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(a) Cloud computing [231]

(b) Adaptation for Fog computing
[197]

Figure 4.8: Orchestration framework architecture

The control layer of Fog computing must be able to coordinate interactions between massive number of Fog
nodes with very different capabilities and constraints forming the physical resource layer. Two methods for
dealing with scalability of control layer are used in Cloud computing solutions: hierarchical controller approach
(e. g. OpenStack Cells) and the flat controller approach. The hierarchical controller layer uses additional
higher level controllers forming the multi-level structure which helps to minimize computational requirement for
controller layer. The flat controller layer uses peer-to-peer architecture with periodic gossiping between different
controllers trying to collect information on global structure of the system and making decisions for local device
management. For the Fog computing systems where Fog nodes are owned by different independent parties
(home owners, public institutions, universities, etc.) with heterogeneous hardware and software resources
the flat controller approach is more suitable. On the other hand the Fog layer may include millions of different
nodes and controllers may not be able to store and exchange the information about the whole system. To solve
scalability problem authors of [197] propose that each controller should collect and maintain information on the
structure of the system in its close proximity and exchange information only with its neighboring controllers.
Such solution ensures that required Fog services are naturally offloaded into physically close Fog nodes and
the amount of information needed to maintain and exchange is largely reduced. Fig. 4.9 on the next page
shows three layer Fog orchestration framework and data flows required for effective orchestration. Three types
of data flows or data exchange interfaces may be distinguished:
The southbound interface connects Fog nodes with orchestration controller and is used to collect hardware
information and to offload required services into corresponding Fog nodes for physical execution.
The westbound interface is mainly used for communications between neighboring orchestration controllers in
peer-to-peer manner for information collection about current state of physically closely located Fog nodes and
exchange of data on services’ requirements. This interface helps the controllers to form and maintain the
aggregated picture of their Fog and Edge devices in their close proximity and to rapidly change the picture in
events when Fog or Edge nodes moves to different locations. Broadcasting information to its neighbors and
using peer-to-peer communications prevails in this kind of communications.
The northbound interface is used for access and management of actual IoT applications and services
Wen et al. [379] discusses the possible architectures of controller or Fog orchestrator. The main Fog specific
constraint and requirements for Fog orchestrator are: Scale and Complexity of the Fog layer; Security criti-
cality; Inherent properties of Dynamicity of Fog and Edge layers; the need for Fault diagnosis and Tolerance.
The authors propose architecture of Fog Orchestrator summarized in Fig. 4.10 on the following page. The
orchestrator consists of three main elements. The planning element selects appropriate services and places
them into corresponding Fog nodes; Execution monitoring element monitors the system during runtime assur-
ing the required level of QoS and security. After considerable changes in system (due to dynamic nature of
Fog computing elements) required data is collected and Optimization element finds the new best scenario of
service deployment in Fog nodes. Parallel genetic algorithm is used to solve optimization problems which arise
in the planning and optimization phases.
Brito et al. [69] present another architecture of Fog orchestrator and show what modifications of Fog nodes
are necessary for efficient interaction with Fog orchestrator (see Fig. 4.11 on page 51).
The special Fog Orchestration Agent is added into each Fog node and is responsible for communications with
Fog Orchestrator as well as monitoring resources of local Fog node, efficient resource management, security
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Figure 4.9: Fog computing orchestration architecture with flat control layer [231].

Figure 4.10: Fog orchestrator architecture [379].

and QoS assurance. The authors use Docker Swarm for virtualization and Open MTC M2M Framework for
communications.
Velasquez et al. in [365] summarizes the challenges specific to Fog computing paradigm and analyzes four
already proposed and implemented Fog orchestration solutions: Supporting the Orchestration of Resilient
and Trustworthy Fog Services (SORTS) by Velasquez et al. [364]; The Service Orchestrator Architecture
for Fog enable Infrastructure (SOAFI) proposed by Brito et al. [69]; The reference architecture for Mobile
Edge Computing (ETSIGSMEC) introduced by the ETSI Industry Specification Group; and a Cloud-based
architecture for next-generation cellular systems (CONCERT) by Liu et al. [232].

4.4.5 Security orchestration challenges in Fog computing

Fog nodes are computational nodes which talk with different sensors and actuators and provide required
services for local data filtering, processing and control as well as act as intermediaries for communications
with remote cloud based services. Frequently these Fog services are deployed dynamically into corresponding
Fog devices as required. For example, if Edge device requires “serviceX”, which is currently provided by
Fog node “FogA”, and moves to the close proximity of Fog node “FogB”, the whole Fog infrastructure must
adjust itself in such a way that “FogB” node starts to provide “serviceX” to the Edge node. This kind of
Fog infrastructure behavior is assured by using Fog services orchestration techniques discussed in previous
chapter. Usually Fog service orchestration is implemented by customizing and adapting already existing Cloud
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Figure 4.11: Fog orchestrator interaction with Fog node [69].

services orchestration solutions [69, 197]. One of very important issues in such solutions is the QoS assurance
and security of the whole system. Fig. 4.12 summarizes different challenges which have to be addressed while
designing security orchestration solution for Fog nodes.

Figure 4.12: Security orchestration challenges in Fog computing.

Mobile Edge nodes may change location and approach different Fog node which has different architecture and
computational or communication capabilities. Some Edge nodes may be constrained devices with strict con-
strains on available security protocols and/or communications methods. The Fog nodes may also be mobile,
and approach different Edge nodes with sibling Fog nodes providing services for them. In all cases the service
provision should be optimally divided by all Fog nodes in near proximity of the Edge nodes. On the other hand
the requirements of QoS i. e. latency, communication bandwidth, data security, etc. must be preserved.
This continuously changing situation requires effective orchestration of services in Fog nodes, as well as se-
curity and QoS assurance. Essentially after the each significant change in the local situation in close proximity
of the each Fog node the optimization problem must be solved in order to provide best possible service for the
Edge devices.
The constraint categories for such optimization problem are the following:

• Security level requirements. Different Edge devices may collect data of different importance and ade-
quate data protection must be provided while transferring, storing and processing.

• Edge node physical constraints. If the Edge node is constrained it may not be able to use some of the
security and communication protocols due to the limitations in available processing and/or transmitting
power.

• Communication bandwidth requirements. There is the essential difference in bandwidth requirements
between Edge nodes which provide continuous data streaming and one time sensors/actuators (e.g.
real-time video streaming vs. temperature sensor which sends several bytes of data every minute).
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• Communication protocol requirements. Some Edge devices may need one way connectionless broad-
casting and others may require strict two way communication with acknowledgements. Some solutions
may work using client/server architecture, and the others may communicate peer to peer using mesh
networks.

• Environment requirements [200]. Some Edge nodes may have short range high bandwidth (i. e. WiFi,
ZigBee, BLE, etc.) communication hardware requiring closer proximity to the Fog node, while the others
may have long range low bandwidth communication hardware (i. e. LoRa).

While implementing orchestrator which is able to collect all security and QoS related information from neigh-
boring Fog and Edge nodes (thus forming unified view of security and QoS requirements), and in most efficient
way distribute the required services between available Fog and Cloud resources (i. e. solving the problem of
optimal service partitioning, see Fig. 4.7 on page 48) one has to address the following considerations:

• The flat controller (orchestrator) approach is more suitable due to the constantly changing Fog and Edge
layers.

• The peer-to-peer architecture with periodic gossiping is most suitable for the Fog services orchestrators.
• To solve the scalability problem each controller should collect and maintain information on the structure

of the infrastructure only in its close proximity and communicate only with its neighboring controllers.
• Southbound interface (see Fig. 4.9 on page 50) communications protocol for exchanging security orches-

tration specific information between orchestrators and Edge nodes must be developed.
• Westbound interface (see Fig. 4.9 on page 50) communications protocol for peer-to-peer gossiping be-

tween neighboring orchestrators must be developed.
• Methodology for solving QoS and security related optimization problem of orchestration of mobile, het-

erogeneous and scalable Fog layer must be proposed.
• Continuous monitoring of the situation during runtime must be assured by the orchestators and after the

considerable changes in the system the new optimal (QoS and security vice) partitioning scheme of the
services must be found and deployed (see Fig. 4.10 on page 50).

4.5 Key Components of an Intelligent Infrastructure

Intelligent Infrastructures are capturing data, analyse that data and, as a result, are invoking an autonomic
response to decisions that have been taken on the findings [286]. In that process, several targets for privacy
and security issues exist and have been addressed by existing Intelligent Infrastructures.
This chapter is discussing properties of existing intelligent infrastructure frameworks and tries to identify those
key components (functions and services) that are needed to ensure the fulfilment of specific needs, esp. in the
context of intelligent infrastructure orchestration. A special focus is also taken on the management of privacy
and security in such an infrastructure, which includes a look at the security principles that are relevant as well
as some security and privacy-specific key components.

4.5.1 Components of an Intelligent Infrastructure

Intelligent infrastructures heavily base on the use of IoT devices that provide data and which are the target for
the automatic responses. As a consequence, the identification of the key components of intelligent infrastruc-
tures and their impact on privacy and security mainly is equivalent with the identification of key components of
IoT frameworks and IoT platforms. In the recent years a generally accepted technology architecture for such
IoT frameworks and platforms has been crystallised. This architecture with all layers and relevant components
is shown in Figure 4.13 on page 54 [190, 191, 320, 321, 322, 351]. The overview already provides the main
security principles that are relevant regarding the different layers of the entire chain between IoT device and
IoT application. The following table 4.2 on the following page gives an overview about the purpose of each
component in the figure, as explained in [190] and [270].
From a security point of view, the entire set of used technologies defines the attack surface of the IoT architec-
ture. Security principles that try to reduce the number of threats and vulnerabilities focus on the securing of the
devices, the securing of the communication between the involved systems, the cloud infrastructure itself and
everything that is related with the lifecyle management of each system. IoT devices that are deployed in an
uncontrolled environment require a protection against physical attacks as well as attacks against the integrity
the operating system that is running on the device. IoT devices that are communicating directly with the plat-
form as well as gateway devices require a protection of the communication link or end-to-end security. The IoT
platform itself requires knowledge of each controlled device and therefore requires secure device identification
or authentication. Confidentiality of the stored data is another important principle in the framework which not
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Table 4.2: Software components of Intelligent Infrastructures

COMPONENT FUNCTIONALITY
Hardware: IoT Device
Device Operating System Managing the computer hardware and software resources of the

device
Provides common services

Communication: Gateway Device & Network Connection
Sensor Handler Connects or interfaces with sensors and actuators

Aggregates data
Management Agent Handles manageability primitives for gateways, sensors and ac-

tors
(provisioning, error handling, alerting, eventing)

Data Agent Gathers and formats data from different sensors
Controls actuators based on commands from the cloud

Analytics Agent Learns actionable data in local context
Near real time

Security Agent Handles security primitives for gateways, sensors and actors
(authentication keys, certificates)

Software: IoT & Cloud Platform
Network Management
Traffic Management

Manages and optimise the flow of traffic between the involved
parties and applications
Interacts with the management agent of the network device

Device Management Configures and controls manageable primitives of the device
Device discovery

Configuration Management Ensures on-premise configuration management
including devices and security

Resource Management Resource and workload optimisation
Provisioning and deployment of servers
Starting and stopping of servers.
Acquisition and assignment of storage capacity
Creation of virtual machines.

Service Orchestration Software Ensures service level agreements across resource managers
Processing and Events/Action Manage-
ment

Rule engine that allows for actions base on incoming sensor and
device data

Data Ingestion Software
Data Collection and Storage

Ingests and stores data coming from the devices
Makes the data available to other cloud software
Interacts with the data agent of the devices

Analytics Software Big data analysis on the data gathered from the devices
Machine learning
Interacts with the analytics agent of the devices

Presentation and Visualisation Graphical depiction of sensor data
Identity Management Manages the identities of the devices

Manage the access to sensitive and non-sensitive data
Security Management Configures and controls security primitives of on-premise equip-

ment
Interacts with the security agent of the devices

Application: IoT & Cloud Application
Business System Integration Connecting the IoT/Cloud solution into a single larger system that

functions as one
Reporting Presentation of data in an understandable way
Alerting React on findings in the given data with an alert
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only requires encrypted storage but also the management of access rights of users. Above all, it must be en-
sured that all involved systems and devices face regular security updates and patches. The entire framework
must be controlled and monitored to identify and react on incidents.

4.5.2 Key Components Classification

There are several ways to name key components from all shown components, depending on the context that
is discussed.

Minimal

In a minimal setup, at least one component of each layer or level must be considered. Beside the essential
devices and communication protocols that are needed to connect the devices to the cloud, some components
are additionally important: First, the device management is crucial for a successful deployment of all devices.
Because sensor devices produce data, the data collection and storage component is essential. The processing
and event management component is needed to provides event and time-based automation. The analytics
component is needed to extract information from the collected data, while the presentation and visualisation
components helps to display the data in a user friendly way.

Orchestration

From an intelligent infrastructure orchestration point of view, key components are foreseen to automate the
management, the coordination and the organisation of the entire IoT architecture. These components manage
the following elements: network; traffic; devices; configurations; resources; identities; security.
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Security

In the described architecture, some components or elements are of relevance in regards to security. First,
the device operating system as well as all used communication protocols. In the platform, the cloud security
management component and its security agent counterpart play an important role in the entire security archi-
tecture. Linked to that is the identity management to ensure identification and authentication of devices and
users, as well as the management of access rights, which is linked to the storage and collection of the data.
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Chapter 5 Resilience-by-design of Intelligent Infrastructures (II)

Emerging Critical Information Infrastructures (CII), supporting critical assets, are using IoT devices increasingly,
and massively. In these cases, both the complexity, increasing vulnerability to faults and attacks, and the
relevance, making targeted attacks probable, call for defenses complementing the standard, industry-practice
paradigms oriented to intrusion prevention and detection, defeating extreme adversary power and sustaining
perpetual and unattended operation. Furthermore, under the scope of resilience design, intrusion detection
can provide crucial components to resilient-by-design approaches in order to discover and handle unauthorized
actions of adversaries, e.g., to identify and attenuate the communication between the affected elements of
a system and the adversarial domain. In Task 6.4, “resilience-by-design of intelligent infrastructures (II)”,
we intend to investigate mechanisms that allow building resilience in systems, giving some steps further in
achieving security-by-design, in areas meeting, especially for CII: threats, uncertainty, real-time needs, etc.
Stronger, dynamic and automated paradigms for systems are required, and we will develop innovative protocols
creating the last line of defense in case intruders manage to bypass classical security measures. Namely,
by leveraging existing Byzantine fault and intrusion tolerance techniques, and self-healing and diversification
mechanisms. The rest of this chapter is organized as follows. Section 5.1 discuses the intrusion detection
approaches. Resilience techniques based on fault and intrusion tolerance is given in Section 5.2. The chapter
is concluded in Section 5.3.

5.1 Intrusion detection

The proliferation of communication and commerce over networking architectures has put reliable cyber security
solutions in high demand. Cyber security issues concerning individuals or organizations can develop into
disastrous scenarios, like losing critical information, promoting relentless attacks (on critical infrastructure as
well), or contributing to a distributed denial of service (DDoS) attack [81, 375].
The security of any given system comes in a direct proportion to the decisions both the organisations and
the individuals make with regards to security requirements and their relative prioritization. Cyber-attacks have
been on the rise for the past few years due to a slew of factors. Many research and policy changes have been
undertaken to control this phenomenon. However, a clear path to a safe and secure cyber-physical system is
not yet apparent. To understand the motivations behind the cyber-physical attacks, it might be necessary to
underpin those attacks as societal events associated with economic, cultural and organizational factors. These
factors seem to be key to understanding the how and why behind the security decision processes.
Intrusion detection is one of the components of a global security strategy. It is the second line of defence
against attacks. A complex information system supported by a large-scale network composed of multiple
heterogeneous devices is rarely completely secure and free of security flaws. Despite all the upstream efforts
that are made during the design and development of a critical information system, malicious activities can
most likely succeed and compromise the confidentiality, availability, or integrity of the system during its life
cycle. An Intrusion Detection System (IDS) aims at detecting such attacks against a computer system and
network. To deal with latent threats, an IDS monitors continuously the running system and analyses the
gathered information to detect if an attack occurs or not. When the monitoring mechanism suspects that an
attack has occurred (or is in progress), an alert is raised. As for any detector, the provided quality of service can
be analyzed by considering the two types of error that can occur, namely false positives (no attack is conducted
but an alert is triggered by the intrusion detection system) and false negatives (an attack takes place but it is
not detected by the intrusion detection system). When the rate of false negative increases, the usefulness of
the detection tool decreases. Worst, when the number of false positives is too high, the many irrelevant alerts
make its use harmful.
The analysis performed by an IDS is based on local data provided by a set of independent probes deployed in
different places of the monitored distributed system. Each of these observation devices is responsible for mon-
itoring a small, well-defined part of the entire system and reporting what is going on. Depending on whether
a probe monitors the activity of a particular machine or the activity at a particular point in the communication
network, IDSes are classified in three main classes, namely HIDS (Host based Intrusion Detection System),
NIDS (Network based Intrusion Detection System), and Hybrid IDS. Whatever the observed targets (compu-
tation devices or communication links), the reported information either corresponds to a raw observation of an
activity (i.e., an occurrence of an event) or is the result of a first low level analysis that identifies a suspicious
local behavior (i.e., a low level alert). The locally generated information is usually stored in logs and journals. It
is also sent in messages to an analysis tool that centralizes the data and carries out a deeper global analysis:
this activity is a key feature of a Security Information and Event Management (SIEM). Note that this two-level
analysis (local and global) can be replaced by a more complex hierarchical structure dedicated to data collec-
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tion and analysis. In any case, the gathered information is ordered according to the occurence date of each
element and thus a unique flow (or stream) of timestamped data (events and low level alerts) is created. While
combining outputs from different sources/probes, a pre-processing step is often performed to homogenize, cor-
rect, and reduce the flow of elements [361]. Indeed, since the probes are heterogeneous, the information they
provide in their messages has to be restructured and standardized using a unique description language. At
the same time, the collected information can be enriched (for example, the location of the probe is added if this
information is missing). Additional controls allow also to discard some erroneous low level alerts (for example,
knowledge databases can be used to assert if the exploit of an attacker which has been suspected by a probe
is possible or not). Reducing the number of elements contained in the flow is usually achieved by merging
similar elements: on the one hand, the same action is sometimes detected by several different probes and, on
the other hand, a probe can generate several elements in the flow that are related to the same action. During
this first correlation phase, the goal is to identify elements of the flow that occurred at close dates and have a
strong relationship since they concern the same action (malicious or not). All the treatments described above
aim to produce a cleaned and reduced flow of events and low level alerts. The main difficulties come from the
fact that any used solution must be adapted to the specificities and weaknesses of the deployed observation
tools and that it must be implemented efficiently to cope with a very large amount of data (in terms of elements
per second).
In the context of SPARTA, the activities on intrusion detection conducted by the different partners focus on the
analysis of the resulting flow that will be carried out on a single machine (i.e. after all the previously described
steps). The lowest common denominator of cyber-attack detection are adversarial identification and machine
learning methods: the detection is as weak (or strong), as weak are the data processing approaches. Three
detection approaches are covered and discussed separately, even if one of the proposed challenges is to
combine them: signature-based approach (cf. Section 5.1.1), anomaly-based approach (cf. Section 5.1.2),
and control-theoretic intrusion detection (cf. Section 5.1.3).
Note that some challenges are independent of the approaches. In particular, an important one is related to the
availability of an appropriate dataset which is critical in the development of an Intrusion Detection System (IDS).
A bulk of state-of-the-art research does not provide reliable performance results since they rely on either the
KDD99 or NSL-KDD benchmark datasets, which is concocted of traffic that is over 20 years old, hence it does
not represent recent attack scenarios and traffic behaviours. Obtaining traffic from simulated environments
can help overcome this issue when merged with testing more recent datasets, such as the CICIDS 2017 [62].
Published datasets are available for different domains, such as industrial control systems (ICS) [180]. The
observed data that will be provided to us in the context of Sparta will complete the currently limited panel of
available datasets.

5.1.1 Signature-based intrusion detection

A signature-based approach relies on the apriori knowledge of some possible attacks. Patterns of malicious
traffic/activity are compared to current samples, and if a match is found an alarm is raised (cf. Figure 5.1).

Observed	data	 Feature	extraction	 Matching		

Abnormal	activity	
reference	 Attack	signature	

=	 ALERT:	misuse	
detected	

Figure 5.1: Signature-based Approach for Cyber-attack Detection

This approach is already applied at the level of an observation device to generate low level alerts but it can also
be applied a second time during the centralized analysis to take into account multi-steps attacks. In this latter
case, the detection of correlations between elements of the incoming flow aims to generate high-level alerts.
Here the targeted attacks are not those that can be reduced to a single action performed by the attacker on a
unique device. During a multi-steps attack, an attacker will perform a series of malicious actions not necessarily
all on the same device and not necessarily in any order [86]. An attack can be conducted quickly or spread over
a very long period. A complex multi-steps attack can be described using various description techniques. For
example, when the description relies on an attack tree [333], the leaves of the tree correspond to the actions
that have to be executed by the attacker and the internal nodes of the tree correspond to operators (AND, OR,
SEQ, ...) that identify the logical and temporal constraints between these actions. From the description of an
attack called a signature (i.e., the point of view of the attacker), it is possible to determine how an instance
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of this attack will be observed if it impacts some specific nodes of the system (i.e., the point of view of the
defender). To be able to identify both the possible targets of the attacker and the corresponding reactions
of the associated probes, knowledge about the network topology (location of devices, communication links,
...), about the cartography (types of device, operating systems, installed software, ...), and about observation
tools (nature of the probes, locations, configurations, ...) is needed [259]. Different instances of a same
attack may target different parts of the system that are not necessarily monitored by the same kind of probes.
Consequently, each attack is associated to several patterns (and not just a single one) that have to be searched
within the flow of observations. To assert that an attack occurs, one of its well-identified patterns must appear in
the flow of events and low level alerts. Correlation rules aim at identifying all the patterns that have to be search
within the flow: each pattern is a description of the possible reactions of the observers to a specific instance of
the attack [252, 357]. A correlation engine is an analysis tool that takes as input the flow of observations and
a list of specified correlation rules and checks for each possible attack if an attacker is currently progressing
along the corresponding attack path. Creating correlation rules by hand is a time consuming and error-prone
task. This explains why only a few simple attacks where considered in many used tools. Recent work aimed to
automate the creation of correlation rules [162]. Starting from the description of an attack (often provided by a
security expert), the automatic production of the correlation rules requires to have a knowledge database with
a precise description of the whole system. The main difficulty lies in the fact that a link has to be established
between any action of a specified attack and its possible observations by various probes. This mapping is
sometimes trivial (for example, in the case of an exploit of a well known and referenced vulnerability) and
sometimes less obvious (for example in the case of a more harmless action for which the descriptions and the
classifications may differ from one probe to another).
The signature-based approach has the advantage of causing very few false positives if the description of the
attack and the associated correlation rules are sufficiently accurate. Regarding the false negatives, only the
known attacks can be detected. A new attack or even an attack that is intentionally slightly different from a
known one are not necessarily detected (0-day exploit). Moreover, the detection of a known attack occurs only
if the probes are in sufficient number, well placed to cover all the system and correctly configured.

Current challenges

The prospect of automatic rule generation creates new challenges. As the human cost of creating rules de-
creases, the number of attack signatures can now increase. Consequently, a correlation engine has to face a
scalability issue as it may have to cope with thousands of correlation rules while maintaining a rather high anal-
ysis speed (i.e., it may have to consume hundreds of elements of the incoming flow of events and low alerts
per second) [220]. Moreover, as the set of correlation rules becomes larger, it has to be updated more fre-
quently: some devices are removed or reconfigured, others are added and countermeasures taken for security
reasons (applying a patch, closing a port, ...) also affect the system. Restarting the analysis from scratch each
time a dynamic update is done is a risky solution: old observations (done before the update) will be ignored
during the analysis of the new correlation rules. Thus a trade-off has to be found between the cost of a partial
re-examination of past observations and the risk of missing the first steps of a new specified attack.
In a signature-based approach, the correlation rules mainly refer to low level alerts (and abnormal events)
and to a lesser extent to normal events. On the contrary, the second intrusion detection approach that will
be discussed next, namely the anomaly-based approach, focuses rather on the normal events. Despite the
differences between the approaches, combining them seems to be of interest especially when the goal is to
detect muti-steps attacks.

5.1.2 Anomaly-based intrusion detection

The signature-based approach is inefficient in detection of attacks that are either new or were modified (ob-
fuscated) to a sufficient extent, and thus constitute the so-called 0-day exploits. Therefore, a solution to that
problem comes in the form of anomaly detection. The following procedure can serve as an outline for the ap-
proach: firstly, the pattern of normality (normal traffic/activity) has to be established and then matched against
the current traffic/activity samples. Whenever, the pattern deviates from the established model an alarm is
raised (See Figure 5.2). This approach, however, is plagued by false positives (false alarms). Quite frequently,
when the characteristics of network traffic (or e.g. HTTP requests in the application layer) evolve, such situation
is interpreted as anomalous, even though it is just an intrinsic feature of network usage and of network users
behaviour [59].
Concisely put, in setups where new attacks (or even slightly modified families of malware) emerge continuously,
the standard protection systems become inconsequential until relevant signatures are collected [101]. On the
other hand, anomaly-based approaches (systems which detect abnormalities in traffic, e.g. abnormal requests
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Figure 5.2: Anomaly Detection Approach for Cybersecurity Detection

to databases) tend to produce false positives (false alarms) [18, 315].
Various techniques can be used to obtain a model that characterises the normal patterns. All of them are
related to machine learning. Thus numerous machine learning anomaly detection techniques are evaluated
by the scientific community. Algorithms like the Random Forest, Support Vector Machine (SVM) or clustering
techniques like the k-nearest neighbour or k-means are amongst the most proliferated. In [329] a method
based on an SVM in conjunction with fuzzy C-means clustering is utilized. The clustering is used as a feature
extractor with the SVM doing the classification work. An interesting approach is depicted in [224], where the
authors generate normalized entropy of 6 netflow-based features for anomaly detection, and then follow with
turning the issue back into a classification task for their hybrid Particle-Swarm-Optimisation-SVM model. [295]
does a comprehensive survey of Intrusion Detection and Prevention Systems for Smart Grids. Among these 17
anomaly detectors were considered, including a system based on clustering data collected by a honeypot [376],
a false-data injection detector relying on spatiotemporal evaluation [92], and an anomaly detector using a one-
class SVM trained on MMS and GOOSE protocol data [399]. In [129] a k-nearest-neighbour is used as an
outlier detector relying on distance and it is applied in urban traffic flow. In [196] the authors cluster netflow
data basing on a sliding window technique. When the goal is to describe normal behaviors at the application
level, models based on automata or likely invariants are used as they are close from the way the applications
have been specified during the design phase.
In practice, while designing and developing intelligent systems for anomaly and cyber-threat detection one can
draw the following conclusions:
• When it comes to the cyber security and cyber-attack detection, there is no single classifier or IDS system

that will allow the recognition of all kinds of attacks. Likewise, the same system (even if it trained to detect
the same type of attacks) has to be re-trained when changing the monitored network (topology, services,
characteristics, etc.). In that regard, a transfer learning mechanism seems necessary to enable the
detection of attack B based on the knowledge acquired for attack A.

• There seems to be an overlap of knowledge that an intelligent and adaptive system will need to be aware
of. This phenomenon can be leveraged both to facilitate the learning of new tasks and to improve the
effectiveness in the execution of the old ones.

• An IDS trained in one network will use already established knowledge to detect attacks in another network
in a more accurate way (than without the lifelong learning approach).

Consequently, based on the above observations, we identify challenges in three main directions:

5.1.2.1 Lifelong learning for cybersecurity

Originally, lifelong learning was established as a sequence of learning tasks that need to be solved using
the knowledge previously acquired and stored in classifiers that have already learnt [96]. According to [278]
and [279], the theoretical considerations on lifelong learning are relatively widely described in the literature,
in particular in the light of the growing popularity of machine learning approaches and applications. However,
scientific communities usually put more attention to aspects of learning based on well-known knowledge do-
mains and well-labeled training datasets, while approaches to lifelong learning (or learning to learn) without
observed data, e.g. to perform new, unforeseen tasks are not yet very popular. In [40], one of the first attempts
to describe the model of lifelong learning can be found. The author introduced a formal model called induc-
tive bias learning, that can be applied when the learner is able to distinguish novel tasks drawn from multiple,
related tasks from the same environment. Those considerations focused only on the finite-dimensional output
spaces, and mainly on linear machines rather than nonlinear ones, in contrary to [247], additionally extending
earlier research with algorithmic stability aspects. In [28], an approach to the problem of learning a number
of different target functions over time is introduced, with assumptions that they are initially unknown for the
learning system and that they share commonalities. Different approaches to solve this sequence of tasks in-
clude transfer learning [323], multitask learning, supervised, semi-supervised, reinforcement learning [16], and
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unsupervised techniques. There are also works defining strong theoretical foundations for life-long machine
learning concepts. Particularly, in [278] authors worked on a PAC-Bayesian generalization bound applied for
lifelong learning allowing quantification of relation between expected losses in future learning tasks and av-
erage losses in already observed (learnt) tasks. The bulk of approaches so far assume that the problem
representation is not changing, (i.e. the feature space). It is a common method in classical event correlation
based solutions [99, 100]. However, recent works increasingly consider that also the underlying feature space
can fluctuate. To overcome those challenges, solutions such as changing kernels for feature extraction [293],
changing latent topics [97], or the underlying manifold in manifold learning [386, 387] are proposed. The Hybrid
Intelligent Systems paradigm naturally addresses all the challenges of lifelong machine learning such as learn-
ing new tasks while preserving the knowledge of the preceding ones. In fact, classifier ensemble management
resembles some of the algorithms proposed for lifelong learning. For example, a critical aspect of the lifelong
learning systems is the ability to detect the task shift, which is quite similar to concept drift detection [381] and
can be tackled by hyper-heuristics [332]. To deal with debatable cases in ensemble learning and to increase
transparency in such debatable decisions, our hypothesis is that argumentation could be more effective than
current resolution methods. Moreover, recent work on hybrid classifiers has demonstrated promising results of
using an argumentation-based conflict resolution instead of voting-based methods for debatable cases in en-
semble learning [107], showing that the hybridization of ensemble learning and argumentation fits the decision
patterns of human agents.
The concept of a task appears in many formal definitions of lifelong machine learning models [279]. For exam-
ple, when considering telecommunication network monitoring for cyber security purposes, it is often difficult to
distinguish when a particular task finishes and the subsequent one starts, i.e. when a different family of attacks
has started. Therefore, the lifelong learning approach fits very well with the reality in the cybersecurity domain.

5.1.2.2 Information granules/granular computing in cybersecurity

One of the most serious challenges of the methods and algorithms used in cybersecurity is being able to
reach a correct understanding of the network data. Undeniably, cyber-ecosystems are quickly changing, as
are the characteristics of the data. This fluctuation of properties produces uncertainty and difficulties in data
partitioning/clustering. It is profoundly challenging to construct correct generalizations, rules and thresholds,
and substandard choices greatly decrease the efficiency of typical pattern recognition and anomaly detection
algorithms. In addition, many of the used pattern recognition techniques do not try to incorporate or even take
into account the semantics of the analyzed network data. This sub-section addresses the utilization of the
practical elements of Granular Computing for anomaly detection as a solution of the preceding problems.
Granular computing refers to a general data analysis and recognition framework, incorporating data partitioning
into so called information granules. Granular Computing emerged as a general structure of data processing
and knowledge discovery utilizing items called information granules. The very concept of granulation appeared
independently in an array of fields, including fuzzy and rough sets or cluster analysis [35]. Granules are
alignments of elements drawn together by their similarity, closeness or functionality [406]. A granule which
occurs at a particular granularity level conveys a certain aspect of the modelled issue [34]. In situations with
a certain degree of uncertainty granules can provide a convenient solution. This property can be translated
into a certain economy when dealing with intricate problems. The tolerance for uncertainty bears a degree of
resemblance to human thinking itself [406]. What follows is the utilization of Granular Computing in designing
real-life smart systems. The hierarchical nature of Granular Computing in conjunction with the basics of human
reasoning conveyed in its premise makes it a perfect match for meaningful abstraction on various levels of
detail [395].
Granules are essentially tiny parts of a larger construct, which describe a particular facet of that construct,
when viewed from a particular level of granulation [396]. As an illustration of this principle one can consider
how in cluster analysis objects can be grouped together based on similarity or distance functions. Since
objects grouped in one cluster should exemplify a strong degree of similarity, clusters can be considered as
granules [395]. Granules can be, thus, amassed into larger collections, which are then perceived as new, larger
granules or divided into smaller pieces, which are more specific [396].
Ideally, the extracted information granules should comply with the Principle of Justifiable Granularity
(PJG) [277]. PJG is a guideline for information granules to best comply with two competing requirements:
justifiability and specificity. It stipulates that the constructed granules cover the relevant portion of the data, but
should not be highly dispersed across the dataset. This can be achieved by selecting granules that resemble
relevant semantics describing the data. Typical practical methods of granular computing are fuzzy sets [373],
rough sets [15, 165, 291], and intuitionistic sets [187].
Granular computing allows for better data understanding through the incorporation of semantic aspects, sim-
ilarities and uncertainties. Granular computing has been used recently for the analysis of spatiotemporal
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data [336], to concept-cognitive learning from large and multi-source data in formal concept analysis [267].
To the best of our knowledge, granular computing has not yet been widely examined nor adapted for cyberse-
curity application purposes. One of the rare published papers is authored by Napoles et al. [265]. The authors
addressed the problem of modeling and classification for network intrusion detection by utilizing a recently
proposed granular model named Rough Cognitive Networks (RCN). The authors both proposed and defined
RCN for detection of atypical (abnormal and potentially dangerous) patterns in the network traffic. RCN has
been delineated as a sigmoid FCM (Fuzzy Cognitive Map). Map concepts denote information granules corre-
sponding to the RST (Rough Set Theory) -based positive, boundary and negative regions of decision classes.
Learning mechanisms for RCN are based on a self-adaptive Harmony Search algorithm. The proposed model
has been evaluated with the NSL-KDD dataset and is shown to be a suitable and promising approach for de-
tecting abnormal traffic in computer networks. Future work will address validation and further evaluation of the
model based on real network traffic.

5.1.2.3 Anomaly detection at the application level

Processes running on any distributed system cooperate and synchronize to achieve common tasks [159].
Various models can be built to characterize some normal behaviors of the running distributed application. At
runtime, the flow of observations (mainly information about events at the application level) is used to check if
the observed behavior corresponds to a normal activity or not. Any deviation from the model is interpreted as
a consequence of an ongoing or completed attack.
In some rare cases, a specification of the normal behaviors is available and is used [263]. But most of the
time, the model has to be built during a learning phase [47, 236, 241]. During this phase, multiple executions
are performed in a safe context (without any occurence of attacks). Traces are collected and analysed to
build models that reflect the characteristics of some normal behaviors. During the learning phase, only a finite
(and rather small) number of behaviors can be learned while an application may exhibit an infinity of distinct
behaviors. Therefore a rather high false positive rate is often observed when the model only accepts learned
behaviors. In many cases, the constructed model is generalized in a second step to become more permissive
and to accept close behaviors that have not been learned [240]. Of course, among the behaviors accepted
by the model but never learned, some may unfortunately correspond a behavior corrupted by an attack (false
negative). Generalization techniques are often ad-hoc mechanisms that can be tuned approximatively. If
different models are used, a more global strategy can perhaps be adopted to have a better control on the
obtained generalized models.
Usually, a (normal or malicious) behavior of a distributed computation is represented by a sequence of events.
Such a knowledge requires to have a global clock to order all the events. To avoid this problem (and also to
obtain more general models), a computation can also be represented by a partially ordered set of event [160,
358] (for example, the dependancy relation defined by Lamport [219] can be used). The interest of such
an approach has been studied in the context of intrusion detection and in particular when the model of the
normal behaviors is based on automata [237, 263] or likely invariants [46, 384]. Managing simultaneously
several types of models has an interest [296] (especially if the construction of all these models relies on
a common representation of the behavior [160]). In particular, it allows sometimes to decrease the false
negatives (complementarity between some models) or to decrease the false positives (redundancy between
some models). To limit false positives, an alert can be raised when a given subset of models detects an
anomaly. On the contrary, to limit false negatives, an alert can be raised as soon as one model in a given
subset detects an abnormal behavior.
As many models can be defined, one challenge is have a better knowledge about the specificities of each model
and the possible complementarities between them. In the particular case of the IoT, and for the applications
targeted in this study, it is also important to determine if some models are more appropriate than others (cost
of the construction of the model, cost of the detection, quality of the detection, ...). This objective will probably
be only partially reached. Indeed, whatever the used model, it is difficult to assert if an anomaly detection
solution allows to detect a particular attack or not. Experiments show that an attack on a given application can
be detected by a model in a particular context and not in another: in particular, the normal activity that occurs
just before an attack may have a major impact on the detection [221].
The interest of combining a signature based approach and an anomaly-based approach deserves also to
be studied. As both approaches can analyse the same incoming flow (composed of low-level alerts and
events), they can be integrated in the same tool and complement each other. Indeed the boundary between
both approaches is not so clearly marked. For example, to control that an invariant is satisfied, in some
particular cases, the solution consists in checking that the negation of the property is never true. Thus, in
this example, the fact that the application exhibits a normal behavior (anomaly detection approach) may be
evaluated by a mechanism in charge of detecting occurrences of the corresponding bad behaviors (signature-

SPARTA D6.1 Public Page 61 of 112

https://github.com/defcom17/NSL_KDD


D6.1- Security-by-Design Framework for the Intelligent Infrastructure

based approach). In the context of SPARTA, we aim also to investigate one of the differences between the
two approaches. While a signature-based approach considers an incoming flow composed of low level alerts
and events, an anomaly-based approach focuses mainly on the normal events contained in the flow. Yet, in
the anomaly-based approach, the model can also be trained to learn both events and low level alerts that are
generated during an execution free of any attack. In that case, the model takes into account the behavior of
the application and the behaviors of the monitoring mechanisms that are rarely silent even when no attack is
performed. A quite similar idea has been proposed in [370] where the authors suggest to model regularities in
alert flows with classical time series methods.

5.1.3 Control-theoretic detection of cyber-physical attacks

Recent approaches in the intrusion detection literature propose the adaptation of traditional control-theoretic
techniques to handle cyber-physical attacks. Such attacks target the physical process associated to infras-
tructures enabled with computing and communication capabilities (e.g., attacks against IoT-enabled infrastruc-
tures). Hence, the goal is to build detection techniques capable of identifying intentional cyber-physical attacks,
in addition to failures and errors. From a control-theoretic standpoint, the protection of such infrastructures
requires the maintenance of three crucial properties: observabilty, controllability and stability. Observability
means that a defender must always be able to accurately estimate the state of the physical process. Con-
trollability implies that the defender is all the time able to act upon the process. Stability is preserved when
the defender manages to keep the process at or near the desired operating point. Cyber attacks targeting a
disruption of the physical process aim to compromise such three properties (observability, controllability and
stability) while evading detection, e.g., by hiding the actions; or concealing them to the eyes of the defender as
failures, if detected.

5.1.3.1 Representative cyber-physical attacks

Table 5.1 [305] shows some representative cyber-physical attacks in the literature. They all assume a control-
theoretic modeling approach in which intruders are manipulating inputs and outputs of the system, as depicted
in Figure 5.3. The figure represents intruders perpetrating attacks against networked-control systems (e.g.,
industrial control systems, power grids, smart vehicles, industrial internet of things, etc.). The system is com-
posed of a controller and a system containing the physical process under control (e.g., interfaced to the con-
troller via sensors and actuators) and whose communications are indirect through a network. We assume that
the defender is placed within the controller. The symbol

⊕
is a summing junction, an element that calculates

the sum of signals. Controllers rule the overall system using the feedback received from the system, with the
measured system output provided by the system sensors. The distance between a required reference output
and the measured system output determines corrective control actions to handle faults, failures and errors. The
goal of the intruder is to interfere the control loop communications. The intruder is not required to own a model
of the system. However, access to actuators and sensors is assumed (e.g., in order to learn and get knowledge
about the model of the system). Formally, the intruder can modify the genuine control input uk, and inject a
fake input u′k to disrupt the system evolution. The intruder can also have access to all the components of the
output vector y′k, modify y′k and produce a fake vector yk with measurements that are consistent with the fake
input u′k. Insecure or vulnerable communication protocols (e.g., Ethernet and TCP/IP-based communication
protocols) are enablers for the attacks of the intruder. Moreover, the attack may remain invisible to defenders

Table 5.1: Sample list of attacks reported in the control-theoretic literature
Attack name Summary References
Cyber-physical replay Intruders replay previous measurements (corre-

sponding to normal operation conditions) and
modify control inputs to disrupt the system.

[257, 258], [306],
[352]

Stealthy (false-data) injec-
tion, using bias and geome-
tric techniques

Intruders drive the system to unstable states, by
using system vulnerabilities, and injecting false
data constructed to evade feedback-control detec-
tors.

[256, 276], [307],
[58, 80, 117, 234],
[309], [352]

Zero dynamics Intruders make unobservable an unstable state of
the system using controller vulnerabilities.

[95], [308], [353]

Covert disruption Intruders hold complete knowledge about the sys-
tem dynamics, to impersonate the feedback con-
troller and evade fault detection.

[183, 334, 335]
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that look solely for faulty measurements, specially when the intruder succeeds at creating new measurements
or control commands that are consistent with the original inputs and outputs of the system.1. Introduction
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Figure 5.3: Cyber-physical adversarial model

The first attack listed in Table 5.1, cyber-physical replay, is depicted in Figure 5.4. We can identify an intruder
conducting the attack by modifying some control inputs that disturb the physical process of the system, while
modifying the sensors readings (e.g., by replicating previous measurements, corresponding to the nominal
conditions of the system) to evade detection. The intruder is not required to have knowledge about the physical
process, but only previous information generated by the sensors of the system. This type of attack is non
detectable with a system monitor which is only verifying the absence of errors from the sensor measurements.
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Figure 5.4: Cyber-physical replay attack

The following attack in Table 5.1, often referred to as stealthy or false-data injection attack [80, 117, 233]
assume intruders modifying the sensors measurements by applying physical interferences through the com-
munication channel (cf. Figure 5.5). The intruders require precise knowledge about the physical behavior of
the system and the control laws. The intruders inject a bias in the sensors readings, yk. The goal is to lead to
wrong control decisions and cause large-scale malfunction. Extended versions of this attack assume the use
of geometric-injection techniques, in order to gradually increase the bias using geometric control laws, as well
as the existence of faulty dynamic models of the physical process, making an unobservable state unstable (re-
ferred to as Zero Dynamicst in Table 5.1). The attacks may easily evade detection in systems holding unstable
modes, by simply hiding the disruptions under such unobseravble states.
The last attack in Table 5.1, denoted as covert disruption in the related literature [183, 334, 335] is depicted in
Figure 5.6. The intruder manipulates measurements from sensors and commands from controllers. A precise
knowledge about the physical system process and control design is required. The attack is considered as
undetectable, if measurements are compatible with the forged commands. In other words, the attack cannot
be distinguished from the regular system operation [335].

5.1.3.2 Detection of cyber-physical attacks

The attacks listed in Section 5.1.3.1 assume powerful adversarial models which, in addition to bypassing
traditional cyber-security protection, suppose that intruders can observe and change measurements gener-
ated by sensors or commands provided to actuators. I.e., they assume a model in which the intruder can
operate with the information going through a networked-control system. The models may also assume an
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Figure 5.5: Cyber-physical stealthy attack using either bias injection techniques
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Figure 5.6: Cyber-physical covert disruption attack

initial phase of adversarial learning, in which the intruder observes and derives the physical model of the
physical process. The intruder can use artificial intelligence techniques (e.g., machine learning and system
identification tools [31, 266]) to obtain enough knowledge about the physical process under attack. Under
such assumptions, we survey next a specific attack model and two representative detection methods.

Attack model — The state space representation is used to define the attack to the integrity of a system:

xk+1 = Axk +Buk + wk (5.1)
yk = Cxk + vk (5.2)

Eq. (5.1) models the evolution of the system. At time k, given input uk, state xk is transformed into state xk+1.
The transition is also affected by random noise wk. At time k and in state xk, the sensor measurements are
yk. The sensor measurements are also affected by random noise represented by vk. Matrices A, B and C are
respectively called the state, input and output matrices. Their exact dimensions and content depend on the
application. For instance, a cyber-physical covert attack can be defined as follows [353]:

xk+1 = Axk +B(uk + uak) + wk (5.3)
yk = Cxk + vk + sak (5.4)

where

xak+1 = Axak +Buak (5.5)
sak = −Cxak (5.6)

The variable uak represents the contribution of the intruder to the input. Eq. (5.3) is the system transition
following the injection of the signal by the intruder. Eq. (5.5) is the state transformation due to the intruder. In
Eqs. (5.4) and (5.6), the term sak represents the manipulation done by the intruder of the sensor measurements
such that attack is not visible to the operator. It erases the effect of its input on the output. Existing detection
techniques to identify this attack are discussed next.

Watermarking-based detection — Watermarking is a detection technique built upon an authentication
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scheme proposed in [257]. It adapts an error detector to make an anomaly detector. The result is a cyber-
physical attack detector using a linear time-invariant model of the system. Built upon Kalman filters and
linear-quadratic regulators, the scheme uses authentication watermarks to protect the integrity of physical
measurements communicated over the cyber and physical control domains of a networked control system. It is
assumed that, without the protection of networked messages, malicious actions can be conducted to mislead
the system towards unauthorized or improper actions, i.e., by disrupting the system services.
The authentication scheme proposed in [257] can be used as an anomaly detector of malicious stationary
signals, to protect a networked-control system controlled by a feedback controller when the covert attack
defined in Eq. (5.3) is perpetrated. We denote by u∗k, the output of the controller, and uk, the control input that
is sent to the system (cf. Eq. (5.1)). The idea is to superpose to the optimal control law u∗k a watermark signal
∆uk ∈ Rp that serves as an authentication signal. Thus, the control input uk becomes:

uk = u∗k + ∆uk (5.7)

The watermark signal is a Gaussian random signal that is independent both from the state (wk) and mea-
surement noises (vk). The authentication watermark is used by the detector to identify the malicious signals
originated by an intruder. Since the optimal control law u∗k is combined with an authentication signal ∆uk, the
detector (physically co-located with the controller) triggers an alarm whenever a malicious signal is observed,
i.e., whenever the challenge sent by the controller over the system is not observed within the measurements
returned by the system. Towards this end, [255, 258] propose to employ a χ2 detector, i.e., a well-known cate-
gory of real-time anomaly detectors classically used for fault detection in control systems [72], for the purpose
of signaling anomalies identified in the system behavior.
The strength of watermarking is that it does not require any modification to the system. However, the
latter must be tolerant to the injection of noise in the control input uk, i.e., the Gaussian random signal.
Further details about more powerful detectors, capable of identifying intruders empowered by learning and
identification tools such as ARX (autoregressive with exogenous input) and ARMAX (autoregressive-moving
average with exogenous input) [266], e.g., using such tools to evade detection, are also available in [309, 310].

Auxiliary system-based detection — The concept of auxiliary states can also be used in order to identify
injection cyber-physical attacks [182, 319]. Under this second detection model, the CPS is augmented with
a synthetic auxiliary state, synthetic outputs and optionally new inputs. The auxiliary state has a linear time-
varying dynamics that is evolved in parallel with the CPS. The dynamics is concealed to the intruder. Because
it is time-varying, it becomes a moving target that is challenging to identify by an intruder, a precondition to
the covert attack. But, it is known to and used by the operator to detect the covert attack. The operator is in
synchrony with the linear time-varying dynamics. It is therefore able to track it properly and compare the actual
evolution of the auxiliary dynamics with the expected evolution. Significant discrepancies indicate the presence
of anomalies, which can be used to identify the intruder.
The model is extended with the auxiliary state x̃k and additional sensors ỹk, that measure the auxiliary state.
The state xk and auxiliary state x̃k are correlated. Together with the auxiliary state, the state transformation
model is: (

x̃k+1

xk+1

)
= Ak

(
x̃k
xk

)
+ Bk

(
ũk
uk

)
+

(
w̃k

wk

)
(5.8)

Together with the additional sensors, the sensor measurements are:(
ỹk
yk

)
= Ck

(
x̃k
xk

)
+Dk

(
ũk
uk

)
+

(
ṽk
vk

)
(5.9)

with matrices Ak,Bk, Ck,Dk defined as follows:

Ak =

(
A1,k A2,k

0 A

)
,Bk =

(
Bk

B

)
,

Ck =

(
Ck 0
0 C

)
, and Dk =

(
Dk 0
0 D

)
.

Hidden to the intruder, the state sub-matrices A1,k and A2,k, the input matrix Bk, output matrix Ck and direct
transmission matrixDk are random variables. According to the approach proposed in [319], the actual matrices
are randomly switched from time-to-time. The auxiliary system is a switched system [230]. The operator and
CPS are synchronized on the switching sequence, perhaps through a switching signal. This secret is not
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shared with the intruder. Sensor measurement ỹk is visible to the intruder, but changes over time in a random
way. The intruder is challenged with learning the random auxiliary system state, input, output and direct
transmission matrices.
The state, input and output matrices of the auxiliary system may be chosen such that the latter is asymptotically
stable, i.e., small variations in the input generate small variations in the output. The output stays bounded for
any bounded input and there are no oscillations. Notice that the auxiliary state model does not require injection
of a noise signature. However, the system needs to be extended with a dynamics, which evolution is a secret
shared between the controller and system. The management and exchange of such a secret is the main
limitation of the approach. In the context of SPARTA, we aim to tackle and address such a limitation.

5.2 Resilience techniques based on fault and intrusion tolerance

Dependability has been defined as that property of a computer system such that reliance can justifiably be
placed on the service it delivers. The service delivered by a system is its behaviour as it is perceptible by its
user(s); a user is another system (human or physical) which interacts with the former [26]. Dependability is a
body of research that hosts a set of paradigms, amongst which fault tolerance, and it grew under the mental
framework of accidental faults, with few exceptions [130, 154], but we will show that the essential concepts can
be applied to malicious faults in a coherent manner.

5.2.1 Intrusion tolerance concepts

The tolerance paradigm in security assumes that systems remain to a certain extent vulnerable; assumes that
attacks on components or sub-systems can happen and some will be successful; ensures that the overall
system nevertheless remains secure and operational, with a quantifiable probability. In other words:
• faults – malicious and other – occur;
• they generate errors, i.e. component-level security compromises;
• error processing mechanisms make sure that security failure is prevented.

Obviously, a complete approach combines tolerance with prevention, removal, forecasting, after all, the classic
dependability fields of action!

5.2.1.1 AVI composite fault model

The mechanisms of failure of a system or component, security-wise, have to do with a wealth of causes, which
range from internal faults (e.g. vulnerabilities), to external, interaction faults (e.g., attacks), whose combination
produces faults that can directly lead to component failure (e.g., intrusion). An intrusion has two underlying
causes:
Vulnerability – fault in a computing or communication system that can be exploited with malicious intention
Attack – malicious intentional fault attempted at a computing or communication system, with the intent of
exploiting a vulnerability in that system which then lead to:
Intrusion – a malicious operational fault resulting from a successful attack on a vulnerability
It is important to distinguish between the several kinds of faults susceptible of contributing to a security failure.
Figure 5.7 represents the fundamental sequence of these three kinds of faults: attack, vulnerability, intrusion
and failure. This well-defined relationship between attack/vulnerability/intrusion is what we call the AVI com-
posite fault model. The AVI sequence can occur recursively in a coherent chain of events generated by the
intruder(s), also called an intrusion campaign. For example, a given vulnerability may have been introduced in
the course of an intrusion resulting from a previous successful attack. Vulnerabilities are the primordial faults
existing inside the components, essentially requirements, specification, design or configuration faults (e.g.,
coding faults allowing program stack overflow, files with root setuid in UNIX, naive passwords, unprotected
TCP/IP ports). These are normally accidental, but may be due to intentional actions, as pointed out in the last
paragraph. Attacks are interaction faults that maliciously attempt to activate one or more of those vulnerabilities
(e.g., port scans, email viruses, malicious Java applets or ActiveX controls). The event of a successful attack
activating a vulnerability is called an intrusion. This further step towards failure is normally characterized by an
erroneous state in the system which may take several forms (e.g., an unauthorized privileged account with tel-
net access, a system file with undue access permissions to the hacker). Intrusion tolerance means that these
errors can for example be unveiled by intrusion detection, and they can be recovered or masked. However, if
nothing is done to process the errors resulting from the intrusion, failure of some or several security properties
will probably occur.
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Figure 5.7: AVI composite fault model.

The composite fault model firstly describes the mechanism of intrusion precisely: without matching attacks,
a given vulnerability is harmless; without target vulnerabilities, an attacks is irrelevant. Secondly, it provides
constructive guidance to build in dependability against malicious faults, through the combined introduction of
several techniques. To begin with, we can prevent some attacks from occurring, reducing the level of threat,
as shown in Figure 5.8. Attack prevention can be performed, for example, by shadowing the password file
in UNIX, making it unavailable to unauthorized readers, or filtering access to parts of the system (e.g., if a
component is behind a firewall and cannot be accessed from the Internet, attack from there is prevented). We
can also perform attack removal, which consists of taking measures to discontinue ongoing attacks. However,
it is impossible to prevent all attacks, so reducing the level of threat should be combined with reducing the
degree of vulnerability, through vulnerability prevention, for example by using best-practices in the design
and configuration of systems, or through vulnerability removal (i.e., debugging, patching, disabling modules,
etc.) for example it is not possible to prevent the attack(s) that activate(s) a given vulnerability. The whole
of the above-mentioned techniques prefigures what we call intrusion prevention, i.e. the attempt to avoid the
occurrence of intrusion faults.
Figure 5.8 suggests, as we discussed earlier, that it is impossible or infeasible to guarantee perfect prevention.
The reasons are obvious: it may be not possible to handle all attacks, possibly because not all are known or
new ones may appear; it may not be possible to remove or prevent the introduction of new vulnerabilities. For
these intrusions still escaping the prevention process, forms of intrusion tolerance are required, as shown in the
figure, in order to prevent system failure. As will be explained later, these can assume several forms: detection
(e.g., of intruded account activity, of trojan horse activity); recovery (e.g., interception and neutralization of
intruder activity); or masking (e.g., voting between several components, including a minority of intruded ones).

Figure 5.8: Preventing security failure.
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5.2.2 Intrusion Tolerance Strategies

Not surprisingly, intrusion tolerance strategies derive from a confluence of classical fault tolerance and security
strategies [367]. Strategies are conditioned by several factors, such as: type of operation, classes of failures
(i.e., power of intruder); cost of failure (i.e., limits to the accepted risk); performance; cost; available technology.
Technically, besides a few fundamental tradeoffs that should always be made in any design, the grand strategic
options for the design of an intrusion-tolerant system develop along a few main lines that we discuss in this
section. We describe what we consider to be the main strategic lines that should be considered by the architect
of IT systems, in a list that is not exhaustive. Once a strategy is defined, design should progress along the
guidelines suggested by the several intrusion-tolerance frameworks just presented.

5.2.2.1 Fault Avoidance vs. Fault Tolerance

The first issue we consider is oriented to the system construction, whereas the remaining are related with
its operational purpose. It concerns the balance between faults avoided (prevented or removed) and faults
tolerated.
On the one hand, this is concerned with the ‘zero-vulnerabilities’ goal taken in many classical security designs.
The Trusted Computing Base paradigm [368], when postulating the existence of a computing nucleus that is
impervious to hackers, relies on that assumption. Over the years, it became evident that this was a strategy
impossible to follow in generic system design: systems are too complex for the whole design and configuration
to be mastered. On the other hand, this balance also concerns attack prevention. Reducing the level of threat
improves on the system resilience, by reducing the risk of intrusion. However, for obvious reasons, this is also
a very limited solution. As an example, the firewall paranoia of preventing attacks on intranets also leaves
many necessary doors (for outside connectivity) closed in its way.
Nevertheless, one should avoid falling in the opposite extreme of the spectrum – assume the worst about
system components and attack severity – unless the criticality of the operation justifies a ‘minimal assumptions’
attitude. This is because arbitrary failure protocols are normally costly in terms of performance and complexity.
The strategic option of using some trusted components – for example in critical parts of the system and its
operation – may yield more performant protocols. If taken under a tolerance (rather than prevention) perspec-
tive, very high levels of dependability may be achieved. But the condition is that these components be made
trustworthy (up to the trust placed on them, as we discussed earlier), that is, that their faulty behaviour is in-
deed limited to a subset of the possible faults. This is achieved by employing techniques in their construction
that lead to the prevention and/or removal of the precluded faults, be them vulnerabilities, attacks, intrusions,
or other faults (e.g. omission, timing, etc.).
The recursive (by level of abstraction) and modular (component-based) use of fault tolerance and fault preven-
tion/removal when architecting a system is thus one of the fundamental strategic trade-offs in solid but effective
IT system design. This approach was taken in previous architectural works [285], but has an overwhelming
importance in IT, given the nature of faults involved.
Attack tolerance is an extended in-depth strategy proposed to defend a system against any particular attack
using several independent methods [213]. Several proposed security solutions with a focus on detection and
attack prevention. However, preventing every single possible attack is hard to achieve. Despite the efforts,
attacks can happen and be successful. Attack tolerance is the capability of a system to continue functioning
properly with minimal degradation of performance, despite the presence of attacks. Some techniques proposed
in the literature to achieve attack tolerance follow.
Early work [11] uses indirection to separate components using an additional layer that works as a protection
barrier. For instance, proxies, wrappers, virtualization and sandboxes can play that role. Voting can resolve
differences in redundant responses, to reach consensus w.r.t. the responses of perceived non-faulty compo-
nents. The process involves comparing the redundant responses and reaching to an agreement on the results
to find the appropriate response. It masks the attacks, thus tolerating them and providing integrity of the data.
Redundancy and diversity and often combined together to ensure protection beyond breach [194, 195]. Re-
dundancy assumes the use of extra reserved resources allocated to a system that are beyond its need in
normal working conditions. If the system finds that the output values of a primary component are not correct,
then the responsibility is transferred to one of the redundant components. On the other hand, diversity means
that a function should be implemented in multiple ways, differently at different times. For example, research has
made it practical to automatically generate diverse functionality from the same source code or automatically
change the configuration of a system from time to time to confuse the adversary.
Dynamic reconfiguration takes place after the detection of an attack. In traditional systems, reconfiguration
is mostly reactive and generally performed manually by the administrator. Thus, it involves some downtime.
Survivable systems need an adaptive reconfiguration to be proactive, instead. Under the context of distributed
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trust, e.g., dividing trust into separated shares, decentralized strategies can be used to assure that the system
needs to reach a given threshold prior granting authorization measures. Below the threshold, information gets
concealed to the eyes of the adversary. When this approach is combined with recovery strategies, reaching
a threshold allows the proper modification of the system to a state that ensures the correct provision of the
required functions.
Other techniques emerging from the resilience literature include the use of self-healing and reflection, i.e., to
programmatically assist a system to adapt itself while handling adversarial attacks. For instance, programmable
reflection may enable a system to react and defend against disruptions [324]. When a malicious activity is
detected, the system dynamically changes its behavior and enables techniques that ensure the correction
of malicious events. The idea is to combine dynamic reconfiguration and recovery approaches, via control-
theoretic and programmable networking tools.
Works exist in terms of neutralizing the adversarial actions via dynamic traffic sanitization [325]. Efficient
network configuration plans can be used for neutralizing attacks. New networking functionality can be pro-
grammed using a minimal interface that can be used to compose high-level services. This idea was proposed
as a way to facilitate the network evolution. Some solutions such as Open Signaling [79], Active Networking
[354], and Netconf [146], among others, are early programmable networking efforts and precursors to cur-
rent technologies such as SDN (Software Defined Networking) [212]. In particular, SDN is a programmable
networking paradigm in which the forwarding hardware is decoupled from control decisions. The SDN model
proposes three different functionality planes: data, control and management.
The data plane corresponds to the networking devices that are responsible for forwarding the packets. The
control plane represents the protocols used to manage the data plane, such as, to populate the routing tables
of the network devices. Finally, the management plane includes the high-level services and tools used to
remotely monitor and configure the control functionality. A given security aspect may be related to different
planes. For example, let us consider a network policy. It is defined in the management plane. The control
plane enforces the policy while the data plane is instructed by the policy. The idea of using programmable
networks for improving the security is not new. Some examples include its use for conducting a denial-of-
service attack mitigation [317] and segmentation of malicious traffic [172, 282, 311]. Programmable networks
provide a higher global visibility of the system, which favors attack detection. In addition, a centralized control
plane may allow further possibilities to achieve dynamic reconfiguration of network properties, e.g., for the
application of countermeasures.
Using the aforementioned ideas, reflection can be seen as a flexible way of equipping a system with the
ability of examining and modifying its own behavior at runtime. Authors in [108, 199] proposed to implement
programmable networks using reflective middleware platforms. They use reflection in order to configure and
adapt at runtime nonfunctional properties such as timeliness and resourcing. To achieve this, the architecture is
based in different components that may be loaded and unloaded dynamically in order to change the behavior
of the platform and structure the programmable network. As a mitigation technique, reflection has also the
potential to allow a system to react and defend itself against threats. When a malicious activity is recognized,
the system can dynamically change the implementation to activate mitigation techniques to guarantee that the
system will continue to work [324, 325].

5.3 Final remarks

Awareness of the imminent danger of targeted and persistent attacks by highly skilled and well-equipped
adversarial teams, is increasing in modern societies. Yet, the body of techniques currently used in industry
practice seems to lag behind in resisting those threats, as the many public accounts of breaches, black-outs,
and reliability and integrity failures of important infrastructures show. Advances in building systems resilience
will allow reaching a higher level of maturity in cybersecurity, and the possibility of making further steps in
achieving security-by-design, in areas where: threats, uncertainty, real-time, etc.; require stronger, dynamic
and automated paradigms for systems. Due to the objectives of Task 6.4, “resilience-by-design of intelligent
infrastructures (II)”, this Chapter presented an overview of the main concepts and design principles relevant
to Intrusion Tolerant (IT) architectures. In our opinion, Intrusion Tolerance as a body of knowledge is, and will
continue to be for a while, the main catalyst of the evolution of the area of dependability. The challenges put by
looking at faults under the perspective of “malicious intelligence” have brought to the agenda hard issues such
as uncertainty, adaptivity, incomplete knowledge, interference, and so forth. We believe that fault tolerance will
witness an extraordinary evolution, which will have applicability in all fields and not only security-related ones.
Following the Task 6.4 roadmap, we aim to validate the proposed fault intrusion tolerance schemes as a next
plan in future.
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Chapter 6 Privacy-by-Design

This chapter focuses on current privacy threats and privacy challenges for Intelligent Infrastructures (II). Intel-
ligent and connected devices expand the opportunities to collect personal and vital data, both in volume and
precision. Therefore, privacy challenges should be addressed at design level (notion of “privacy by design”),
for instance with data minimization principles and data usage control, so privacy risks are mitigated as much as
possible. There are several Privacy-Enhancing Technologies (PETs) that use modern cryptographic schemes,
such as the attribute-based credentials and groups signatures, and that can contribute in privacy-preserving
design concepts. Nevertheless, only few PETs are suitable and ready for constrained devices deployed in
various IoT scenarious. This chapter contains 4 sections. Section 6.1 presents current security and privacy
threats in Intelligent Infrastructures and IoT. Section 6.2 deals with management and regulations from a data
privacy point of view. Section 6.3 briefly introduces the readiness analysis for the adoption and evaluation of
privacy-enhancing technologies for intelligent infrastructure. Suitable privacy evaluation techniques are then
presented in Section 6.4.

6.1 Analysis of Privacy Threats and Attacks: Technical Attacks, Privacy-Based
Leakages, and Social Aspects

6.1.1 Introduction

Internet of Things (IoT) encompasses systems responsible for the collection, storage, transmission and
manipulation of data involving individual participants and devices, mobile devices and infrastructure [280].
There exist a number of surveys related to the IoT privacy and security risks and threats [5, 9], frameworks
[17, 390] or specific components [29, 175, 225].

The rest of this section is structured as follows: In Subsection 6.1.2 three architectural layers of the IoT systems
are introduced. Then Subsection 6.1.3 overviews different privacy threats and leakages. Subsection 6.1.4
includes the concluding summary.

6.1.2 Asset Description

The IoT system components include (i) systems that collect data (ii) systems that transmit collected data
and (iii) systems that provide the data to end-users following a predefined process [280]. The intelligent
infrastructure is a type of IoT system as it encompasses cooperative interactions of a variety of things or
objects, to reach a common goal [25]. The IoT system consists of three architectural layers [226, 391, 393,
402, 409, 410]:

• Perception: The perception layer consists of hardware and software components (sensors, actuators,
visioning, and positioning devices), carrying out basic functions of collection, controlling and storage of
data.

• Network: The network layer facilitates wireless or wired transmission (in-vehicle, vehicle to vehicle, and
vehicle to infrastructure) of collected data from perception components.

• Application: In the application layer, the network layer meets the end-user, application processes, com-
puting, and storage, allowing high-level intelligent processing of the generated and transmitted data.

6.1.3 Privacy Threats and Leakages

6.1.3.1 Technical Threats

A risk is defined as an event where the vulnerability of a system asset is exploited by an attacker (threat)
leading to the impact – a negation of the criteria of the business asset in a system. Table 6.1 summarizes
the threats at the different architecture layers. The threats are categorized following the STRIDE threat model
based on the first impact experienced [7].

Perception layer threats attack the sensing, vision, positioning and actuating components. Following [7] Table
6.1 includes 24 threats. Network layer threats affect the system assets’ ability to transmit the necessary
data for an IoT function. Data in is typically transmitted through local/ internal network, device-to-device,
and device-to-infrastructure communication technologies. To illustrate the network layer threats, Table 6.1

SPARTA D6.1 Public Page 70 of 112



D6.1- Security-by-Design Framework for the Intelligent Infrastructure

assembles 47 threats [7]. Application layer threats involve attacks to disrupt or corrupt high level IoT processes
and services. To illustrate them, Table 6.1 includes 12 threats.

Table 6.1: Summary of technical threats
System Asset Threats

S T R I D E
Perception layer Spoofing, Node

Impersonation,
Illusion, Replay,
Sending decep-
tive messages,
Masquerading

Forgery, Data ma-
nipulation, Tamper-
ing, Falsification of
readings, Message
Injection

Bogus mes-
sage

Stored attacks,
Eavesdropping

Message satu-
ration, Jamming,
DoS, Disruption
of system

Backdoor, Unau-
thorized access,
Malware, Eleva-
tion of privilege,
Remote update of
ECU

Network layer Sybil, Spoofing
(GPS), Replay
attack, Mas-
querading, RF
Fingerprint-
ing, Wormhole,
Camouflage
attack, Imper-
sonation attack,
Illusion attack,
Key/Certificate
Replication, Tun-
neling, Position
Faking

Timing attacks,
Injection (message,
command, code,
packet), Manipu-
lation/Alteration/
Fabrication/Mod-
ification, Routing
modification/ma-
nipulation, Tam-
pering(broadcast,
message transac-
tion, hardware),
Forgery, Malicious
update (software/-
firmware)

Bogus mes-
sages,
Rogue Re-
pudiation),
Loss of event
trace-ability

Eavesdropping,
Man-in-the-
middle, ID
disclosure, Lo-
cation tracking,
Data sniffing,
Message inter-
ception, Informa-
tion disclosure,
Traffic analy-
sis, Information
gathering, TPMS
tracking, Secrecy
attacks

DoS/DDoS,
Spam, Jamming,
Flooding, Mes-
sage suppres-
sion, Channel
interference,
Black hole.

Malware, Brute
Force, Gaining
control, Social en-
gineering, Logical
attacks, Unau-
thorized access,
Session Hijack

Application layer Spoofing, Sybil,
Illusion attack

Malicious Update Eavesdropping
, Location track-
ing, Privacy
leakage

DoS Jail-breaking
OS, Social engi-
neering, Rogue
Data-center, Mal-
ware

6.1.3.2 Threats to Private Data Publishing

Typically private data are published in the following form [271]: Explicit identifier, Quasi identifier, Sensi-
tive attributes, Non-sensitive attributes). Here Explicit identifier are attributes that directly identify the person;
Quasi identifier (QID) are attributes whose combination could possibly identify. Sensitive attributes are
sensitive attributes that are specific to the person. Non-sensitive attributes are all other attributes that do not
fit into previous categories [157]. Private data publishing could suffer from few threats.

Privacy-preserving data leakages are record linkage, attribute linkage and table linkage [271]. During record
linkage an attacker tries to map one or more records released dataset to victim. To do this, attacker will
matches victims’ QID from released data. This could lead to exposure of owner’s sensitive data [157]. During
attribute linkage the attacker who already knows QID of his target, can infer sensitive attribute of target based
on sensitive attributes in target’s QID group. The main goal of countermeasure methods is, then, to reduce
the correlation between QID and sensitive attribute [157].

Record linkage and attribute linkage attacks are based on assumption that attacker already knows victim’s
record. But, sometimes it is enough for the attacker to know whether or not victim is released table. This
happens when the sensitive attributes are too specific. In this case (i.e., table linkage) just knowing that the
victim is present in the table can be already damaging [157].

6.1.3.3 Privacy Leakages Due to Poor Design

Access control is the process of mediating every request to data and services maintained by a system and
determining whether the request should be granted or denied. Access control is a necessary condition to build
privacy into IoT solutions and to demonstrate compliance with the General Data Protection Regulation (GDPR).

Consent unawareness. The content unawareness privacy threat indicates that a user is unaware of the
information disclosed to the system. Thus, the user could either provide too much information allowing a mali-
cious agent to retrieve the user’s identity or, on the contrary, inaccurate information, which can lead to wrong
decisions or behaviors. The proper design and enforcement of access control policies is a necessary condition.

Policy and consent non compliance. Policy and consent non compliance is a relevant privacy threat [126].
A policy specifies one or more rules, determined by stakeholder, with respect to data protection. Consents
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specify one or more data protection rules, determined by the user and only relate to the data regarding this
specific user. Policy and consent non compliance means that even though the system shows its privacy
policies to its users, there is no guarantee that the system actually complies to the advertised policies.
Therefore, the user’s personal data might still be revealed.

Information disclosure due to wrong design and/or implementation of access control. The information
disclosure threats expose personal information to individuals who are not supposed to have access to it [126].
This can happen in case the access control mechanisms in place are wrong. The modern approaches de-
compose access control in three main components: policy language, model, and enforcement [371]. However,
writing and maintaining policies is an error-prone activity because of the possibility of inserting redundancies,
conflicts, and other logical problems.

6.1.3.4 Social Aspects

In this subsection, we give an overview of possible data leakage threats regarding social bots, web search
personalization and personalized ads.

Social bots and data leakage. Deception in Online Social Networks (OSNs) can take many different forms,
such as spammers, bots, cyborgs, compromised accounts, sybils, and fake followers [232]. Spammers are
those accounts that advertise unsolicited and often harmful content [339]. Bots are computer programs
that control social accounts, as stealthy as to mimic real users [64]. Cyborgs interweave both manual and
automated behavior [103]. These accounts are controlled by their rightful owners. Compromised accounts
(are similar to cyborgs) are accounts that have been taken over my malicious users [408]. Sybils are multiple
fake identities, created by a malicious user in order to unfairly increase their power [392]. Fake followers, are
massively created accounts that can be bought from online markets to follow a target account and apparently
inflate its popularity [113, 340]. Each of these categories has been the matter of several investigations, all
sharing the ultimate goal of developing techniques for automatically detecting (and consequently removing)
the different kinds of deceptive accounts.

Web search personalisation. E-commerce websites let users search for products by simply issuing a
keyword search. Then, a number of filters can be activated to constraint the search results. The filters allow
to narrow the results wrt user characteristics (e.g., location, profiles, and personalized items). The dark
side of personalization relies however in the fact that filters can be activated, or changed, without the user’s
awareness and consent. In this case, the search engine acts in a not transparent way [283]. Consequences of
lack of transparency are, e.g., to hide potentially interesting products [275], give relevance to some news with
respect to others [110], expose different prices for the same product, depending, e.g., on the characteristics of
the user making the search [253], and even reveal users’ private information [106].

Online Advertising. With the online adverting it became possibility to target the specific interests of the user,
other than on the content of the website hosting the advertisement. The literature highlights several privacy
threats [84]. In [85], Castelluccia et al. show how to reconstruct user profiles from targeted ads displayed on
the users’ browser. For instance, from profile-based ads they infer users’ interests. In [211], Korolova considers
privacy violations in Facebook through microtargeted ads. Similarly, in [74, 83], Cascavilla et al. show several
techniques to retrieve supposedly hidden information from Facebook user profile, while they do not rely on
advertisements.
Targeted ads are connected with users’ behavior. In [250], the authors show that publishers can alter the
user’s profile, in order to make them the target of the most remunerative ads. In [41], Bechmann highlights
how profiling is related to privacy violations through a media economics and management perspective. In [142]
authors analyse how the popular brand traces users’ navigation behavior through its e-commerce website, it
collects data about users and it sends them to third party websites that provide ads, without the user’s explicit
consent. Work in [106] showed how to maliciously exploit the Google Targeted Advertising system to infer
personal information in Google user profiles.

6.1.4 Concluding Summary

We overview the technical privacy threats, threats to private data publishing, privacy-based leakages, and
social aspects. Based on the systematic review [7], we classify technical threats to the STRIDE categories at
three asset layers. We discuss threats to private data publishing and present the privacy leakages due to the
poor design through the access control and GDPR perspectives. Social aspects are considered taking into

SPARTA D6.1 Public Page 72 of 112



D6.1- Security-by-Design Framework for the Intelligent Infrastructure

account social bots, Web-search personalization, and overview of the online advertising threats.

6.2 Privacy-Preserving Management and Regulations

The purpose of this section is to elaborate a general presentation of the General Data Protection Regulation
(“GDPR”) and its implications for the specific issue of IoT. We will successively develop the scope of the
regulation and its key definitions, its general principles for ensuring the legal processing of personal data, the
security requirements and the sharing of responsibility in the event of infringement of the GDPR.

6.2.1 Challenges

There are several challenges that IoT poses to the protection and preservation of personal data. Firstly, the
data processing may be invisible to the data subjects. Indeed, they may not be really aware of the data used,
the various processing and the potential consequences. Secondly, the IoT is also characterized by a multitude
of actors and stakeholders in the development process that has an impact on increasing number of processing
of personal data and the exchange of information. In addition, another important challenge is the fact that
we are facing with a miniaturization of these connected objects. They are smaller and smaller and easily
transportable which light lead to geo-tracking and profiling activities.

6.2.2 Privacy-Preserving Management: a GDPR Perspective

6.2.2.1 Personal Data Management

In order to have an efficient management of personal data, two concepts are fundamental. First, the privacy by
design obligation requires the data controller to adopt internal policies and implement measures that comply,
from the design of the tool or service, with the regulation on the protection of personal data. These principles
include notably:
• the obligation to define, before any processing operation, an objective/a purpose,
• to then determine the data strictly necessary to achieve this objective,
• to set the storage period for personal data,
• to put in place an appropriate level of security of the personal data.

The purpose limitation is also crucial for a data controller active in IoT application and services. On this
purpose, the Article 29 Working Party states that “The increase of the amount of data generated by the IoT
in combination with modern techniques related to data analysis and cross-matching may lend this data to
secondary uses, whether related or not to the purpose assigned to the original processing. Third parties
requesting access to data collected by other parties may thus want to make use of this data for totally different
purposes”1. IoT stakeholders must therefore be vigilant concerning the compatibility test for raw data, extracted
data or displayed data2.
Particularly in the context of IoT, the period of conservation could be different according to the various stake-
holders (e.g. creator of the algorithm, creator of the sensors, vehicle manufacturers). Indeed, the Article 29
Working Party indicated that “This necessity test must be carried out by each and every stakeholder in the
provision of a specific service on the IoT, as the purposes of their respective processing can in fact be dif-
ferent. For instance, personal data communicated by a user when he subscribes to a specific service on the
IoT should be deleted as soon as the user puts an end to his subscription. Similarly, information deleted by
the user in his account should not be retained. When a user does not use the service or application for a
defined period of time, the user profile should be set as inactive. After another period of time the data should
be deleted”3.
The principle of transparency is crucial in the IoT context. Indeed, the Article 29 Working Party highlights the
lack of control for the users and information asymmetry4. For example, in the case of connected vehicles, it
is particularly important to inform the person of the possibilities of geolocation and when the data subject is
geolocated or not, the operations to be carried out to stop the geolocation, etc. Indeed, as explained by the
Article 29 Working Party, the “personal data should never be collected and processed without the individual

1Art. 29 Working Party, Opinion 8/2014 on the on Recent Developments on the Internet of Things, 16.09.2014, WP 223, p.7.
2Art. 29 Working Party, Opinion 8/2014 on the on Recent Developments on the Internet of Things, 16.09.2014, WP 223, p.8.
3Art. 29 Working Party, Opinion 8/2014 on the on Recent Developments on the Internet of Things, 16.09.2014, WP 223p. 17.
4Art. 29 Working Party, Opinion 8/2014 on the on Recent Developments on the Internet of Things, 16.09.2014, WP 223, p.6.
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being actually aware of it. This requirement is all the more important in relation to the IoT as sensors are
actually designed to be non-obtrusive, i.e. as invisible as possible”5.

6.2.2.2 Security Policy

The second fundamental concept is part of the security policy. Indeed, the General Data Protection Regulation
adopts a risk-based approach. The Article 29 Working Party insists on the fact that the risk-based approach
is not a basis for the diminution of the effectivity of the right to privacy and the protection of personal data but
must be understood as a scalable and proportionate manner to be compliant with the regulation6. Indeed, the
Article 29 Working Party highlights that “the scalability of legal obligations based on risk addresses compliance
mechanisms. This means that a data controller whose processing is relatively low risk may not to do as much
to comply with its legal obligations as a data controller whose processing is high-risk”7. It adds that “There
can be different levels of accountability obligations depending on the risk posed by the processing in question.
However controllers should always be accountable for compliance with data protection obligations including
demonstrating compliance regarding any data processing whatever the nature, scope, context, purposes of
the processing and the risks for data subjects are”.
Thus, by considering the nature of the personal data, the volume of the personal and the processing operations,
the data controller must evaluate the risks, the probability that these risks will occur and the seriousness of the
risks for people8. This does not include solely risks to privacy and the protection of personal data but also to
freedom of speech, freedom of thought, freedom of movement, discrimination, etc. [124].
In order to examine the probability of a risk occurring, ENISA has put in place a methodology based on the
network and technical resources, the processes and procedures of the processing of personal data, people
and parties involved in the processing of personal data and business sector and scale of processing9.
Traditionally, the security of personal data means the respect of the integrity and confidentiality of informa-
tion. The data controller has to prevent unauthorised access and unauthorised use. Furthermore, the integrity
requirement imposes to ensure that the personal data has not been altered before, during and after the pro-
cessing.
In addition to these two obligations, there is the availability of personal data and the authenticity requirements.
The notion of availability refers to the possibility of the information, the systems and the processes to be
accessible and usable on demand by an authorised natural personal or an entity. The Article 29 Working Party
includes in this notion the destruction of the personal data, the accidental or unlawful loss of personal data and
the accidental or unlawful loss of access to the personal data10.
In addition to preventive measures, it is necessary to provide for control measures as well. This is the authen-
ticity requirement. The data controller must therefore keep, for a certain period of time, the information on who
had access to which personal data11.

6.2.2.3 The Data Protection Impact Assessment (DPIA)

Article 35 of the GDPR provides for a new obligation attributed to the data controller. Firstly, the data controller
has to verify if the nature, the volume and the processing of personal data may entail a high risk for the
protection of the rights and freedoms of the data subject. Secondly, if there is a high risk, an impact assessment
needs to be achieved.
This assessment must include the measures, safeguards and mechanisms envisaged for mitigating the risk,
ensuring the protection of personal data and demonstrating compliance with the GDPR12. The Article 29 Work-
ing Group recommends that all relevant parties be involved in carrying out the impact assessment. The con-
troller shall require help from any person who is competent to assess the risk, such as the data protection
officer or security advisor. The risk assessment (with or without an impact analysis) and the impact assess-
ment carried out should be submitted to the highest person in the hierarchy13.

5Art. 29 Working Party, Opinion 8/2014 on the on Recent Developments on the Internet of Things, 16.09.2014, WP 223, p. 16.
6Art. 29 Working Party, Statement on the role of a risk-based approach in data protection legal frameworks, 30.05.2014, WP 218
7Art. 29 Working Party, Statement on the role of a risk-based approach in data protection legal frameworks, 30.05.2014, WP 218
8Art. 32 of the GDPR
9ENISA,”Handbook on Security of Personal Data Processing”, December 2017. Available at:

https://www.enisa.europa.eu/publications/handbook-on-security-of-personal-data-processing.
10Art. 29 Working Party, Guidelines on Personal data breach notification under Regulation 2016/679, WP 250.
11E.C.H.R., I v. Finlande, 17 July 2008, n. 20511/3 ; C.J., College van burgemeester en wethouders van Rotterdam v. M E.E. Rijkeboer, C-

553/07 ; F. DUMORTIER, ”La sécurité des traitements de données, les analyses d’impact et les violations de données”, in Le règlement
général sur la protection des données (RGPD/GDPR) – Analyse approfondie, C. DE TERWANGNE et K. ROSIER (coord.), Brussels,
Larcier

12Article 35.7 of the GDPR.
13Art. 29 Working Party, Guidelines on Data Protection Impact Assessment (DPIA) and determining whether processing is “likely to result
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6.2.3 Privacy by Design

GDPR model. A representation of the GDPR model using the UML class diagram notations can be found in
[356], [201]. This model introduces the major principles for the personal data processing. Personal data [149]
(Art. 4(1)) is represented with the class PersonalData. Data processing [149] (Art. 4(2)) is captured with the
DataProcessing class, which also covers the cross-border processing [149] (Art. 4(23)) of personal data.

Controllers can also be Processors. The LegalGround presents that data processing must have a legal
ground (whether consent or other). Consent is seen as a separate class that manifests one legal ground.
The LegalGround, in turn, guides DataProcessing by setting the limits to the processing of personal data.
Classes LegalGroundDataTransfer, LegalGroundSpecialCategory, and DataProtectionImpactAssessment
represent regulation Art. 45-59, 9(2) and 35-36 respectively. The model also includes an obligation to issue
the notification in case of a data breach (see, DataBreachNotification). The ProcessingLog artefact is created
to meet [149] Art. 30, which requires maintenance of records of the processing activities.

Technical measures [149] (Art. 32(1)) are represented with the TechnicalMeasures class. The Organisa-
tionalMeasures class describes how Controller should apply the organisational measures to Data processing.
The model also describes the data processing principles and the principle of accountability (e.g., Controller
isAccountable to PrinciplesOfProcessing) as described in [149] Art. 5. The detailed description of the GDPR
model including the graphical representation, description of the data subject rights and overview of the special
processing cases can be seen in [356] [201].

A Method for Achieving Compliance (see Fig. 6.1) consists of four steps:

• Extract as-is compliance model: First, one needs to check the current level of process compliance.
This includes analysis of the business process and extraction of the GDPR model instance of the current
state (see, Extract AS-IS compliance model). Hence the input is the business process model (expressed
in business process model and notation together with GDPR model which serves as the means to extract
the information.

• Compare two meta-models: Once the AS-IS model is constructed, it can be compared to the defined
GDPR model.

• Define compliance issues: The result of the third step is a list of the non-compliance issues. This
step gives a binary answer to the question whether the extracted compliance model is GDPR-compliant
or not and give a detailed descriptions of business process non-compliances. Depending on the non-
compliances, one makes a decision whether the model needs changes or not.

• Change business process model: In case of non-compliance, in the fourth step one changes the busi-
ness process model so that the non-compliance in removed from the model. The compliance checking,
then, continues with the first step taking the updated business process model as the input.

The GDPR model and the compliance checking method was already applied in several illustrative examples.
For instance in [245] the feasibility is studied using the tollgate scenario. Elsewhere in [87], the GDPR model
is used to support modelling of the goal-actor-rule perspective. The study shows how modelling language
could be extended to capture infringement and to solve it using embodiment, finding irregularities, compliance
checking and irregularity resolution activities. In [4] the GDPR model is applied in an airline contact centre
processes. The results of both cases ([87] and [4]) was introduced to the domain experts who found the
application of the GDPR model intuitive and helpful to achieve business process compliance.
In [143] the manual application of the method to achieve regulation compliance is compared to the tool-
supported analysis. The results indicate a high correspondence between the number of found non-compliance
issues. In addition the tool-supported application is able to highlight non-compliance issues (e.g., application
of the technical measures), which were omitted from manual analysis.

in a high risk” for the purposes of Regulation 2016/679, 04.10.2017, WP 248, p. 15.
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Figure 6.1: Method for achieving regulation compliance, adapted from [143] [201].

6.3 Privacy-Enhancing Technologies: Readiness Analysis for the Adoption and
Evaluation of Privacy-Enhancing Technologies for Intelligent Infrastructures

This section categorizes privacy protection technologies and solutions based on the information, documents
and reports from well-established institutions and expert networks such as the European Union Agency for Net-
work and Information Security (ENISA) (the report: Privacy and data protection by design-from policy to engi-
neering [118]), National Institute of Standards and Technology (NIST) (the report: An introduction to privacy en-
gineering and risk management in federal systems [71]) and the Internet Privacy Engineering Network (IPEN)
initiative (https://ipen.trialog.com/wiki/Wiki_for_Privacy_Standards). ENISA has been ac-
tive in PETs for many years by collaborating closely with privacy experts from academia and industry. The
categorization of PETs is based mainly on ENISA publications. ENISA defines PETs as the broader range of
technologies that are designed for supporting privacy and data protection. These technologies and solutions
are based on the principles of data protection, data minimization, anonymization, and pseudonymization. The
ENISA report [118] provides a fundamental inventory of the existing approaches and privacy design strategies
and the technical building blocks of various degree of maturity from research and development.
Further, ENISA released the report [294] that maps privacy-focused standards including concrete technical
standards based on cryptographic techniques such as: ISO/IEC 18033 Encryption algorithms; ISO/IEC 18370
Blind digital signatures; ISO/IEC 20008 Anonymous digital signatures; ISO/IEC 20009 Anonymous entity au-
thentication; and other standards.
PETs have been also studied in many research papers and surveys, e.g. [150, 164, 178, 330, 374, 378].
These documents present various insights and taxonomies of privacy protection techniques, privacy scenarios
and privacy features.
In this section, we define and present a list of technical-based privacy-enhancing technologies that can be
used in current ICT systems to protect data and user privacy within various scenarios such as computation,
communication, user/data authentication, data encryption and data processing. The list is based on the most
important national and international standards for data privacy and cybersecurity in the world as ENISA, NIST,
IPEN etc. Table 6.2 presents privacy-enhancing categories and names of the privacy-enhancing technologies.
The following subsections introduce a short version of our comprehensive analysis. The full version of our
analysis will be published as an open access publication. To be noted that the following list of PETs does not
contain all kind of privacy-preserving technologies and schemes.

6.3.1 Privacy-Enhancing Digital Signatures

Group Signature (GS) is a digital signature providing group-based authentication to achieve the privacy of
signers against verifiers. GS schemes allow any group member (a user) to anonymously sign a message on
behalf of the group. In two past decades, extensive research focused on group signature schemes has been
done (> 5k papers in Scopus). There are many variants of GS schemes providing various features. In general,
GS can be used as basic layer/cryptographic primitive in privacy-preserving ICT services, mainly for proving
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Table 6.2: Categories of privacy-enhancing (PE) technologies.
Privacy-Enhancing (PE) category Technology name

Group signatures
Ring signaturesPE digital signatures
Blind signatures
Attribute-Based credentialsPE user authentication Anonymous and pseudonymous entity authentication
Mix-networks and proxies
Onion routingPE communication systems
Privacy preserving techniques for wireless access network
Attribute-Based encryption
Homomorphic encryptionPE encryption technologies
Searchable encryption
Secure multi-party computationsPE computations and data storing Data splitting
Statistical disclosure controlGeneral anonymization technologies Differential privacy algorithms

membership in a group and/or within signing a data behalf of the group. Moreover, several group signature
schemes are included in the standard ISO/IEC 20008-2:2013 [152] and several public libraries including GS
schemes are released in public repositories. Several papers focusing on group signatures in IoT have been
recently published, e.g. [148], [383], [147]. Nevertheless, there is still ongoing work on the design of efficient
group signatures with immediate revocation features appropriated for constrained devices and on the design
of new GS schemes based on quantum-resistant assumptions. Ring Signature (RS) is a digital signature
providing the privacy of signers. RS schemes are similar to GS schemes and some studies call them as ad-
hoc group signatures. Nevertheless, RS schemes remove the centralization point of a group manager and RS
do not need centralized initial setup (i.e. a join phase between a user and a manager). Users easily adhere
to ring signatures by using prescribed cryptographic parameters and create non-closed groups. RS schemes
usually provide a perfect privacy (untracebility) because there is no authority that can revoke the anonymity of
signers. Ring signature schemes have been studied since 2001 (> 0.6k papers in Scopus). There are several
variants of RS schemes providing various features. In general, RS can be used as basic layer/cryptographic
primitive in ICT services with strong privacy-preserving requirements, e.g. e-voting and e-cash. Nowadays,
ring signatures are employed in several cryptocurrencies and altcoins such as Monero, CryptoNote, Token-
Pay, etc. Nevertheless, ring signatures produce sized signatures by adding multiple public keys and require
several expensive asymmetric cryptographic operations depending on the ring size. Therefore, RS schemes
are more appropriate for desktop applications and webservices that run on non-constrained nodes. Several
papers focusing on the implementation of ring signatures in IoT have been recently published, e.g. [125], [362],
[139]. Nevertheless, there is still ongoing work on the design of efficient and logarithmic-sized ring signatures
appropriated for constrained devices and on the design of new RS schemes based on quantum-resistant as-
sumptions. Blind Signatures (BS) are a form of digital signatures which hide (blind) the content of a message
to signers. However, resulting the blind signature can be publicly verifiable against the original (unblinded)
message in the manner of a standard digital signature. Generally, we can consider blind signatures mature
and ready to be used in digital systems. Many BS, e.g. [77], [337], are based on standard signature schemes
which are widely applied in many security systems. These standard digital signatures have hardware support
also on many constrained IoT devices such as smart cards. BS are mostly used in payment systems such
as PayCash. Officially there is no standard which deals with BS, however, BS are based on standard digital
signatures, hence we can consider their standardizations. The main goal of the current proposals is to build
efficient and post-quantum resistant schemes, e.g. [411], [55].

6.3.2 Privacy-Enhancing User Authentication

Attribute-Based Credential (ABC), sometimes called anonymous credential or private certificate, is a core
technology used in privacy-friendly authentication systems. The authentication is based on personal charac-
teristics instead of user identity (i.e. full name, unique identifier, digital certificate X.509), which is widely used
in current systems. In ABC context, the digital identity is considered to be a set of characteristics (personal
attributes) that describe certain person. The attributes are grouped into credentials (cryptographic containers)
and can be shown selectively, anonymously and without anyone’s ability to trace or link the showing transac-
tions. Many research articles focused on ABC technology were published in last years. We can consider this
technology mature and ready to use in current ICT systems. In fact, there is already a running IRMA (I Reveal
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My Attributes) pilot project with the IRMA card and mobile application product for privacy-friendly authentica-
tion. Furthermore, current ABC schemes are enough efficient to run even on constrained devices in IoT. For
example, the article [76] presents anonymous scheme that runs show protocol less than 500 ms (in case of
3 stored attributes) on current smart cards. The necessity of this technology in authentication/identification sys-
tems have been also demanded by U.S. and E.U. institutions. The main drawback of the technology remains
the revocation, however this issue have been solved in last years, for example in the paper [75]. Nevertheless,
there is still ongoing work on the design of new ABC schemes. Other directions in future research are to
provide ABC decentralized system in order to increase privacy and security and/or to transform ABC schemes
to quantum resistant forms. Anonymous Authentication (AA) preserves user privacy. In an AA system, a
user can get an access to the service without disclosing his/her identifier. This method prevents the verifier
to track and profile them. However, the verifier can still reliably determine whenever the user is authentic or
not. The authenticated user only provides a proof of knowledge of the secret for some chosen claims, e.g. a
user belongs to the group with specific privileges. The most of the current AA schemes are formed by group
signatures (ISO/IEC 20009-2 [153]), blind signatures (ISO/IEC 20009-3 [151]) or identity escrow schemes, see
[205] for more details. AA can be applied in a range of applications and use cases including electronic voting,
electronic identities, social networks or mobile payments.

6.3.3 Privacy-Enhancing Communication Systems

Mix networks (Mixnets) represent a basic privacy technology that is used for privacy-preserving communi-
cation via public networks such as Internet. Mixnets enable users to create an anonymous communication
network that is protected against traffic analysis. Mixnets (introduced in 1981) have been actively studied since
2000 (> 1.6k papers in Scopus). There are several variants and strategies of Mixnets protocols. In general,
Mixnets provide anonymous communication which could be used as basic primitive for many use cases, e.g.
anonymous email services, web browsing, message exchange and e-voting. Nowadays, Mixnets are offered
to users via several open source tools and web projects. Mixnets technology has been studied primary for
classic networks, nevertheless, there are few papers focusing on the implementation of Mixnets solutions on
constrained devices (and IoT), e.g., [89], [318]. Onion routing is an anonymous communication technique
used in computer networks. Onion networks employ an onion encryption approach. A sender with each onion
router establishes a single encryption layer. The encrypted data are transmitted via a series of network nodes
called onion routers. The data are encapsulated in several layers of encryption, analogous to onion layers. The
most mature project is Tor (The onion router). Tor [128] is based on a circuit-based low-latency anonymous
communication service and onion routing. Works such as [179, 298] deal with the deployment of DTLS in
onion routing and its efficiency. The paper [179] employs Datagram Transport Layer Security (DTLS) in order
to tailor onion routing to IoT and presents the practical evaluation of the tailored solution in IoT.
In wireless access networks the traffic carried over the wireless link is in general encrypted (e.g., by WPA in
IEEE 802.11 Wi-Fi networks). However, the headers and the content of management frames are not protected
and are thus available to snoopers. The exposure of this information poses serious privacy threats that are
made critical by the massive adoption of portable devices and wireless networks. Historically, two types of
problems have been identified [114] [115] [168] [169]: The first one concerns the scan for nearby Wi-Fi access
points actively sending probe requests. Another aspect with 802.11 frames is the use of the device MAC
address, a globally unique identifier tied to the device. Using this identifier, it is possible to detect the presence
of people and track them in the physical world. The use of wireless access technologies, e.g. Wi-Fi, BlueTooth,
or BLE, in mobile equipments including IoT connected devices, raises privacy concerns. Informed of such
problems, the manufacturers and the standards developing organizations have improved the practices (e.g.,
by banishing SSID disclosure in Wi-Fi access point active search mechanisms) and have designed privacy
extensions for wireless access technologies, in particular the use of randomized MAC addresses during
several modes of operation. However research has shown that this is not sufficient to fully prevent privacy risks
(e.g., re-identifying an equipment that uses MAC address randomization is often possible). The feasibility of
tracking wireless access network devices in the wild has been identified by several research works, namely
[168] [169] [114] [115].

6.3.4 Privacy-Enhancing Encryption Technologies

Homomorphic encryption (HE) is a special form of encryption technique providing data security. In contrast
to standard encryption methods, HE allows an evaluator (third party) to apply specific functions (computations)
on encrypted data. However, both data and result remain encrypted and inaccessible to evaluator throughout
the whole process. Especially fully homomorphic encryption (FHE) technology has become more interesting
research area in the last decade. This increase is caused mostly by the growing of cloud services and out-
sourced computations. Currently. there are around 1k papers dealing with FHE technology and around 3k pa-
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pers focused on HE technology. There are several proposed FHE schemes targeting shortcomings of existing
solutions. HE can be used wherever the computations on encrypted data are required. Nowadays, there is no
official standardization of this technology. The pioneer standardization document is the document [12] created
by the consortium of international industries, government and academia sectors. Furthermore, several public
FHE libraries are released in public repositories. Searchable Encryption (SE) is a cryptographic technique
which enables performing search operations using some keywords over encrypted data without disclosing any
useful information about the actual content of the encrypted data and the searched keywords [174]. Using
SE, any user, having proper credentials, can delegate the search capabilities to the cloud service provider
without disclosing any useful information. SE has already become a promising privacy-preserving technology.
From the last two decades, many schemes have been proposed to address various security issues and to
provide different functionalities. In SE, it is very important to find and retrieve the requested data as quickly
as possible. It is still remained as a challenge to design a computationally inexpensive SE mechanism. It
has been observed that there is still much work to do for improving its efficiency while keeping strong security
to adopt SE widely in IoT based applications. Attribute-Based Encryption (ABE) is a one-to-many public
encryption mechanism, i.e., the same data can be shared with several users. ABE is categorized into two
groups, namely, Key-Policy ABE (KP-ABE) [166] and Ciphertext-Policy ABE (CP-ABE) [49]. ABE has already
emerged as a promising cryptographic technology. It has been used in a wide variety of environments such as
cloud computing [242, 385, 389], mobile cloud computing [198, 239, 273, 394] and so on. However, ABE has
several practical challenges that are hindering its wide adaptation in practical applications. First, revocation is a
challenge in ABE systems. Each user may share the same set of attribute types. As such, revocation of a user
may affect other non-revoked users who share their attributes with the revoked user. Second, ABE systems
need costly cryptographic operations, e.g., pairing, elliptic curve multiplication and exponentiation operations
to perform encryption and decryption. As such, ABE may not be suitable for the environments where devices
have fewer resources in terms of computing and storage power unless computationally expensive operations
are outsourced. Third, ABE systems suffer from the key-escrow problem, as the AA knows all the master
secrets. Hence, they can decrypt any ciphertexts of their choice.

6.3.5 Privacy-Enhancing Computations and Data Storing

Secure Multi-party Computation (SMC) is a cryptographic problem in which n parties collaborate to compute
a common value with their private information without disclosing to others [136]. Secure Multi-party Computa-
tions (SMCs) have already emerged as a promising and well-established privacy-enhancing technology. This
can be observed from the available research projects and products. SMC can be suitable for various IoT/I-
IoTs use cases where privacy-preserving computation is needed, e.g., smart metering, voting, auctions, etc.
Although many works have been published for the use of SMC in practical applications [14, 19, 264], there is
still much work to do in terms of reducing computation and communication overhead for wider use of SMC.
Data splitting (DS), data partitioning or fragmentation means dividing an original sensitive data set into frag-
ments and storing each fragment in a different site, in such a way that the fragment in any site considered in
isolation is no longer sensitive. Data splitting is used mainly in privacy-friendly cloud computation services for
outsourcing user sensitive data as alternative to fully homomorphic encryption which is currently considered to
be computationally inefficient. Currently, there are various DS schemes using different methods and process-
ing differ type of data such as numerical (data consists only from numerical values), categorical (where data
can be represented with string values) or files, e.g., Li et al. [227], Yang et al. [388], Domingo et al. [134]. The
technology was used for example in European research project CLARUS, see http://www.clarussecure.eu/.

6.3.6 General Anonymisation Techniques

To support research and policymaking, there is an increasing demand for microdata, which is often collected
from individuals. For service providers, microdata dissemination increases returns on data collection and helps
improve data quality and credibility. But publishing the microdata poses the challenge of ensuring individuals’
confidentiality/privacy while making microdata files more accessible. In order to preserve the privacy of indi-
viduals as well as the utility of the data, Statistical Disclosure Control (SDC) methods need to be applied
before data release.
SDC methods have received a lot of attention from both academia and the organizations which need to deal
with microdata data publication. In academia, researchers have been active in examining the limitations and
improvements with respect to existing notions, e.g. [78, 132, 133]. Many new notions have been proposed, e.g.
the p-sensitive k-anonymity [78]. SDC methods are typically vulnerable when the attacker gain unexpected
background knowledge and access to auxiliary data. Differential privacy [141] is a formal mathematical
concept for guaranteeing privacy protection when analyzing or releasing statistical data. In the book of Dwork
and Roth [140], an example application is illustrated for social science research: in order to collect statistical

SPARTA D6.1 Public Page 79 of 112

http://www.clarussecure.eu/


D6.1- Security-by-Design Framework for the Intelligent Infrastructure

Sensing & interacting Infrastructure ServiceIssuing

Service issuing Information collection Information dissemination

Information dissemination

Information processing and
storing

Information transmissionUser registration Interaction and presentation

Watch

Card

Phone

Ring

Glasses
Personal

SmartThings

Subject

System
SmartThings

Smart stops and
 smart panelsTolls and gates

Camera 
surveillance

System 
sensors

Shared
vehicles

Smart cars

Blind signatures Group signatures,
Ring signatures,

Attribute based-credentials,
Attribute-based encryption,

Secure multi-party computations,

MixNets,
Proxies,
Onion,

Privacy-enhancing
wireless communication 

schemes,

Searchable encryption,
Homomorphic encryption,

Data splitting,
DP and SDC methods

Figure 6.2: Privacy-enhancing technologies in the intelligent infrastructure environment.

information about embarrassing or illegal behavior (captured by having a property P ), a randomized process
can be implemented and produce some randomized responses. After the concept of differential privacy was
proposed, the SDC methods have received more criticisms, due to the fact that these methods are vulnerable
to background knowledge of the attacker while differential privacy methods normally allow the attacker to have
unlimited background knowledge. Clifton and Tassa [104] gave a good comparison study to SDC methods and
differential privacy. Recently, researchers have attempted to combine these concepts. For example, Li et al.
[228] showed how to achieve differential privacy and k-anonymity in the same data release.

6.3.7 Concluding Summary

We overview 15 privacy-enhancing technologies that are divided into 6 privacy-enhancing categories: digi-
tal signatures, user authentication, communication systems, encryption technologies, computations and data
storing, and general anonymization technologies. Several technologies such as attribute-based credentials,
group signatures, mixnets have been already considered in IoT. Figure 6.2 shows the indicative positions of
analyzed privacy-enhancing technologies in the intelligent infrastructure environment. Nevertheless, only the
appropriate combination of PETs that cover various properties can protect privacy in more complex systems
such as Intelligent Infrastructures. In the full version of our analysis, we explore PETs’ properties, existed
significant pilots/products/projects, pioneer and recent schemes, and suitable use cases for current ICT tech-
nologies including Internet of Things. The full version of the analysis will be published as an open access
publication.
Furthermore, we have published publications focusing on a privacy-enhancing framework for Internet of Things
services [243] and our proposal of fast keyed-verification anonymous credentials implemented on standard
smart cards [76].

6.4 Privacy Evaluation Techniques and Methods

6.4.1 Introduction

This section presents a brief review of different techniques for assessing the satisfaction of (personal) data
privacy properties as dictated by privacy requirements and privacy policies, possibly derived by the newly
adopted General Data Protection Regulation (GDPR), the new regulation in EU law on data protection and
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Figure 6.3: An overview of our methodology.

privacy for all individual citizens of the European Union (EU) and the European Economic Area (EEA). GDPR
became enforceable on May 25, 2018. We first introduce a methodology and tool for Data Protection Impact
Assessment (Section 6.4.2) and we then consider how data policies can be expressed in a machine-readable
language, amenable for policy analysis and policy enforcement. Finally, we illustrate the main state-of-art
techniques for privacy policy enforcement.

6.4.2 Tool-Assisted Methodology for Data Protection Impact Assessment

In this section we describe a tool-assisted methodology for the Data Protection Impact Assessment. According
to the Working Party 29,14 a Data Protection Impact Assessment (DPIA) “is a process designed to describe
the processing, assess its necessity and proportionality and help manage the risks to the rights and free-
doms of natural persons resulting from the processing of personal data by assessing them and determining
the measures to address them.” DPIA is one of the most important activity for an organization to demonstrate
compliance with the General Data Protection Regulation (GDPR). Unfortunately, it is complex, time-consuming,
and requires expertise in several domains. It is rarely the case that organizations—especially small or middle
size ones—can afford the burden of developing an interdisciplinary portfolio of competencies, including cy-
bersecurity and privacy. For larger organizations, another issue is to maintain uniformity of the DPIA across
different departments.
To alleviate these problems, we propose a pragmatic methodology based on our previous experience in de-
signing a methodology for the DPIA of the public administration of the province of Trento in Italy15 and previous
academic work on compliance of security policy [170, 297].
Our methodology is based on a tool that is capable of assisting users with the three main activities of DPIA,
namely (1) the analysis of the data processing activities, (2) the assessment of the risks, and (3) the run-time
monitoring.
For activity (1), the tool helps users in carrying out crucial activities such as the functional specification of the
data processing activities, the identification of the entities involved, their legal roles, and the access control
policies that they must satisfy. For activity (2), it checks whether access control policies are compliant with
the provisions of the GDPR and computes the risk level of a data processing activity in terms of the likelihood
and impact of a data breach. The ultimate goal of our tool-based methodology is to assist organizations to
master the complexity and the interdisciplinary competencies needed for the correct implementation of the
DPIA. Indeed, the effective use of the tool must be complemented by adequate training on the key notions of
the GDPR and the DPIA.
In each one of the three steps in our methodology (shown in Figure 6.3), the user is assisted by a tool in
gathering the necessary data to produce three documents containing the description of the DPIA activities.
Such documents can be used to satisfy the accountability requirements of the GDPR (art. 5.2) and to support
the auditing process by, e.g., a (national) privacy authority.

1. The step Processing Analysis outputs a document, called Processing Specification, that contains a
precise description of the data processing activities, including the collected data, their classes, the data
subject categories involved, the purpose, etc.

2. The step Risk analysis outputs a document, called Risk summary, that reports the compliance check
of access control policies against the GDPR (this is crucial to ensure that data subjects can control the
sharing of their personal data in compliance with legal provisions) and the risk levels associated to each
defined data processing.

14https://ec.europa.eu/newsroom/document.cfm?doc_id=44137
15See resolution n. 450 of March 23, 2018 available at http://www.delibere.provincia.tn.it/.
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3. The step Run-time Analysis outputs a document, called Asset and Event Mapping, that contains the
associations between the assets (identified in the previous step of the methodology) and the actual
entities in the system together with the events that are relevant for data protection so that an Inventory
Management system and a Security Information and Event Management can use the associations to
detect, at run-time, possible deviations from the protection profiles previously specified or violations of
compliance.

6.4.3 Privacy Languages for Data Policies

Controlled Natural Languages - CNLs - are instruments that help write requirements, still without departing from
the natural language playground which remains pivotal for humans to express themselves and communicate
ideas. But differently from natural languages, CNLs use a controlled grammar, a precise semantics, and the
possibility to process statements automatically. For instance, from requirements written in Controlled Natural
Language for Data Sharing Agreement (CNL4DSA), the CNL we consider in this section, it is possible to
generate access control policies and enforcement points.
Central to CNL4DSA is the notion of fragment, i.e., a tuple f = 〈s, a, o〉, where s is the subject, a is the ac-
tion, o is the object. A fragment simply says that ‘subject s performs action a on object o’. By adding the
can/must/cannot constructs to the basic fragment, a fragment becomes an authorisation, an obligation, or a
prohibition. Such composite fragments are by the following BNF-like syntax:

F := NIL |mod f | F ; F | IF C THEN F | AFTER f THEN F

where:

• NIL is the null policy;
• mod ranges over {CAN, MUST, CANNOT} and models different type of policies and respectively, autho-

rization, obligation, and prohibition policies;
• mod f is the atomic authorization/obligation/prohibition fragment that expresses that f (= 〈s, a, o〉) is

allowed/obliged/denied. Its informal meaning is that subject s can/must/cannot perform action a on object
o.

• F ;F is a list of composite fragments.
• IF C THEN F expresses the logical implication between a composite context C (see later) and a com-

posite fragment: if C holds, then F is permitted.
• AFTER f THEN F is a temporal sequence of fragments. Informally, after f has happened, then the

composite fragment F is permitted.

Fragments are evaluated within a context. In CNL4DSA, a context c is evaluated as a boolean value (true/-
false) and it asserts properties of subjects and objects, in terms, e.g., of users’ roles, data categories, time, and
geographical location. Simple examples of contexts are ‘subject hasRole Facebook admin’, or ‘object hasCat-
egory user post’. The constructs linking subjects and objects to their values, like hasRole and hasCategory in
the above examples, are called predicates. To describe complex policies, contexts can be combined using the
boolean connectors and, or, and not. Specifically, composite contexts are defined as follows:

C := c | C AND C | C OR C | NOT c

6.4.3.1 CNL4DSA-based toolkit

A textual rule, either written in CNL4DSA or in natural language, is managed by a CNL4DSA-based toolkit,
originally proposed in [312] and successively renewed. Initially comprising a CNL4DSA Authoring Tool, a
CNL4DSA Policy Analyser, and a CNL4DSA Mapper Tool, the toolkit has recently been enriched with a trans-
lator from natural language rules to CNL4DSA rules, the NL2CNL translation tool [347].

• NL2CNL Translator: a user with no expertise of CNLs can edit rules in natural language (e.g., in English);
with a minimal user’s effort, the translator outputs the rules in CNL4DSA;

• CNL4DSA Authoring Tool: an author with expertise in CNLs can edit rules directly in CNL4DSA. The
rules are constrained by CNL4DSA constructs and the terms in the rules come from specific vocabularies
(ontologies);

• CNL4DSA Analyser: it analyses a set of CNL4DSA rules, detecting potential conflicts among them. In
case a conflict is detected, a conflict solver strategy based on prioritisation of rules is put in place to
correctly enforce the right rules;
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• CNL4DSA Mapper: it translates the CNL4DSA rules into an enforceable language. The mapping pro-
cess takes as input the analysed CNL4DSA rules, translates them in a XACML-like language [269], and
combines all the rules in line with the predefined conflict solver strategies. The outcome of this tool is an
enforceable policy. Such policy will be evaluated at each request to use the objects specified in the policy
itself.

6.4.4 Privacy Policy Enforcement via Encryption Schemes

The most elementary way to enforce access control policy is to use standard encryption schemes, particularly
public key encryption schemes. Suppose everybody in a system has a unique public/private key pair, and the
public keys are properly managed by a PKI (i.e. public key infrastructure). Suppose a data controller wishes to
permit a user with the public key pk to access data m. Then the data controller can encrypt m with pk and store
the ciphertext on a public repository. Based on the security of the encryption scheme, only the user with the
private key sk can decrypt the ciphertext and obtain m. Therefore, the policy is automatically enforced by the
encryption scheme, so that there is no need for PEP in this case. It is clear that public key encryption schemes
can enforce simple access control models such as access control list, but it not suitable for more complex ones
such as role-based or attributed based models.
A more powerful encryption primitive is Identity Based Encryption (IBE) [60]. This primitive assumes a trusted
authority, which will issue private keys for different identities. In practice, an identity can be any string, e.g.
”Female doctor at Hospital X, whose age is above 50.” Suppose Hospital X acts as the trusted third party
and a data controller wish to send data to the above identity. Then the data controller can encrypt the data
with this identity. Later on, if a doctor wishes to access the data, she needs to demonstrate she satisfies the
conditions in the identity specification. If so, Hospital X can issue her a private key which allows her to recover
the data. With this primitive, it is possible for the data controller to encrypt data for the future, e.g. it can specify
a condition that the data can only be recovered after Jan 1, 2020 (this policy can be enforced by the Hospital
X to only issue the key at this date). In comparison to the standard encryption schemes, IBE can enforce more
complex access control policies, e.g. role-based policies.
An even more powerful encryption primitive is Attribute Based Encryption (ABE) schemes [167, 316]. This
primitive can have two flavors, namely Key-Policy ABE and Ciphertext-Policy ABE. In KP-ABE, attributes are
used to annotate the ciphertexts and predicates over these attributes are ascribed to users’ secret keys, while
in CP-ABE attributes are used to describe the users credentials and the predicate over these credentials are
attached to the ciphertext by the encrypting party. In both cases, the policies can be very flexible and match
those in reality. This primitive can well enforce Attribute Based Access Control (ABAC) policies.
In addition to these encryption schemes, another type of encryption primitive, namely homomorphic encryption
schemes [161], will also be very useful in many scenarios. With this primitive, a data controller can keep the
sensitive data in encrypted form, and send the ciphertext to the potential recipients. The recipients can perform
the desired operations on the data and request the data controller to recover the computed result. Access
control policies can be enforced by the data controller when it needs to decrypt the result for the recipient.

SPARTA D6.1 Public Page 83 of 112



D6.1- Security-by-Design Framework for the Intelligent Infrastructure

Chapter 7 Integration Roadmap

7.1 Integration challenges and review of the technologies

The final goal of the HAII-T Program is to develop an integrated orchestration framework and a toolkit that
support the security-by-design approach for the II. Such a goal is far beyond the purpose of the individual
roadmaps defined in Chapters 2–6. In Chapter 4 we identified the lifecycle of a generic II and we discussed
how the Infrastructure as Code (IaC) paradigm can support it through all the stages from the initial design to
the production and monitoring phase. For this reason, we plan to take advantage of the IaC approach in two
ways. First we map each technology developed in the context of the HAII-T Program to one of the five stages
of the lifecycle discussed above (see Figure 4.1). A preliminary mapping is summarized in Table 7.1 at Task
level.
Integration approaches vary according to each phase of the lifecycle. Below, we sketch the integration process
for each of them.
Design In this phase the integration is supported by the design language used to develop the blueprint. Fol-

lowing the IaC approach, we plan to adopt an extensible language. The language extension will include
support for the technologies under integration. Furthermore, we will create a catalog of objects an their
properties. For instance, the catalog will contain devices and software that were formally verified or
tested.

Validation The extended design language will include specifications and models that support the validation
process. In this case, the integration will amount to developing a toolkit to be added to the orchestration
framework via a plugin technique.

Deployment This phase converts a blueprint into an actual infrastructure. At this stage, the integration will be
ensured by the presence of objects that implement the elements appearing and validated in the blueprint.

Testing Similarly to validation, the testing phase will be implemented as a toolkit/test suite to be launched
against the deployed infrastructure.

Runtime In this phase the integration will be granted by the presence of the monitoring technologies that have
been include in the infrastructure. Data collected in this phase will be available though a shared format.
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Task Technology Stage

T6.1 New IoT crypto primitives Design
Low-power, secure networks Design
Secure OS software supply chain Runtime

T6.2 Defenses against data-oriented attacks though virtualization Deployment
Defenses against code-oriented attacks though hardware-based monitoring Deployment/Runtime
Defenses against fault injection attacks for present and future devices Design

T6.3 Security orchestration framework All
Formal verification of protocols Validation
Formal evidence language Design/Validation
Security orchestration for Fog computing All
II key components classification Design

T6.4 Intrusion detection Runtime
Fault and intrusion tolerance Testing/Runtime

T6.5 Privacy-preserving management and regulation Design/Testing
Privacy-enhancing technologies Design/Validation
Privacy evaluation techniques and methods Design/Validation

Table 7.1: Table of technologies investigated within HAII-T Program.

7.2 Use cases

7.2.1 Smart building

A Building Automation System (BAS) is a II responsible for the automation of smart building. A BAS consists of
several integrated and interconnected subsystems, e.g., heating, lightening and video surveillance. Examples
of smart buildings include automated production plants as well as smart homes.
A generic network schema for a smart building may resemble the one depicted in Figure 7.1. It consists of
a segmented network where each segment hosts services and devices related to a specific task: (i) Server
contains the internal services (i.e., not meant to be publicly accessible), (ii) DMZ contains the public services
(i.e., exposed to the outside world), (iii) IoT connects field devices (i.e., sensors, actuators and controllers), and
(iv) Edge is an instance of a segment under the control of a Fog node. These four networks lay behind a firewall
protecting the perimeter of the smart building. In general, the firewall is intentionally left open toward the DMZ
to allow remote connections. The infrastructure is connected to the public Internet through the backbone of
the Internet service provider. Remote entities from the cloud interact with the applications running in the smart
building. For instance, a remote client may access sensors and actuators, e.g., to control the heating system,
and data generated by medical devices inside the smart building may feed a remote healthcare service.

7.2.2 xMP

As long as the orchestration framework is limited in what can be deployed on remote (or virtual) nodes, it will
not be possible to deploy all of the presented approaches for hardening legacy components. Yet, assuming the
framework becomes able to deploy hypervisors (and the necessary images for virtual machines) on remote
nodes, the framework could also deploy systems that are hardened against data-oriented attacks (Section
2.2.1.1). This would enable strong protection against data-oriented attacks on a variety of Intel-based legacy
systems with virtualization support. One application scenario is in the health, automotive, and avionic sector,
in which the end nodes (e.g., the on-board computer in automotive) must conform to the highest standards. As
such, xMP would help to protect selected critical data structures, such as the process’ credentials and page
tables that are otherwise prone to attacks.
Similarly, if the nodes had in their dispositions reconfigurable devices that worked in close cooperation with the
processors, there would be possible to harden them also against code-oriented attacks (Section 2.2.2). Such
a protection is of crucial importance in all application fields, but especially in the embedded domain, and in
particular, in addition to those already mentioned, also in the field of automatic controls for industrial systems
or Cyber-Physical Systems (CPS). Here, more than to protect critical data structures, defenses against code-
oriented attacks can mitigate or block significant attacks to take control over the functionalities of the nodes and
turn them to their own advantage or for damaging the system’s owner. The FPGA-based technique presented
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Figure 7.1: Smart building network scheme.

is well suitable to microcontrollers, and aims to protect them both when they are already in the field (legacy ) and
when they are still to be put into activity. In the first case, in fact, the external parallel interface they are provided
with can be exploited to connect them to external reconfigurable devices; in the second case, instead, the
monitor can be directly implemented on the FPGA placed inside the microcontroller, without entering straight
leg in the design process to impose given security features within the core architecture.

7.2.3 Privacy-Preserving Internet of Vehicles

Internet of Vehicles (IoV) as the applications of the Internet of Things in intelligent transportation systems aim to
improve many aspects in the transportation field from road safety, decreasing traffic jams, avoiding accidents,
improving driving experiences and save fuel and travel times by finding optimal routes. IoV can be represented
by a dynamic mobile communication system that communicates between vehicles and public networks using
V2V (vehicle-to-vehicle), V2I (vehicle-to-infrastructure), V2H (vehicle-to-human) and V2S (vehicle-to-sensor).
Thus, IoV as complex heterogeneous networks use various kinds of data resources such as vehicles, inter-
vehicle sensors, road infrastructure sensors, and humans. Nevertheless, human data and driver behavior can
cause several privacy issues that have to be addressed in a complex IoV environment. Therefore, IoV services
have to deal with various privacy and security challenges and face various types of attacks. In the following
list, we define main research subtopics related to privacy-preserving IoV:
• Conducting a general specification and analysis of privacy requirements for IoV services.
• Defining security risk management for vehicular networks.
• Exploring the impact of privacy-enhancing technologies in vehicular networks.
• Research in privacy-enhancing wireless communication for IoV.
• Research in general privacy-preserving communications for V2I, V2V, V2H and V2S (intra-vehicular).
• Research and development of privacy-enhancing access control systems based on attribute-based cre-

dentials for sharing vehicles, services, and for entering vehicles into city zones, low emission zones,
parking lots/areas, etc.

7.3 Integration milestones, risks and mitigation strategy

In this section we present the main milestones of the integration process and we identify the risks that may
compromise it. For each of them, we propose countermeasures to mitigate the risk of failure.

7.3.1 Milestones

We expect the following three milestones for the integration process.
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List of technologies (M18) for this milestone we will accomplish a list of tools and techniques that will take
part in the integration process and appear in the demonstration.

First demonstration (M24) At this stage, we plan to present a demonstration of the elements appearing in
the list. The demonstration will present the technologies applied individually to a selected number of use
cases.

Final demonstration (M36) The final milestone will consist of the integrated orchestration framework and
toolkit applied to a selected use case. The use case will be based on one of the pilots of the project.

7.3.2 Risks and mitigation

There are several risks that might negatively impact on the integration process described above. In the first
place, incompatibility issues could arise during the integration. Although this is unlikely to happen in theory,
in practice existing tools may rely on technologies that are not designed to interact. In the worst case, this
event can require, for instance, a re-engineering of existing tools. To prevent this possibility, we plan to identify
suitable interfaces and interaction protocols at the first milestone (M18). Thus, by promptly standardizing the
input/output interfaces, we will provide each partner with enough time check and ensure the compatibility of
their technologies.
Another risk is related to the scalability of the presented techniques. In some cases, there is no actual evidence
that purely theoretical methods can cope with real, large scale II. For this reason we will start with individual
demonstrators to be applied to a limited number of shared use cases. Then, we will scale up the complexity of
the use cases to test the feasibility of the techniques in an incremental way. In case a limitation is discovered
for one of them, we will react by investigating alternative solutions and by studying the reasons behind the
phenomenon.
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Chapter 8 Conclusions

This document defined the roadmaps of the HAII-T Program. In particular, we discussed the state-of-the-art
of the defense mechanisms for the legacy components as well as the security of the operating systems and
software for the IoT and field devices. Then, we presented the technologies for the orchestration of complex,
secure-by-design infrastructures. Moreover, we discussed the aspects related to the resilience-by-design and
privacy-by-design approaches. The integration roadmap was also presented together with the use cases of
the Program as well as the integration challenges and milestones. Below we report some concluding remarks
specific to each chapter of this document.

Chapter 2
The presented preliminary results both challenged and increased security of legacy components and paved the
way for future architectures. In fact, our research allows us to harden firmware and OSes on legacy systems
against code-reuse and data-oriented attacks, respectively. By further focusing on fault injection attacks that
leverage EM perturbations and laser against legacy hardware, we have identified ways that allow us to bypass
security mechanisms. Consequently, this raised our attention towards software countermeasures against fault
attacks, as well future directions towards general hardware-assisted software defenses that apply to legacy
and open source architectures (i.e., RISC-V ISA).

Chapter 3
Better security for IoT software becomes more and more critical. In this context, it is to be expected that
low-power IoT software will more and more mimic software elsewhere on the Internet, i.e. not only naturally
network-oriented, but also assembled from a multitude of components of various origin and in large parts open-
source. Securing low-power IoT operating system software in practice consists of combining and hardening a
number of specific mechanisms at work at various levels of the system, namely (i) offline validation techniques,
(ii) secure low-power networking mechanisms, and (iii) deeply embedded system software primitives.
Offline techniques and processes are obviously needed to validate the software a priori before it is deployed.
• Formal verification of critical parts of the IoT software can provide some guarantees that it is flawless (in

some predetermined aspects). In this area, we plan to work on the secure compilation of IoT software
and to focus more precisely on side-channel aware compilers, targeting crypto primitives.

• Security assessment of predetermined high-level policies can be carried out on the IoT software, which
can provide some assurance that the device will not misbehave. In this area, we plan to work on verifica-
tion mechanisms which can be applied on software update binary bundles, and which can detect security
policy violations.

Nevertheless, however powerful the offline techniques may be, new bugs and new vulnerabilities are inevitably
discovered down the line, which require patching the software a posteriori.
Low-power network mechanisms are thus needed to enable the secure deployment of embedded software
updates on IoT devices in the field, often over low-power networks – because this is the only way to access
the deployed devices.
• Secure networking protocols applicable to low-power communication media are needed to transfer data

to/from the IoT devices. In this area, we plan to work on securing low-power communications at the
transport and application layers, in close conjunction with IETF standardization in progress, which we
plan to participate in.

• A framework for secure software update over-the-network is needed. This framework must be able to
operate within the harsh constraints of low-end IoT in terms of embedded system resources and network
throughput. In this area, we plan to work on top of the embedded operating system RIOT, to provide a
general-purpose, evolutive open-source prototype.

Secure communication and secure software updates rely on a variety of lower-level primitives which provide
some guarantees in terms of data confidentiality, integrity, or authenticity.
Embedded system primitives able to run efficiently on low-power IoT devices are thus needed within the em-
bedded software itself.
• Low-level cryptographic primitives are needed to perform adequate cryptographic operations: to encrypt,

to authenticate and check the integrity of software, and to provide strong guarantees. In this area, we
plan to develop public-key cryptosystems with smaller resource footprints, and to identipost-quantum
candidate algorithms applicable in the IoT space
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• Sandboxing primitives are necessary to isolate software components originating from, and maintained by,
different entities. In this area, we plan to work on software-only approaches, which enable an equivalent
of user space, which can work on low-end hardware that is inherently single address-space.

Chapter 4
Orchestrating an intelligent infrastracture is an extremely complex and multifaceted problem. Our review of the
literature outlined that this is an active field of research and several proposals independently address some
open issues of the II life cycle management process. However, a unified orchestration framework is still beyond
the state of the art. The main reasons are (i) the heterogeneous nature of the technologies contributing to the
II and (ii) the fact that existing techniques tackle some specific problems in isolation. To deal with these issues
we sketched a roadmap for the definition of a unified orchestration framework for the II. The goal is to design
and implement an orchestration framework that ensures the integration of existing as well as future techniques.
This can be achieved through the adoption of the IaC paradigm that was already successfully applied to the
problem of orchestrating cloud infrastructures.

Chapter 5
In the context of Task 6.4 (“resilience-by-design of intelligent infrastructures (II)”), in SPARTA, we first presented
an overview of the main concepts and design principles relevant to Intrusion Tolerant (IT) architectures. The
activities on intrusion detection conducted by the different partners focus on the analysis of the resulting flow
that will be carried out on a single machine. Then, we provided a resilience techniques which are based on fault
and intrusion tolerance techniques. The challenges put by looking at faults under the perspective of “malicious
intelligence” have brought to the agenda hard issues such as uncertainty, adaptivity, incomplete knowledge,
interference, and so forth. We believe that fault tolerance will witness an extraordinary evolution, which will
have applicability in all fields and not only security-related ones.

Chapter 6
Intelligent Infrastructures integrating Internet of Things pose many challenges for the protection of privacy and
the protection of users’ personal data. Four basic aspects for privacy-by-design are overviewed in Chapter 6:
privacy threats and attacks, privacy-preserving management and regulations, privacy-enhancing techniques,
and privacy evaluation methods. Firstly, we overview the technical privacy threats, threats to private data
publishing, privacy-based leakages, and social aspects. We mainly discuss threats to private data publishing
and present the privacy leakages due to the poor design through the access control and GDPR perspec-
tives. Based on the legal developments, this report also exposes a reasoning for privacy management and
a method for managing GDPR compliance in business processes. The method helps explaining why and
where organisational and technical countermeasures should be installed to mitigate private information leak-
age. Thirdly, we categorize 15 PETs and discuss their maturity and readiness for IoT. Several technologies,
such as attribute-based credentials and group signatures, seem appropriate for constrained and heteroge-
neous environment such as IoT. Finally, we illustrate state-of-art techniques for privacy policy enforcement,
and introduce a methodology and tool for Data Protection Impact Assessment.
As future work, task 6.5 will focus on selected use cases, e.g., Internet of Vehicles that contains many privacy
challenges and privacy-requiring scenarios. Several promising technologies such as ABC will be further im-
plemented into suitable scenarios in order to enhance user privacy. Other future challenges are mainly the
detection of security risks, the definition of the personal data, the adoption of a user-centric approach in se-
lected use cases, and the identification of other regulations that apply to IoT and IoV, and that influence the
obligation of privacy-by-design.

Chapter 7
Although several, state-of-the-the techniques can deal with certain specific aspects of the security of the Intel-
ligent Infrastructures, an integrated framework is yet to come. As a result of our preliminary study we identified
the enabling technologies and we defined a roadmap for the integration of the methodologies developed in
SPARTA. The key factor is a common infrastructure modeling language that takes into account all the phases
of the life-cycle of an II and, at the same time, supports modularity though the definition of interfaces for the
components to be integrated. Among the existing proposals, we identified TOSCA as a promising candidate.
Finally, we presented the case studies that will serve for the evaluation of the integration process.

SPARTA D6.1 Public Page 89 of 112



D6.1- Security-by-Design Framework for the Intelligent Infrastructure

Final remarks and recommendation
Implementing the security-by-design approach requires support to all the phases of the lifecycle of II. The
integration roadmap has been defined in this document, yet several risks lay ahead. In particular, the integra-
tion process aim at composing many technologies that apply to completely different contexts. Our approach
relies on the IaC paradigm that we consider particularly promising. Among the next steps the main one is
reconnaissance of the technologies and testing of the integration.
Intelligent infrastructures and their security have a central role in our society and, thus, for favoring the devel-
opment of a stronger and more secure Europe. The interaction with the other SPARTA Programs and Activities
is fundamental for a correct development. Among the others, the most relevant are possibly the following.
• T-SHARK. Threat intelligence and situational awareness are crucial for the correct management of the

modern intelligent infrastructures. For this reason, the technologies developed in T-SHARK need to be
carefully evaluated and possibly integrated.

• CAPE. Adaptive security has a central role for guaranteeing the level of security of complex, evolving
infrastructures. Hence, the methodologies investigated in CAPE should be evaluated for the life-cycle of
intelligent infrastructures.

• SAFAIR. Artificial intelligence often has a relevant position in intelligent infrastructures. This role must be
carefully evaluated against the security properties of interest.
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Chapter 9 List of Abbreviations

Abbreviation Translation
IaC Infrastructure as Code
BAS Building Automation System
II Intelligent Infrastructure
CPS Cyber-Physical System
ICS Industrial Control System
IoT Internet of Things
IoV Internet of Vehicles
CFI Control-Flow Integrity
COTS Commercial Of-The-Shelf
EM Electromagnetic
EPT Extended Page Table
FA Fault Attack
FM Fault Model
SLAT Second Layer Address Translation
HMAC Keyed-Hash Message Authentication Code
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[68] C. Bresch, D. Hély, A. Papadimitriou, A. Michelet-Gignoux, L. Amato, and T. Meyer. Stack redundancy
to thwart return oriented programming in embedded systems. IEEE Embedded Systems Letters, 10(3):
87–90, Sep. 2018. ISSN 1943-0663. doi: 10.1109/LES.2018.2819983.

[69] M. S. de Brito, S. Hoque, T. Magedanz, R. Steinke, A. Willner, D. Nehls, O. Keils, and F. Schreiner. A
service orchestration architecture for Fog-enabled infrastructures. In 2017 Second International Confer-
ence on Fog and Mobile Edge Computing (FMEC), pages 127–132, May 2017. doi: 10.1109/FMEC.2017.
7946419.

[70] Antonio Brogi and Jacopo Soldani. Reusing cloud-based services with tosca. In E. Plödereder,
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[101] Michał Choraś, Rafał Kozik, Damian Puchalski, and Witold Hołubowicz. Correlation approach for SQL
injection attacks detection. In Advances in Intelligent Systems and Computing, pages 177–185. Springer
Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-33018-6 18. URL https://doi.org/10.1007%
2F978-3-642-33018-6_18.

[102] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis. Hcfi: Hardware-enforced control-flow
integrity. In Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy,
pages 38–49. ACM, 2016.

[103] Zi Chu, Steven Gianvecchio, Haining Wang, and Sushil Jajodia. Detecting automation of Twitter ac-
counts: Are you a human, bot, or cyborg? IEEE Transactions on Dependable and Secure Computing, 9
(6):811–824, 2012.

[104] C. Clifton and T. Tassa. On syntactic anonymity and differential privacy. Trans. Data Privacy, 6(2):
161–183, 2013.

SPARTA D6.1 Public Page 96 of 112

https://doi.org/10.1007%2F978-3-642-27245-5_8
https://doi.org/10.1007%2F978-3-642-27245-5_8
https://doi.org/10.1007%2F978-3-642-24755-2_9
https://doi.org/10.1007%2F978-3-642-24755-2_9
https://doi.org/10.1007%2F978-3-642-33018-6_18
https://doi.org/10.1007%2F978-3-642-33018-6_18


D6.1- Security-by-Design Framework for the Intelligent Infrastructure

[105] Brice Colombier, Alexandre Menu, Jean-Max Dutertre, Pierre-Alain Moëllic, Jean-Baptiste Rigaud, and
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[266] HG Natke. System identification: Torsten Söderström and Petre Stoica. Automatica, 28(5):1069–1071,
1992.

[267] Jiaojiao Niu, Chenchen Huang, Jinhai Li, and Min Fan. Parallel computing techniques for concept-
cognitive learning based on granular computing. International Journal of Machine Learning and Cy-
bernetics, 9(11):1785–1805, feb 2018. doi: 10.1007/s13042-018-0783-z. URL https://doi.org/10.
1007%2Fs13042-018-0783-z.

[268] OASIS. OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC. https:
//www.oasis-open.org/committees/tosca/, 2019. (Accessed on October 2019).

[269] OASIS XACML Technical Committee. eXtensible Access Control Markup Language (XACML) Version
3.0, 2013.

[270] Internet of Things Questions and Anwsers. What is an iot platform? http://www.iot.qa/2017/11/
what-is-iot-platform.htm, 11 2017. URL http://www.iot.qa/2017/11/what-is-iot-
platform.html.

SPARTA D6.1 Public Page 104 of 112

http://www.sciencedirect.com/science/article/pii/S1570870512000674
http://www.sciencedirect.com/science/article/pii/S1570870512000674
https://doi.org/10.1007%2F978-3-319-26450-9_7
https://doi.org/10.1007%2Fs13042-018-0783-z
https://doi.org/10.1007%2Fs13042-018-0783-z
https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/committees/tosca/
http://www.iot.qa/2017/11/what-is-iot-platform.htm
http://www.iot.qa/2017/11/what-is-iot-platform.htm
http://www.iot.qa/2017/11/what-is-iot-platform.html
http://www.iot.qa/2017/11/what-is-iot-platform.html


D6.1- Security-by-Design Framework for the Intelligent Infrastructure

[271] R. Oksvort. A Prototype for Learning Privacy-Preserving Data Publishing. Master’s thesis, University of
Tartu, 2017.

[272] OpenFog Consortium Architecture Working Group. OpenFog reference architecture for fog computing.
OPFRA001, 20817:162, 2017.

[273] N. Oualha and K. T. Nguyen. Lightweight Attribute-Based Encryption for the Internet of Things. In 2016
25th International Conference on Computer Communication and Networks (ICCCN), pages 1–6, Aug
2016.

[274] V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent rop exploit mitigation using indirect
branch tracing. In Presented as part of the 22nd USENIX Security Symposium (USENIX Security 13),
pages 447–462, 2013.

[275] Eli Pariser. The Filter Bubble: What the Internet Is Hiding from You. The Penguin Group, 2011. ISBN
1594203008, 9781594203008.

[276] Fabio Pasqualetti, Florian Dorfler, and Francesco Bullo. Control-Theoretic Methods for Cyberphysical
Security: Geometric Principles for Optimal Cross-Layer Resilient Control Systems. IEEE Control Sys-
tems, 35(1):110–127, Feb 2015. ISSN 1066-033X. doi: 10.1109/MCS.2014.2364725.

[277] Witold Pedrycz and Wladyslaw Homenda. Building the fundamentals of granular computing: A principle
of justifiable granularity. Applied Soft Computing, 13(10):4209–4218, oct 2013. doi: 10.1016/j.asoc.2013.
06.017. URL https://doi.org/10.1016%2Fj.asoc.2013.06.017.

[278] Anastasia Pentina and Christoph Lampert. A pac-bayesian bound for lifelong learning. In International
Conference on Machine Learning, pages 991–999, 2014.

[279] Anastasia Pentina and Christoph H Lampert. Lifelong learning with non-iid tasks. In Advances in Neural
Information Processing Systems, pages 1540–1548, 2015.

[280] Asier Perallos, Unai Hernandez-Jayo, Ignacio Julio Garcı́a Zuazola, and Enrique Onieva. Intelligent
Transport Systems: Technologies and Applications. John Wiley & Sons, 2015.

[281] Katharina Pfeffer. Formal verification of a lte security protocol for dual-connectivity: An evaluation of
automatic model checking tools, 2014.

[282] Andrés F Murillo Piedrahita, Vikram Gaur, Jairo Giraldo, Alvaro A Cardenas, and Sandra Julieta Rueda.
Virtual incident response functions in control systems. Computer Networks, 135:147–159, 2018.

[283] Evaggelia Pitoura, Panayiotis Tsaparas, Giorgos Flouris, Irini Fundulaki, Panagiotis Papadakos, Serge
Abiteboul, and Gerhard Weikum. On measuring bias in online information. SIGMOD Rec., 46(4):16–21,
February 2018. ISSN 0163-5808. doi: 10.1145/3186549.3186553. URL http://doi.acm.org/10.
1145/3186549.3186553.

[284] Mohsen Pourpouneh and Rasoul Ramezanian. A short introduction to two approaches in formal ver-
ification of security protocols: model checking and theorem proving. The ISC International Journal of
Information Security, 8(1):3–24, 2016.

[285] David Powell. Delta-4: a generic architecture for dependable distributed computing, volume 1. Springer
Science & Business Media, 2012.

[286] Ramjee Prasad and Marina Ruggieri. Special issue on “intelligent infrastructure”. Wireless Personal
Communications, 76(2):121–124, 05 2014. ISSN 1572-834X. doi: 10.1007/s11277-014-1681-7. URL
https://doi.org/10.1007/s11277-014-1681-7.

[287] M. Pritikin, M. Richardson, T. Eckert, M. Behringer, and K. Watsen. Bootstrapping re-
mote secure key infrastructure (brski). https://tools.ietf.org/html/draft-ietf-anima-
bootstrapping-keyinfra-30, 2019. URL https://tools.ietf.org/html/draft-ietf-
anima-bootstrapping-keyinfra-30.

[288] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P. Kemerlis, and Michalis Poly-
chronakis. xMP: Selective Memory Protection for Kernel and User Space. In oakland, 2020.

[289] Julien Proy, Karine Heydemann, Alexandre Berzati, and Albert Cohen. Compiler-assisted loop hardening
against fault attacks. ACM Transactions on Architecture and Code Optimization, 14:1–25, 12 2017. doi:
10.1145/3141234.

[290] D. Puthal, S. P. Mohanty, S. A. Bhavake, G. Morgan, and R. Ranjan. Fog Computing Security Challenges
and Future Directions [Energy and Security]. IEEE Consumer Electronics Magazine, 8(3):92–96, May
2019. doi: 10.1109/MCE.2019.2893674.

[291] Yuhua Qian, Jiye Liang, and Chuangyin Dang. Incomplete multigranulation rough set. IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40(2):420–431, mar 2010. doi:
10.1109/tsmca.2009.2035436. URL https://doi.org/10.1109%2Ftsmca.2009.2035436.

SPARTA D6.1 Public Page 105 of 112

https://doi.org/10.1016%2Fj.asoc.2013.06.017
http://doi.acm.org/10.1145/3186549.3186553
http://doi.acm.org/10.1145/3186549.3186553
https://doi.org/10.1007/s11277-014-1681-7
https://tools.ietf.org/html/draft-ietf-anima-bootstrapping-keyinfra-30
https://tools.ietf.org/html/draft-ietf-anima-bootstrapping-keyinfra-30
https://tools.ietf.org/html/draft-ietf-anima-bootstrapping-keyinfra-30
https://tools.ietf.org/html/draft-ietf-anima-bootstrapping-keyinfra-30
https://doi.org/10.1109%2Ftsmca.2009.2035436


D6.1- Security-by-Design Framework for the Intelligent Infrastructure

[292] P. Qiu, Y. Lyu, J. Zhang, D. Wang, and G. Qu. Control flow integrity based on lightweight encryption
architecture. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(7):
1358–1369, July 2018. doi: 10.1109/TCAD.2017.2748000.

[293] Qiang Qiu and Guillermo Sapiro. Learning transformations for clustering and classification. The Journal
of Machine Learning Research, 16(1):187–225, 2015.

[294] Jean-Pierre Quemard, Jan Schallabok, Irene Kamara, and Matthias Pocs. Guidance and gap analysis
for European standardisation: Privacy standards in the information security context. ENISA, 1 edition, 3
2019.

[295] Panagiotis I Radoglou-Grammatikis and Panagiotis G Sarigiannidis. Securing the smart grid: A com-
prehensive compilation of intrusion detection and prevention systems. IEEE Access, 7:46595–46620,
2019.

[296] Inez Raguenet and Carlos Maziero. A fuzzy model for the composition of intrusion detectors. In Pro-
ceedings of The Ifip Tc 11 23rd International Information Security Conference, pages 237–251, 2008.

[297] Silvio Ranise and Hari Siswantoro. Automated legal compliance checking by security policy analysis.
In SAFECOMP Workshops, volume 10489 of Lecture Notes in Computer Science, pages 361–372.
Springer, 2017.

[298] Joel Reardon and Ian Goldberg. Improving tor using a tcp-over-dtls tunnel. In Proceedings of the 18th
conference on USENIX security symposium, pages 119–134. USENIX Association, 2009.

[299] E. Rescorla, R. Barnes, and H. Tschofenig. Compact tls 1.3. https://tools.ietf.org/
html/draft-rescorla-tls-ctls-03, 2019. URL https://tools.ietf.org/html/draft-
rescorla-tls-ctls-03.

[300] Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-order masking and shuffling for software
implementations of block ciphers. In CHES 2009, volume 5747 of LNCS, pages 171–188. Springer,
2009.

[301] Lionel Rivière, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, and Julien Bringer. High precision fault
attacks on the instruction cache of ARMv7-M architectures. In 2015 IEEE International Symposium on
Hardware Oriented Security and Trust, 2015.

[302] N. Roessler and A. DeHon. Protecting the stack with metadata policies and tagged hardware. In 2018
IEEE Symposium on Security and Privacy (SP), pages 478–495, May 2018. doi: 10.1109/SP.2018.00066.

[303] Rodrigo Roman, Jianying Zhou, and Javier Lopez. On the features and challenges of security and
privacy in distributed internet of things. Computer Networks, 57(10):2266–2279, 2013.

[304] Rodrigo Roman, Javier Lopez, and Masahiro Mambo. Mobile edge computing, fog et al.: A survey and
analysis of security threats and challenges. Future Generation Computer Systems, 78:680–698, 2018.

[305] J.M. Rubio-Hernan. Detection of Attacks against Cyber-Physical Industrial Systems. PhD thesis,
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