
D6.4
Final Release of Demonstration

Project number 830892
Project acronym SPARTA
Project title Strategic programs for advanced research and tech-

nology in Europe
Start date of the project 1st February, 2019
Duration 36 months
Programme H2020-SU-ICT-2018-2020

Deliverable type Demonstrator
Deliverable reference number SU-ICT-03-830892 / D6.4 / V1.0
Work package contributing to the de-
liverable

WP6

Due date January 2022 – M36
Actual submission date 9th February, 2022

Responsible organisation CINI
Editor Gabriele Costa
Dissemination level PU
Revision V1.0

Abstract This document describes the final release of the
WP6: High Assurance Intelligent Infrastructure Toolkit
(HAII-T) demonstration.

Keywords Intelligent infrastructure, secure orchestration,
security-by-design

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 830892

D6.4 - Final Release of Demonstration

Editor
Gabriele Costa (CINI)

Contributors (ordered according to beneficiary numbers)

Branka Stojanović, Katharina Hofer-Schmitz (JR)
Manon Knockaert, Jean-Marc Van Gyseghem (UNamur)
Lukas Malina, Petr Dzurenda (BUT)
Tewodros Beyene (FTS)
Marius Momeu (TUM)
Raimundas Matulevičius, Mari Seeba, Jake Tom (UTartu)
Joaquin Garcia-Alfaro, Jean-Max Dutertre, Jean-Luc Danger, Aimilia Tasidou, Maryline Laurent
(IMT)
Emmanuel Baccelli, Michel Hurfin, Ludovic Mé, Alexandre Sanchez (Inria)
Gianluca Roascio, Paolo Prinetto, Gabriele Costa, Alessandro Armando (CINI)
Gabriele Restuccia (CNIT)
Nerijus Morkevičius, Algimantas Venčkauskas (KTU)
Uwe Roth, Qiang Tang (LIST)
Marek Pawlicki (ITTI)

Reviewers (ordered according to beneficiary numbers)

Katarzyna Kapusta (TCS)
Artsiom Yautsiukhin (CNR)

Disclaimer

The information in this document is provided ”as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author’s
view – the European Commission is not responsible for any use that may be made of the information
it contains. The users use the information at their sole risk and liability.

SPARTA D6.4 Public Page I

D6.4 - Final Release of Demonstration

Executive Summary

This document presents the final release of the demonstration of the HAII-T Program. The document
focuses on the notion of security workflows, which we use to represent security tasks common in
Security-by-Design methodologies. The main reason behind this approach is that security processes
may significantly vary between different infrastructures. Thus, a general approach to Security-by-
Design should provide customizable processes based on well established, existing methodologies.
Our security workflows combine the methodologies that currently populate the HAII-T orchestrator.
By defining a security workflow and executing it during a specific phase of the life cycle of an intelligent
infrastructure, one can tackle security issues of interest.
For the sake of presentation, here we put forward three security workflows as well as other, stand-
alone techniques, and we demonstrate them through an application to the case study virtual infras-
tructure introduced in [34]. The three workflows are discussed in Chapters 3, 4 and 5, respectively.
There, we present the components forming each workflow. The demonstration of the HAII-T ap-
proach is presented in Chapter 6. Finally, Chapter 7 presents an effectiveness evaluation based on
specific security issues involved in the demonstration scenarios.

SPARTA D6.4 Public Page II

D6.4 - Final Release of Demonstration

Table of Content

Chapter 1 Introduction . 1

Chapter 2 Integration strategy . 2

2.1 Secure orchestrator architecture . 2
2.2 Security workflows . 2

2.2.1 Legacy technologies management workflow . 3
2.2.2 Intrusion management workflow . 3
2.2.3 Data and privacy management workflow. 4

2.3 Workflow implementation . 5
2.3.1 TOSCA workflows . 5
2.3.2 Custom workflows . 6

Chapter 3 Legacy technologies management . 8

3.1 Secure software updates for wearable low-power IoT with RIOT, SUIT, and femto-
containers . 8
3.1.1 Related work on Contact Tracing . 8
3.1.2 Architecture for Low-power Contact Tracing . 8
3.1.3 Femto-Containers for Low-power Business Logic DevOps 9
3.1.4 PEPPER Prototype: IoT Hardware and Software 9

3.2 Software instrumentation for control-flow integrity on edge devices 10
3.2.1 Protection features . 11
3.2.2 Protection algorithm . 12

3.3 Protocol verification . 14
3.3.1 Model checking – formal modeling of IoT protocols 16
3.3.2 Probabilistic model checking – risk analysis in IoT environment 18

3.4 RIOT-AKA: cellular-like authentication over IoT devices 23
3.4.1 Cellular Networks inspiration . 23
3.4.2 RIOT-AKA contribution . 23
3.4.3 RIOT-AKA Authentication Framework . 24
3.4.4 Implementation and Extensions . 25

Chapter 4 Intrusion management . 28

4.1 ML-based Network Intrusion Detection System . 28
4.2 Anomaly-based Intrusion Detection System . 31

4.2.1 Supervision of a Partially Ordered Set of Events 31
4.2.2 Analysis of a Network Traffic . 32

4.3 Method for Dynamic Service Orchestration in the Fog Computing 34
4.3.1 Method for Finding Optimal Placement of the Services 36
4.3.2 Prototype Architecture for Hosting of Mobile Services 37

4.4 Remarks . 39

Chapter 5 Data & privacy management . 40

5.1 Privacy-Enhancing Authentication System . 41
5.1.1 PEAS Extensions and Implementation Details 42
5.1.2 Web-based PEAS . 43
5.1.3 Android-based PEAS . 44

5.2 Model-Driven GDPR Compliance Management . 44
5.2.1 BPMN2GDPR: BPMN extension to capture process compliance to GDPR reg-

ulation . 44

SPARTA D6.4 Public Page III

D6.4 - Final Release of Demonstration

5.2.2 Application of BPMN2GDPR in Intelligent Infrastructures 45
5.3 Privacy-preserving data processing: MC-SSE for privacy-preserving data processing . 47

5.3.1 Introduction and motivation . 47
5.3.2 Searchable Encryption Background . 47
5.3.3 Multi-client BIEX . 48
5.3.4 Utilisation within the Intelligent Infrastructure 49

Chapter 6 Final demonstration . 50

6.1 Legacy technologies management demonstration . 50
6.1.1 PEPPER Demonstration . 50
6.1.2 Perspectives regarding security-enhanced embedded IoT system software . . 50
6.1.3 Edge-devices control-flow integrity demonstration 51
6.1.4 Protocol verification demonstration . 55
6.1.5 RIOT-AKA Authentication demonstration . 59

6.2 Intrusion management workflow demonstration . 62
6.2.1 Machine Learning-based Network Intrusion Detection component 62
6.2.2 Anomaly-based Detection of Network Intrusion Event 63
6.2.3 Fog service reorchestration . 64

6.3 Privacy and Data Management Demonstration . 66
6.3.1 Privacy-preserving access supported by PEAS 67
6.3.2 DPO tool . 69
6.3.3 MC-SSE demonstration . 71

Chapter 7 Relevant security aspects and evaluation . 73

7.1 Vulnerabilities . 73
7.1.1 Attack surface . 73
7.1.2 Attack classification . 73
7.1.3 Root causes . 75
7.1.4 CWE Codes . 75

7.2 Legacy technologies management evaluation . 77
7.2.1 Control-flow integrity for edge devices evaluation 77
7.2.2 RIOT-AKA evaluation . 77
7.2.3 Evaluation of secure software updates for wearable low-power IoT with RIOT,

SUIT, and femto-containers . 78
7.3 Intrusion management workflow evaluation . 78

7.3.1 Evaluation of the Anomaly-based Intrusion Detection System 79
7.3.2 Evaluation of dynamic service orchestration in the Fog computing 79

7.4 Privacy and data management evaluation . 79
7.4.1 Evaluation of DPO tool . 80
7.4.2 Evaluation of PEAS . 80
7.4.3 Evaluation of the MC-SSE tool . 80

Chapter 8 Conclusion . 82

Chapter 9 Bibliography. 83

SPARTA D6.4 Public Page IV

D6.4 - Final Release of Demonstration

List of Figures

Figure 2.1 HAII-T Deployment diagram . 2
Figure 2.2 Legacy technologies management workflow 3
Figure 2.3 Intrusion management workflow . 4
Figure 2.4 Data & privacy management workflow . 5

Figure 3.1 PEPPER contact tracing hardware and software design. 10
Figure 3.2 PEPPER prototype. 10
Figure 3.3 A snippet of ARM-like Assembly language (a) and the origin tree Γc of c =

BX R3 (b) [40]. 13
Figure 3.4 The 5 stages of the CFI instrumentation engine. 14
Figure 3.5 Protocol verification smart home environment 15
Figure 3.6 Model checking flow chart . 16
Figure 3.7 Probabilistic model checking flow chart . 18
Figure 3.8 Threat model – Smart Home environment DFD [81] 19
Figure 3.9 Attack scenario for hijacking of smart HVAC system[81] 21
Figure 3.10 Attack scenario for hijacking of smart meter system[81] 21
Figure 3.11 RIOT-AKA deployment framework . 24
Figure 3.12 RAM portions used by our implementation. 26
Figure 3.13 ROM portions used by our implementation. 26

Figure 4.1 Intrusion management workflow. 28
Figure 4.2 The pipeline of the Network Intrusion Detection Component 29
Figure 4.3 General View of the Architecture of the Second IDS 32
Figure 4.4 Architecture of Fog orchestrators. 35
Figure 4.5 Fog orchestration control loop. 35
Figure 4.6 Main steps of service distribution optimization process. 36
Figure 4.7 Hierarchical structure of AHP [68]. 37
Figure 4.8 Prototype system architecture. 38

Figure 5.1 Technical settings for Privacy-by-Design implementation. 41
Figure 5.2 A GDPR perspective for a security by design implementation. 41
Figure 5.3 Highlevel Topology of PEAS. 42
Figure 5.4 Dashboard of web-based PEAS User. 43
Figure 5.5 Dashboard of web-based PEAS Verifier. 43
Figure 5.6 BPMN2GDPR Abstract Syntax . 45
Figure 5.7 Vehicle Charge Process Annotated using BPMN2GDPR 46
Figure 5.8 Searchable Encryption . 47

Figure 6.1 PEPPER demo scenario. 50
Figure 6.2 Execution screen of the analysis and instrumentation tool for control-flow in-

tegrity. 51
Figure 6.3 Report on the application entry point and cascaded calls from it. 52
Figure 6.4 Detail from the beginning of the indirect edge list within the report. 52
Figure 6.5 Detail from the beginning of the indirect edge list within the report. 52
Figure 6.6 Secure control-flow transfers before and after the Reconstruction phase. . . . 53
Figure 6.7 Details on the instrumentation sites with edge type and assigned label. 54
Figure 6.8 Comparison between the original and instrumented application. 54
Figure 6.9 Model checking demo architecture . 55
Figure 6.10 Unidirectional Teach-in and authentication model in EnOcean protocol[46] . . 55
Figure 6.11 Bidirectional Teach-in and authentication model in EnOcean protocol[46] . . . 56
Figure 6.12 Unidirectional teach-in procedure in EnOcean protocol - console output example 56

SPARTA D6.4 Public Page V

D6.4 - Final Release of Demonstration

Figure 6.13 Probabilistic model checking demo architecture - phase 1 57
Figure 6.14 Probabilistic model checking demo architecture - phase 2 57
Figure 6.15 Hijacking of smart HVAC risk analysis - console output example 58
Figure 6.16 Hijacking of smart HVAC risk analysis - resulting risk probabilities; cost: maxi-

mum number of . 58
Figure 6.17 Hijacking of smart meter risk analysis - resulting risk probabilities; cost: maxi-

mum number of . 58
Figure 6.18 RIOT-AKA represented in the common WP6 use case infrastructure 59
Figure 6.19 RIOT-AKA IoT IP address showup . 60
Figure 6.20 RIOT-AKA IoT registration to the HN . 60
Figure 6.21 RIOT-AKA IoT registration to the HN . 61
Figure 6.22 RIOT-AKA packets capture . 61
Figure 6.23 Intrusion management workflow components in the common WP6 use case

infrastructure. 62
Figure 6.24 The component dashboard . 63
Figure 6.25 Display of all the Alerts . 64
Figure 6.26 Display of a Sub-set of Alerts using a Filter on the Source IP 64
Figure 6.27 Initial situation in the IoT infrastructure. 65
Figure 6.28 The process of agent migrations as viewed from Fog node 3. 66
Figure 6.29 The situation in the IoT infrastructure after the reorchestration. 66
Figure 6.30 The demonstration scenario of privacy-preserving access and data manage-

ment in smart campus. 67
Figure 6.31 Dashboard of web-based PEAS Issuer. 68
Figure 6.32 GUI of Android-based PEAS User - login and main menu. 68
Figure 6.33 GUI of Android-based PEAS User - logs and communication. 68
Figure 6.34 DPO tool interface . 69
Figure 6.35 Method for achieving regulation compliance, adapted from [63] 70
Figure 6.36 Compliance Check of Vehicle Charge Process Annotated using BPMN Exten-

sion for GDPR . 71
Figure 6.37 Data Owner interface for authorisation token creation 72
Figure 6.38 Client search interface for authorisation token loading and query execution . . 72

Figure 7.1 The door sensor component inside Legacy technologies management work-
flow in the common WP6 use case infrastructure. 77

Figure 7.2 Performance test of PEAS authentication phase (Smart Card MultOS ML 4
and Smartphone Nokia 7.2). 80

SPARTA D6.4 Public Page VI

D6.4 - Final Release of Demonstration

List of Tables

Table 3.1 Hijacking of smart HVAC system scenario – threats and exploitation proba-
bilites [81] . 22

Table 3.2 Hijacking of smart meter system scenario – threats and exploitation probabili-
ties [81] . 22

Table 3.3 Energy consumption . 26
Table 3.4 Bandwidth consumption . 26
Table 3.5 Memory consumption . 26
Table 3.6 ROM and RAM consumption . 26

Table 4.1 INPUT. Schema: NetFlow. Input data format: JSON. Documentation Net-
Flow Collector: https://www.ntop.org/guides/nprobe/cli options.html#usage-
examples . 29

Table 4.2 Output. Data format: JSON . 31
Table 4.3 Some Definitions of Event Types Accepted by the IDS 34

SPARTA D6.4 Public Page VII

D6.4 - Final Release of Demonstration

Chapter 1 Introduction

Properly managing the security of a modern Intelligent Infrastructure (II) is both extremely complex
and sensitive. On the one hand, complexity arise from the coexistence of many different paradigms,
such as Internet of Things (IoT), Cloud and Fog computing, and many legacy technologies which all
together collaborate for the business logic of the infrastructure. On the other hand, most II run critical
services that cannot be discontinued without dramatic effects on our society.
In the context of SPARTA, the High Assurance Intelligent Infrastructure Toolkit (HAII-T) Program is
responsible for the development of a Security-by-Design methodology which effectively improves the
security of existing and next-generation II. In our previous deliverable [34], we presented and demon-
strated the first version of our toolkit. Briefly, it consisted of an orchestration framework based on a
standard Infrastructure-as-a-Service (IaaS) system, called TOSCA [59]. The orchestration framework
was enriched with a number of security mechanisms and tools developed within the HAII-T Program.
Each of them deals with a specific security issue that may affect a real II. To demonstrate the effec-
tiveness of these methodologies we also developed a virtual replica of a real II which served as case
study.
Following the Security-by-Design philosophy, security is not a mere technological problem and strong
guarantees can only be provided by means of security processes. Security processes chaperon
the entire life cycle of any II and they consist of tasks dealing with some specific security aspects.
Processes and tasks must be defined by combining security and domain expertise. Although some
of them are recurrent, others may significantly vary depending on technologies, context and other
factors. Nonetheless, all of them must be well integrated in a long-term security strategy and contin-
uously maintained over time.
In this document, we describe the year 3 demonstration of the HAII-T Program. The main novelty
introduced in this version is the focus on the definition of security workflows. A workflow is a security-
oriented activity which is obtained from the orchestration of automated tools and human beings.
Intuitively, security workflows capture the notion of security task as they are designed and imple-
mented for managing a specific security aspect of a given II. Ideally, the owner of an II can define
her own security workflows as well as integrating existing ones, e.g., defined by external authorities.
The result is a multifaceted and operational definition of security procedures driven by the HAII-T
orchestration framework.
For the sake of presentation, here we put forward three security workflows relevant for the scenario
of our case study. Each workflow is first described in detail and then demonstrated through an ap-
plication scenario. Furthermore, this document includes a technical description and demonstrations
of the methodologies that are not included in the selected workflows. These methodologies are the
fundamental building blocks for the definition of further security workflows which one may want to
implement.

SPARTA D6.4 Public Page 1 of 88

D6.4 - Final Release of Demonstration

Chapter 2 Integration strategy

In this section we present the integration methodology followed during the development of the final
version of the Toolkit. The overall approach consists of an extension of the first integration presented
in [34] and it follows the Security-by-Design strategy introduced in [33].

2.1 Secure orchestrator architecture

The cornerstone of the integration methodology is the secure orchestrator, i.e., a system responsible
for managing all the phases of the life cycle of an intelligent infrastructure. As discussed in [34], the
orchestration framework relies on TOSCA [59], which we extended with new elements for modeling,
analyzing, deploying and monitoring intelligent infrastructures.

Figure 2.1: HAII-T Deployment diagram

The overall architecture of the secure orchestrator is depicted in Figure 2.1. Briefly, all the tools and
techniques developed in WP6 contribute to the extension of the TOSCA framework carried out by
the secure orchestrator. These tools have been previously demonstrated in [34]. There we showed
how they can deal with security issues which commonly affect a generic II. Nevertheless, real and
fruitful integration occurs when different techniques cooperate for the execution of a security task.
In Security-by-Design, security tasks populate the phases of the life cycle of a system and they
are meant to assess specific security aspects related to phase they refer to. For instance, a threat
modeling task typically occurs in the early stages, while penetration testing is carried out when the
system is up and running. Although most security tasks are recurrent, they may vary depending on
the adopted security framework. Even more problematic, their actual implementation is application-
specific as it depends on the implementation details of the considered II.
For the reasons discussed above, although some can be reused, security tasks cannot be defined
once for all, in advance. On the contrary, the definition of the security tasks of interest, as well as
their maintenance over time, is left to the owner of the II. Still, the secure orchestrator must support
this activity by providing a catalog of security technologies and support for combining them.

2.2 Security workflows

In TOSCA, the execution of a task associated to a specific phase in the life cycle of an infrastruc-
ture is called a workflow. TOSCA workflows are typically used for automating some process, e.g.,

SPARTA D6.4 Public Page 2 of 88

D6.4 - Final Release of Demonstration

configuration of some elements after their deployment. Here, we extend this notion to implement
security-related workflows. Their role is to carry out a specific security task. In the following we
introduce three security workflows that will take part in our demonstration.

2.2.1 Legacy technologies management workflow

The presence of multiple, legacy technologies is frequent in large scale II. These technologies are
typically necessary to handle specific sub-processes and sub-systems which cooperate in the com-
plex business logic of the II. Although this problem may occur in different contexts, it is more common
for hardware devices. As a matter of fact, modern paradigms such as IoT favor the spreading of
small, networked edge devices. These devices may suffer from a number of limitations and weak-
nesses which, in some cases, are known and documented. For instance, to keep its price affordable,
the developer of a field sensor may prefer not to equip it with particular anti-tampering protection
mechanisms. In this way, this burden is left to the II owner who has to carefully evaluate the context
where the device is deployed.

Figure 2.2: Legacy technologies management workflow

Figure 2.2 shows a possible implementation of a legacy technologies management workflow. The
workflow is mainly oriented to IoT applications and it consists of a series of hardening and verification
techniques. These techniques include:

• program instrumentation, for enabling control-flow integrity guarantees on edge devices;
• memory protection, for ensuring secure, server-side data storage;
• secure update, which permits to securely install new firmware on RIoT devices;
• cloud-based authentication, for managing and verifying the identity of roaming devices, and;
• formal protocol verification, for proving that IoT protocols do not suffer from security flaws.

A distinguished feature of the legacy technologies management workflow is its cross-phase nature.
As a matter of fact, the techniques contribuiting to the workflow may operate during different phases
of the II life-cycle. A detailed description of these methodologies and their role in the workflow will be
given in Section 3.

2.2.2 Intrusion management workflow

Intrusions are a major threat for modern infrastructures. Although proper design and security mech-
anisms can decrease the likelihood of intrusions, new vulnerabilities and attack strategies which
emerge over time cannot be avoided. Hence, assuming that intrusions can occur and implementing
security tasks for handling them is always a good practice. Recently, security orchestration, automa-
tion and response (SOAR), are emerging for the definition of security processes triggered by critical

SPARTA D6.4 Public Page 3 of 88

D6.4 - Final Release of Demonstration

events. This workflow highlights that the HAII-T orchestrator can implement the logic of a SOAR
system.
An Intrusion Detection System (IDS) is the component responsible for identifying and reporting intru-
sion events. An IDS monitors the network traffic, as well as other sources of information, and applies
some detection strategy, e.g., based on pattern matching or other heuristics. As a consequence of
an intrusion, an alert is fired and an intrusion management process is triggered. For instance, this
process may involve the intervention of a human analyst who revises the alert report and activates
some emergency plan.

Figure 2.3: Intrusion management workflow

Figure 2.3 shows an instance of the intrusion management workflow where the human operator
decides to re-orchestrate a Fog application. Such a decision is base, for example, on the specific
nature of the alert, e.g., network traffic compatible with an attack to Fog nodes, or to ensure that the
Fog application Quality of Service (QoS) is not compromised by the intrusion. A detailed description
of this workflow and its core elements is given in Chapter 4.

2.2.3 Data and privacy management workflow.

Privacy protection is another fundamental issue for II. As a matter of fact, one can hardly think
of a real infrastructure that does not involve collecting and processing sensitive data. Identifying
appropriate mechanisms ensuring data protection must be carried out from the earliest stages of the
design process. This approach goes under the name of Privacy-by-Design. Recently, lawmakers
have devoted a significant effort in the development of rules which aim at favoring the adoption of
Privacy-by-Design. Among them, the General Data Protection Regulation (GDPR) is a prominent
example.

SPARTA D6.4 Public Page 4 of 88

D6.4 - Final Release of Demonstration

Figure 2.4: Data & privacy management workflow

Figure 2.4 shows an example of security workflow for designing and refining privacy management.
Briefly, the workflow starts from a specification of the system behavior and its data management logic.
An automatic analysis is then carried out to spot out potential issues in the way data is handled w.r.t.,
the GDPR definitions and rules. If some issues are found by a Data Protection Officer (a DPO tool),
privacy-enhancing technologies can be adopted. For instance, a privacy enhancing authentication
system (PEAS) can be considered to strengthen the authentication process. Similarly, searchable en-
cryption (SSE) can be included to prevent data disclosure during the evaluation of database queries.
Full details about this workflow and its components are given in Chapter 5, the demonstration of the
developed tools is presented in Section 6.3 and its evaluation in Section 7.4.Full details about this
workflow and its components are given in Section 5, the demonstration of the developed tools is
presented in Section 6.3 and its evaluation in Section 7.4.

2.3 Workflow implementation

The implementation of the workflow engine is a non trivial task. As a matter of fact, a generic workflow
may need to be integrated with any relevant aspect of the II life-cycle. For instance, consider again the
legacy technology management workflow discussed above. Since its tasks may occur during different
phases of the lyfe-cycle, its implementation may require particular attention. Below we briefly discuss
two implementation strategies that allow for the implementation of security workflows in the HAII-T.

2.3.1 TOSCA workflows

For implementing the security workflows we rely on TOSCA built-in functionalities. In particular,
TOSCA allows for the definition of two types workflows, i.e., declarative and imperative workflows.1

Both of them are meant to manage and modify the TOSCA topologies. For instance, they allow
for deploying, dynamically reconfiguring and deleating TOSCA nodes from a TOSCA topology. The
main difference is that declarative workflows are automatically generated by the TOSCA orchestrator
based on topology items (e.g., node, relationships and attributes), while imperative workflows are
manually specified.
To provide a concrete example, consider the following declarative workflow.

topology_template:
workflows:

1https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-
Profile-YAML-v1.3-os.html#_Toc26969478

SPARTA D6.4 Public Page 5 of 88

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html##_Toc26969478
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html##_Toc26969478

D6.4 - Final Release of Demonstration

install:
description: Installing and starting an application on a node
steps:

Install:
target: compute
activities:

- delegate: install
on-success:

- Configure
Configure:

target: compute
activities:

- set_state: configuring
- call_operation: tosca.interfaces.node.lifecycle.Standard.configure
- set_state: configured

on-success:
- Initialize_backend
- Initialize_frontend

Initialize_backend:
node: backend

activities:
- set_state: initializing_backend
- call_operation: tosca.interfaces.node.lifecycle.Standard.create
- set_state: starting_backend
- call_operation: tosca.interfaces.node.lifecycle.Standard.start
- set_state: backend_ready

Initialize_frontend:
node: frontend

activities:
- set_state: initializing_frontend
- call_operation: tosca.interfaces.node.lifecycle.Standard.create
- set_state: starting_frontend
- call_operation: tosca.interfaces.node.lifecycle.Standard.start
- set_state: frontend_ready

Briefly, the workflow consists of four tasks (steps), i.e., Install, Configure,
Initialize_backend and Initialize_frontend. The workflow execution starts from
the initial step which is responsible for instantiating the compute node where the application will
reside. This is achieved by delegating the operation the the install workflow defined by the compute
node. When this step is completed (on-success), the configuration task is launched. This task uses
the call_operation directive to trigger the execution of an operation defined by a TOSCA inter-
face. Then, two tasks occur in parallel, i.e., Initialize_frontend and Initialize_backend.
Since none of these two declare successor tasks, the workflow terminates upon their completion.
In terms of HAII-T implementation, TOSCA workflow have several advantages. In particular, they are
directly integrated in the II topology specificiation and they can combine, i.e., via delegation, different
functionalities provided by different nodes. Nevertheless, they also have limitations, in particular,
TOSCA workflows are bounded to a specific topology and its elements. However, in general we can
expect that some security workflows also include tasks that cannot be mapped to some node, e.g.,
think of workflows having humans in the loop.

2.3.2 Custom workflows

Custom workflows extend the native TOSCA workflows in order to surpass the limittions discussed
above. Custom workflows are implemented by means of external programs and scripts which rely on
orchestrator APIs to interact with the TOSCA topology and the II.
To better highlight the behavior of custom workflows, consider the following (abstract) custom work-
flow implemented by means of makefile.

SPARTA D6.4 Public Page 6 of 88

D6.4 - Final Release of Demonstration

.PHONY: sparta-compile
sparta-compile:

echo "Building and processing a model"
cat /sparta/topology.yml
| docker run -v /sparta/inputs.yml:/inputs.yml puccini compile --inputs=/inputs.yml
| python /sparta/python/script.py -d /tmp/sparta/ output.db process
echo "Done"

The makefile is responsible for carrying out two tasks, i.e., building a model by extracting and com-
bining fragments as well as other details from a target topology. Such a structure is very common
and many techniques share it. For instance, formal verification tools often rely on a formal specifi-
cation, e.g., a behavioral model of the target system. The first task in the example above is carried
out by means of docker container running Puccini,2 i.e., a TOSCA processor meant to parse TOSCA
topology specifications. Then, the second task applies a python script (script.py) to the output of
the previous step and, eventually, returns an output file (output.db).
Both the implementation strategies described above, i.e., TOSCA workflows and custom workflows,
have been applied during the implementation of the security workflows presented in this document.

2https://puccini.cloud/

SPARTA D6.4 Public Page 7 of 88

https://puccini.cloud/

D6.4 - Final Release of Demonstration

Chapter 3 Legacy technologies management

3.1 Secure software updates for wearable low-power IoT with RIOT, SUIT, and femto-
containers

With the emergence of COVID-19, the need for contact tracing in various places, in particular in the
work environment, has become a necessity. Contact tracing solutions have been quickly designed,
developed and massively deployed over the recent months leveraging smartphones applications and
Bluetooth radio scanning.
In the context of this use case, we design, implement and validate a prototype for contact tracing
using low-power IoT wearable devices, embedding open source software that is securely updatable
over the network e.g. to fix bugs and vulnerabilies, or to adapt to modified sanitary rules and new
precautions, based on new knowledge on a developing epidemics.

3.1.1 Related work on Contact Tracing

Such solutions include DP3T [5] (implemented in GAEN [45], the dominant solution), or ROBERT [27]
(implemented in TousAntiCovid [79], used in France). As debates and controversies flared concern-
ing the downsides of their design (centralized versus decentralized, impact on privacy etc. see for
instance [45, 82, 83]) alternatives are being explored.
One avenue aims to offer better privacy guarantees by exploring alternative secure multi-party com-
putation paradigms e.g. Private Set Intersection protocols 1.
Another avenue aims to modify the contact logging protocol. For example, DESIRE [28] is an alter-
native approach based on a hybrid mechanism logging cryptographically-generated encounter IDs
instead of logging user IDs, which aims to garantee more privacy-by-design. Beyond designing and
implementing algorithms, an important factor is the open/close source nature of this implementation
and of the software platform it is based upon. So far no solution is fully open source, although this
would improve transparency and may offer more opportunities for researchers to modify/optimize the
embedded software and algorithms across the stack.
Yet another trend intends to modify the hardware used for contact tracing. For example, a cheap
physical token could be used instead of a smartphone, such as experimented with in Singapore with
TraceTogether [9]. Studies such as [58] also show that Bluetooth, as used in this context, tends to
not provide distance estimations that are solid and reliable enough. Therefore complementary radio
thechniques are explored.
We have contributed to this space by designing PEPPER, a prototype and a fully open source plat-
form which enables experimenting with low-power IoT wearables and the full software stack in this
context, using commodity (disposable-like) physical tokens for contact tracing. We implemented and
demonstrated PEPPER as described below.

3.1.2 Architecture for Low-power Contact Tracing

Broadly speaking, contact tracing solutions are composed with the below building blocks and steps.

• 1. Enrollment: how a user initially registers his identity and his contact tracing device to the
contact tracing system;

• 2. Proximity discovery: how and what information on potential contacts is collected;
• 3. Contact registration: how an encounter is deemed relevant and what needs to be logged;
• 4. Exposure evaluation: how logged information is used to determine exposure;
• 5. Exposure declaration: how and what information is upstreamed by the user’s contact tracing

device;
1OpenMined Covid Alert PSI code. Online: https://github.com/OpenMined/covid-alert

SPARTA D6.4 Public Page 8 of 88

https://github.com/OpenMined/covid-alert

D6.4 - Final Release of Demonstration

• 6. Exposure notification: how and what warning information reaches users of the contact tracing
system;

In our preliminary work [35] we layed to ground for a fully open source platform based on RIOT to
experiment with low-power IoT wearables, or for proximity detection combining Bluetooth Low-Energy
(BLE) and Ultra-Wide Band (UWB) for above steps 2, 3 and 4. We use this base for our demonstration
as described below.

3.1.3 Femto-Containers for Low-power Business Logic DevOps

Our preliminary observation was that firmware updates and typical DevOps tools are inadequate for
the development, deployment and maintenance of low-power business logic, such as logic dedicated
to Step 3 and 4 (see above 3.1.2). Indeed, firmware updates in these cases are both highly inefficient
in terms of network transfer congestion and energy consumption.
We have thus designed Femto-Containers, a new architecture which enables containerization, virtu-
alization and secure deployment of software modules embedded on microcontrollers over low-power
networks.
As proof-of-concept, we implemented and evaluated Femto-Containers on popular microcontroller
architectures (Arm Cortex-M, ESP32 and RISC-V), using eBPF virtualization [88], and RIOT as host
operating system. We show in [89] that Femto-Containers can virtualize and isolate multiple software
modules, executed concurrently, with very small memory footprint overhead (below 10%) and very
small startup time (tens of microseconds) compared to native code execution.
We published Femto-containers open source implementations and tutorials [12]. We use femto-
containers as building block for our demonstration as described below.

3.1.4 PEPPER Prototype: IoT Hardware and Software

We have designed PEPPER, a prototype for low-power IoT wearables running embedded software
that can be securely updated over the network. We extended our prior work on SUIT-based secure
firmware updates [8, 90] to support SUIT-based Femto-Containers secure updates over low-power
networks.
From the embedded software and network point of view, we have implemented the PEPPER proto-
type using RIOT, extended and combined with

• hosting of a femto-container (as desribed in [89]),
• updatability of either the full firmware or only the femto-container over the low-power network,

using SUIT end-to-end security,
• network stacks wich scan BLE neighborhood and simultaneously, upon detecting an encounter,

perform UWB precise Two-Way Ranging (as described in [35]),
• accommodating various business logic for step 4 (see above 3.1.2) to evaluate exposure.

From the embedded hardware point of view, we have designed the PEPPER prototype based on a
DWM1001 Decawave board shown in Fig. 3.1, to implement a low-power adaptation of DESIRE [28]
contact tracing. The prototype includes wearable casing, as shown in Fig. 3.2, which we leveraged
in the demo described below.
Note that while the current hardware prototypes are rather ”bulky”, the same functionality (software,
network, business logic) could theoretically run on some much smaller form factor similar to the Apple
AirTag for instance (i.e. roughly the size of coin).

SPARTA D6.4 Public Page 9 of 88

D6.4 - Final Release of Demonstration

Figure 3.1: PEPPER contact tracing hardware and software design.

Figure 3.2: PEPPER prototype.

3.2 Software instrumentation for control-flow integrity on edge devices

To provide significant performance in terms of real-time execution, simplicity and low power consump-
tion, IoT applications are developed over low-cost devices, where the code is often directly executed
from the Flash memory with no middleware or supervisor layer. Furthermore, for optimization rea-
sons, C or C++ languages are widely chosen to program these devices. Still in 2021, IEEE Spectrum
rates them as the second and third most used languages in this domain [6]. C and C++ have the
advantage of allowing direct memory management to optimize its usage. Although, right this feature
may lead to common programming errors, causing problems such as memory leakage [11] or the
famous buffer overflow [10].
Malicious opponents can exploit this kind of weaknesses to launch very powerful attacks at the binary
level, such as Code-Reuse Attacks (CRA) [4] [73] [23], which are able to redirect the flow of execution
through groups of instructions already present in memory, in order to obtain a malevolent execution
with full expressiveness [80].
Control-Flow Integrity (CFI) has been investigated as the final defense solution [13]. The basic idea
is to statically get the Control-Flow Graph (CFG) of the application before execution, and then in-
strument an online monitor able to guarantee compliance with the CFG at runtime, i.e., to prevent
the program from performing different branches from those originally expected. The original idea to
implement such a monitor is to insert, within the executable code itself, additional pieces of code at
branches sites that, through a system of coupled unique labels, are able to perform an authenticate
the branch with respect to the CFG [13].
Provided that any instrumentation or addition must have as little impact as possible from the point
of view of the required time and/or energy due to the nature of the considered devices, a good

SPARTA D6.4 Public Page 10 of 88

D6.4 - Final Release of Demonstration

compromise would be reached if the branch authentications were optimized and limited to the points
of the program where the risk of control-flow corruption is really concrete. In fact, not all flow transfers
require validation, but only those whose destination is computed with data that has passed through a
data memory area at risk of corruption [64]. In addition, given the legacy scenario, it is good that such
instrumentation can take place at the binary level, without requiring the software creator to recompile
the executable.
The technique developed by us meets all the specified requirements. It is able to recompose the
CFG of the application, to identify the flow transfers that match a predefined risk pattern, and to apply
a binary instrumentation that is not fixed, but depending on the control-flow monitoring mechanism
adopted [40].

3.2.1 Protection features

Within the binary application, the engine that we developed is able to distinguish 7 categories (types)
of critical points for branch protection:

1. Forward insecure branches with single target: protected through the generation of 2 unique
labels (hashes), one for the source and one for the destination of the branch, which are verified
by the appropriate instrumentation code immediately before the execution of the branch and
immediately after it, at the intended destination location;

2. Backward insecure branches with single target: same as above;
3. Forward insecure branches with multiple targets: same as the case of single target, but

here all target locations are instrumented;
4. Forward secure branches to a routine ending with a backward insecure branch with mul-

tiple targets: this transfer is not to be protected, but the hash of the site to which the called
routine must return is stacked in a proper protected region, depending on the adopted monitor-
ing system;

5. Backward insecure branches with multiple targets: same as (2), but the hash of the target
site must correspond to the hash stacked as described in (4);

6. Forward insecure branches to a routine ending with a backward insecure branch with
single target: again, as in (4), the return site hash is stacked, but also the hash of the forward
target site is verified, to ensure both caller identity at return time and validity of destination of
the present call;

7. Forward insecure branches to a routine ending with a backward insecure branch with
multiple targets: same as above, but here all possible return sites are instrumented.

Branch protection alone is not sufficient to cover all cases in which the execution flow of a control
software running on endpoint devices can be maliciously hijacked. In fact, in undefined moments of
the execution, a processor can jump to execute special routines to serve interrupt requests (Interrupt
Service Routines, ISRs). Actually there is no static analysis that can forecast in which order (or
where in the code) these routines will be called, so they can never be part of a statically-extracted
CFG. Yet, the ISRs are full-fledged routines, which operate on data and registers and which preserve
the current program status moving it into memory. Not considering also the protection of the context
when switching to these routines results in hard risks [65].
For these reasons, our engine also identifies 2 additional categories of critical points for context
protection:

1. Entry points of an Interrupt Service Routine (ISR): all the Callee-Saved Registers (CSR),
that are the registers stacked and then used by the routine to execute its task, plus all the
registers automatically stacked by the architecture (e.g., in case of ARM, R0, R1, R2, R3, R12,
LR, PC and the status register xPSR), must be suitably stacked in a dedicated portion under
monitor control;

2. Exit points of an Interrupt Service Routine (ISR): here, the instrumentation to be inserted
concerns the integrity check of all the previously-mentioned registers, i.e., their content at the

SPARTA D6.4 Public Page 11 of 88

D6.4 - Final Release of Demonstration

end of the routine must be compliant with the content saved in the specific structure of the
monitor.

3.2.2 Protection algorithm

In the following, it is described the formal rule followed to apply the protection.
Let P be the program to be instrumented, with C the set of its instruction locations and X the set
of its data locations. X represents the union of Xk (set of constant memory locations), Xnk (set of
non-constant memory locations), R (set of CPU registers), I (set of virtual input locations) and O
(set of virtual output locations). The set Σc ⊂ X ∪ C is the set of source operands of the instruction
contained in c2.
The destination function is a function θ : X \ O 7→ X \ (I ∪Xk) such that y = θ(c) is the destination
operand of the instruction contained in c. A control-flow transfer instruction is an instruction c0 ∈ C
such that θ(c0) is the program counter register (PC) of the CPU. A basic block BB is an ordered
set of n ∈ N+ unique instruction locations ci ∈ C, with i ∈ [1, n], where cn is a control-flow transfer
instruction. The entry point of BB, (BB), is defined as c1 and the exit point of BB, (BB), is defined
as cn.
The Control-Flow Graph of P is formally defined as a directed graph G = (V,E) where V is the set of
basic blocks of the program P , and E is a set of ordered pairs (BBi, BBj) = eij , with BBi, BBj ∈ V ,
such that the location θ((BBi)) contains a value expressing the location (BBj). In such a case, (BBi)
can be referred to as (eij), and (BBj) can be referred to as (eij).
The edges of graph G can be further split into direct edges and indirect edges. A direct edge is
an edge eij = (BBi, BBj) such that the value expressing the location (BBj) is stored in Xk ∪ C,
i.e., through a constant or an immediate. On the contrary, an indirect edge is such that the value
expressing the location (BBj) is stored in R ∪Xnk, i.e., in a register or data memory location.
If an edge represents a branch towards a constant location, then it is secure by definition, and there
is no need to do any enforcement for it. The edges to be protected are therefore the indirect ones,
but not all of them. In fact, even if the argument of the control-flow transfer instruction is variable, it
can be composed of a combination of constants. The probability of this case certainly increases in
embedded applications, where the code is usually all present in Flash memory since the beginning,
and there is no dynamic linking. It is then reasonably assumed that no input can contribute to forming
a pointer to the code: in the worst case, a value generated at runtime can at most act as a selector for
a series of targets (e.g., function entry points), already predefined and constant. In light of this, the
only indirect edges at risk of hijacking are the edges whose target is determined even only partially
using data that has passed through the data memory, where some vulnerability may be present.
Therefore, to protect an indirect edge, it is necessary to reconstruct the origin of the value expressing
its target. The value is found by plotting the origin tree relative to the branch target. The origin
tree relative to a control-flow transfer instruction c originating an edge eij = (BBi, BBj) is a tree
Γc = (X, δ) defined over the set X, where the root is the location containing the value of (BBj), and
the child function is the function δ : (X ∪ C) \ O 7→ X \ (I ∪Xk) such that y0 = δ(x0) if y0 ∈ Σq, for
q ∈ C : θ(q) = x0. y0 is a leaf for Γc if y0 ∈ I ∪Xk.

2Σc contains c itself if an immediate operand is present.

SPARTA D6.4 Public Page 12 of 88

D6.4 - Final Release of Demonstration

(a)
(b)

Figure 3.3: A snippet of ARM-like Assembly language (a) and the origin tree Γc of c = BX R3 (b) [40].

Figure 3.3 shows an origin tree example, relative to the ARM Assembly instruction BX R3. The
content of R3 is determined by the sum of R4 and R5. In turn, R4 is an immediate. R5 is instead
computed as the sum of R8 and R11; while R11 is an immediate too, R8 is computed as the left shift of
the immediate 1, of 27 positions, i.e., leading to the hexadecimal value 0x08000000. In conclusion,
R3 hosts the value 0x08000240. As it is possible to notice, the complete history of R3 has been
reconstructed, and there is no value contributing to R3 which comes from data memory regions at
risk of corruption. In other words, even if BX R3 is an indirect edge, which can be considered as
insecure, it is completely secure, as no corruption is possible on the value finally stored in R3.
In light of this, using the formalisms defined so far, an indirect edge eij = (BBi, BBj) originating from
an instruction c is said to be secure iff

@x ∈ Γc : x ∈ Xnk (3.1)

All other edges are considered conservatively insecure, and therefore instrumented in light of what
listed in the previous subsection.

SPARTA D6.4 Public Page 13 of 88

D6.4 - Final Release of Demonstration

As final view, the developed engine takes as input:
1. an executable binary file containing the application to be protected;
2. the group of instructions to be added before the edge source instruction, possibly parametric

with respect to the position;
3. the group of instructions to be added before the edge target instruction, possibly parametric

with respect to the position.
The returned outputs are:

1. a binary executable instrumented in insecure sites;
2. a complete list of insecure sites, to be supplied to the control-flow monitor to implement the

protection.

Figure 3.4: The 5 stages of the CFI instrumentation engine.

After a complete disassembly of the source binary, the engine develops through 5 stages (Figure
3.4):

1. Parsing: it groups all disassembled instructions of all application functions by translating it into
an overall big Assembly source file;

2. Extraction: it outlines the general program stream exploring all the performed function calls and
retrieves the CFG of those functions that include indirect edges;

3. Reconstruction: it is responsible for determining the storing locations where indirect branch
operands transited (registers, non-constant data memory locations), tracing their history, and
therefore collecting the instructions that contributed to the value;

4. Recognition: it identifies the edges and classifies them based on specifications;
5. Instrumentation: it applies the instrumentation statements based on the discovered edge type.

3.3 Protocol verification

This chapter presents a methodology of IoT Protocols formal verification, as part of Legacy technolo-
gies workflow. The demonstrator described below presents an update of demonstrator described
in SPARTA Deliverable 6.3 (phase 1), and includes additional scenarios as part of demonstrator
phase 2. This document, in order to present all aspects and contributions of the protocol verification
demonstrator, will include a description of methodology and both phase 1 and phase 2 demonstrator
scenarios description.
Protocol verification demonstration consists of two parts, with two phases in each of them:

1. Model checking – formal modeling of IoT protocols and security relevant parts of protocols
• Phase 1 – Formal modeling of the unidirectional teach-in procedure in EnOcean protocol
• Phase 2 – Formal modeling of the high security authentication process in EnOcean proto-

col
2. Probabilistic model checking – IoT network risk analysis based on probabilistic model check-

ing and threat modeling

SPARTA D6.4 Public Page 14 of 88

D6.4 - Final Release of Demonstration

• Phase 1 – Risk analysis of hijacking of smart HVAC system in smart home environment
• Phase 2 – Risk analysis of hijacking of smart meter in smart home environment.

As stated in previous version of this deliverable, the general goal of this research is to review both the
methods of formal verification and their practical applications within IoT and Intelligent Infrastructures
domains.
A smart home environment, as part of SPARTA WP6 common use case, is selected in order
to demonstrate an application of different security-by-design, and especially formal modeling, ap-
proaches and tools. Modeled environment consists of different smart appliances and sensors, in-
cluding HVAC (smart humidity ventilation air-condition system), controller (presenting HEMS – smart
home energy management system), in house display, thermometer (using EnOcean protocol), smart
meter, access point (gateway), smart/wearable user devices, power distributor service, responsible
actor/s.

Figure 3.5: Protocol verification smart home environment

Model checking, and more specifically formal verification of protocols, presents the act of proving or
disproving the correctness of intended protocol with respect to a certain formal specification or prop-
erty, using formal methods. Possible checks include verification or falsification of security properties,
functional correctness, qualitative and quantitative analysis of protocol’s specifications or implemen-
tations. Some commonly used model checkers that focus on security protocols checking are AVISPA,
ProVerif, Scyther and Tamarin. In our analysis described in this document, the tool ProVerif3 is used,
which is widely used in literature, e.g. for the Needham-Schröder public-key protocol and corrected
versions modeling [60, 69], for studying TLS [19], for the verification of Signal [53] and the JFK pro-
tocol [15], etc. It is also used for the investigation of IoT protocols, especially for Bluetooth [30] and
for 5G [32, 91].
Probabilistic model checking is one of the methods to detect weaknesses and possible vulnerabilities
at an early stage of system architecture design. Most commonly used probabilistic formal verification
tools, that found their application in risk analysis, are PRISM and UPPAAL, with the STORM as the
most recent one. Our analysis is based on PRISM4, the most commonly used probabilistic formal
modeling tool, with a wide area of application domains including wireless communication protocols,

3https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
4https://www.prismmodelchecker.org/

SPARTA D6.4 Public Page 15 of 88

https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://www.prismmodelchecker.org/

D6.4 - Final Release of Demonstration

quantum cryptography and systems biology.

3.3.1 Model checking – formal modeling of IoT protocols

First demonstrator presents a formal modeling of IoT protocols based on model checking. Security
aspects of IoT protocols used in the Smart Home Domain (Bluetooth Low Energy, ZigBee, Z-Wave,
KNX-RF, Thread and EnOcean) are covered in several publications [51, 62]. While there are many
publications focusing on different security aspects for the protocols Bluetooth, ZigBee, Z-Wave and
Threat, the situation is different for EnOcean. The authors in [62] explicitly state that the security of
EnOcean protocol was not analyzed in the scientific literature. Our state-of-the-art analysis at the
beginning of the Sparta project confirmed that conclusion. Considering that EnOcean protocol is a
part of numerous Smart Home applications world wide, Sparta HAII-T program demonstrator includes
formal analysis of this protocol, in order to discover potential design-embedded weaknesses. This
demonstrator is implemented in two phases – phase 1 that includes EnOcean unidirectional teach-in
formal modeling, and phase 2 that includes bidirectional teach-in and authentication.

3.3.1.1 Methodology

A methodology for formal modeling of IoT protocols is presented on the Figure 3.6, in the form of
sequential flow chart. In order to apply a selected model checker on a given protocol, first a model as
input has to be created according to the specification. Since it is in general not possible to verify the
whole protocol specification, it is important to model the most important parts of it according to the
problem statement (e.g. functional check, check of authentication property or check if given attack
is possible). The output of the formal verification process is most commonly a proof of correctness
or a discovery of potential vulnerabilities. As for all tools which can handle an unbounded number of
sessions, the result can also be neither a verification nor a falsification of the statement. The reason
is that the verification of protocols for an unbounded number of sessions is undecidable in general.
In such cases ProVerif gives an attack derivation, which potentially can give hints how to reconstruct
an attack when manually inspecting it.

Figure 3.6: Model checking flow chart

SPARTA D6.4 Public Page 16 of 88

D6.4 - Final Release of Demonstration

3.3.1.2 Protocol specification

EnOcean is an IoT protocol developed by the EnOcean Alliance. Although it was patented in 2001,
it became an international standard in 2012, namely ISO/IEC14543 − 3 − 10. The standard has
been revised in March 2020 [48]. It’s signal range is specified as up to 100 meters in free-field and
up to 30 meters inside a building. It is optimized for battery-less ultra-low power devices and energy
harvesting applications in building and home automation, and it uses a wireless power supply. The
EnOcean standard involves the two lower layers of the TCP/IP model, the Network Access and the
Internet.
In order to initiate a communication between wireless devices in a radio network, a teach-in process
has to be performed in order to define which transmitter/s have to listen to a receiver [48, 51]. The
teach-in message can be sent in plain text or by using a pre-shared key.
EnOcean provides encryption, authentication, integrity checking and replay protection [38, 62]. The
protocol- and implementation-related security issues of EnOcean protocol are summarized bellow:

• Encryption: There are two options, namely AES-CBC and variable AES (VAES). Due to the
constant initialization vector used in the EnOcean specification, which is regarded as insecure,
using AES-CBC is not recommended.

• Authentication and integrity checking: AES-CMAC is used for this. In case there are no
all-zero payloads and the AES key is changed after at most 248 messages this is considered
secure.

• Replay protection: The RLC can be used in conjunction with the CMAC for a replay protection
Marksteiner et al. [62], based on previous findings, recommend to use a nonce-starting RLC, VAES
for encryption and CMAC for authentication and integrity checking.

3.3.1.3 Protocol modeling

We used applied pi calculus, a language introduced in [14], for the formal modeling of EnOcean.
This language is especially useful for the analysis of security protocols. Applied pi calculus are very
useful for describing concurrent processes and their interactions. A presentation of the language in
a tutorial style is given in [74].
For modeling choices and limitations the Dolev-Yao Model [36] is used. It assumes that a protocol
interacts with public communication channels (internet), where a potential attacker might have full
control over the communication channel. Therefore, an attacker might be able to read, modify, delete
or inject messages. In case the attacker is able to intercepts the key, the attacker is also able to
decrypt a message. However, an attacker is not able to decrypt any message without obtaining the
corresponding key, since cryptography primitives are assumed to be perfect. Our model focuses on
EnOcean High Security [38] which aims to enable a protection against special man-in-the-middle
attacks and a more flexible handling for devices. Due to the selected scenario the focus is on a pre-
shared key exchange in a secure way (and not via plain text). In this scenario, the key and the RLC
are sent encrypted. However, several parameters are sent in plain text. According to [38] the nonce
for the authentication represents the challenge and is therefore exchanged via air interface.
According to the security specification [38], the unidirectional authentication with high security set-
tings is specifically intended for (unidirectional) data flow applications, where one device is energy
autonomic (device A) and the other one is line-powered (as device B, acting as gateway).
On the other hand, the security specification states that use cases for bidirectional communication
include bidirectional data flow where both devices are line-powered and such where one device is
energy autonomic and the other one line-powered.
More details about this part of the formal modeling can be found in our paper [46].

SPARTA D6.4 Public Page 17 of 88

D6.4 - Final Release of Demonstration

3.3.2 Probabilistic model checking – risk analysis in IoT environment

Second demonstrator presents a risk analysis of smart home IoT network based on probabilistic
model checking. As previously stated probabilistic model checking is one of the methods to detect
weaknesses and possible vulnerabilities at an early stage of system architecture design. The general
goal of this demonstrator is to test a practical application of probabilistic model checking methodology
within IoT and Intelligent Infrastructures domains, by analyzing parts of Sparta HAII-T common use
case. The obtained results provide insight into potential threats and the likeliness of successful
attacks.
This use scenario focuses on a probabilistic risk analysis of two different smart home system config-
urations through threat modeling and model checking.

3.3.2.1 Methodology

The methodology for the application of formal methods to risk analysis with PRISM model checker is
shown in the Figure 3.7, in the form of sequential processes. The first step is the definition of the use
case sub-system architecture, its components and communication channels. The system architecture
is used for the threat-modeling step, which as a result provides a list of threats. The vulnerabilities
of the system and the attack possibilities are identified based on the threat list. Next, an efficient
means of calculating the exploitation probabilities for the identified vulnerabilities is implemented and
the attacker’s behavior thus modeled. The formal system model is created based on the system
architecture, the identified vulnerabilities with exploitation probabilities, and the modeled attacks. The
formal properties of the attacks are identified next, and the model is checked against the identified
properties using the model checker. This finally results in risk exposure scores.

Figure 3.7: Probabilistic model checking flow chart

3.3.2.2 Use case specification

As previously stated, this demo was implemented in two phases – phase 1 includes modeling of
smart HVAC system hijacking attack within smart home environment, and phase 2 includes modeling
of smart meter hijacking attack. Hijacking of smart HVAC system attack is modeled in order to
estimate the probability of a successful man-in-the-middle attack, with two different attacker goals
– hijacked heating and high power consumption, both as part of ransomware attacks. Hijacking of

SPARTA D6.4 Public Page 18 of 88

D6.4 - Final Release of Demonstration

smart meter is modeled in order to estimate the probability of a successful man-in-the-middle attack
within this scenario, where attackers main goals are to lower his power consumption, and commit
fraud.

3.3.2.3 Threat modeling

A purpose of threat modeling is the identification of threats and vulnerabilities within IT-related system
architectures [77, 81]. It also helps to put security and privacy by design into practice. As part of risk
analysis process presented in this chapter, a threat modeling approach is meant to secure a project
setup with a systematic security analysis. The model was created by using the Microsoft Threat
Modeling Tool [3], which works on data flow diagrams (DFD) that describes data stores, processes
and communication lines and provides threats based on the STRIDE model [47].
The Microsoft Threat Modeling Tool is not limited to a set of threats but offers the possibility to create
individual templates for a given domain. Furthermore, we rely on the Azure cloud and IoT templates
from Microsoft for the smart home area. We combine these templates with our own, which are based
on our research in the smart energy domain. In the model itself, different trust zones were identified
according to our use case. First, the trust zone of components is identified within the smart home,
then in the outsourced cloud area and the immediate personal area. It has to be emphasized that
modeled DFD of smart home environment is modeled as a part of a large smart grid environment,
and takes into consideration also back-end components of a smart grid system in detail, which results
in a high number of discovered threats. As an illustration Figure3.8 depicts a part of our DFD that
includes smart home environment components.

Figure 3.8: Threat model – Smart Home environment DFD [81]

SPARTA D6.4 Public Page 19 of 88

D6.4 - Final Release of Demonstration

In total, the modeling approach resulted in the identification of 1137 threats. These are classified
according to STRIDE, with additional one that describes threats in smart home components. The
latter also cover physical threats, which contribute to the overall number of threats. A detailed threat
model based on our demonstration use case and resulting threat list are given in our paper Vallant et
al. [81]. However, for the conducted assessment we rely just on the threats listed bellow, manually
selected in accordance with considered scenarios and devices:

• Threat ID: 857 – Elevation by Changing the Execution Flow in DCU
– STRIDE Category: Elevation Of Privilege
– An attacker may pass data into DCU in order to change the flow of program execution

within DCU to the attacker’s choosing.
• Threat ID: 880 – Spoofing the In-house display External Entity

– STRIDE Category: Spoofing
– In-house display may be spoofed by an attacker and this may lead to unauthorized access

to Smart Meter.
• Threat ID: 903 – An adversary may block access to the application or API hosted on In-house

display through a denial of service attack
– STRIDE Category: Denial Of Service
– An adversary may block access to the application or API hosted on In-house display

through a denial of service attack.
• Threat ID: 1005 – An adversary may gain elevated privileges and execute malicious code on

HEMS host
– STRIDE Category: Elevation Of Privilege
– If an application runs under a high-privileged account, it may provide an opportunity for an

adversary to gain elevated privileges and execute malicious code on host machines.
• Threat ID: 1013 – An adversary may execute unknown code on Heating/Cooling

– STRIDE Category: Tampering
– An adversary may launch malicious code into Heating and execute it.

• Threat ID: 1028 – Potential Excessive Resource Consumption for IoT Gateway or Thermometer
– STRIDE Category: Denial Of Service
– Resource consumption attacks can be hard to deal with, and there are times that it makes

sense to let the OS do the job.
• Threat ID: 1111 – Elevation by Changing the Execution Flow in IoT Gateway

– STRIDE Category: Elevation Of Privilege
– An attacker may pass data into IoT Gateway in order to change the flow of program exe-

cution within IoT Gateway to the attacker’s choosing.

3.3.2.4 Vulnerabilities and exploitation analysis

Next step in risk analysis process is modeling of each attack scenario as a sequence of attack steps,
which leads from an attacker to the exploitation of the system. Usually, every connection in the
system is implemented using different technology and communication protocols. Because of this,
each device in the network represents a distinctive security challenge for the attacker. From the
outside, the system can be accessed either physically or via a web interface. It should be noted that
advanced hacking skills and domain knowledge are mandatory in order to carry out the described
attacks.
In the hijacking of smart HVAC system scenario the attacker successfully exploits the vulnerabilities in
temperature regulation systems and their sensors. The ultimate target represents the HVAC system,
which represents the last link in a chain of devices. The attacker must gain control over the internet
system of the smart home. Then, the attacker must find a way to compromise the gateway of a

SPARTA D6.4 Public Page 20 of 88

D6.4 - Final Release of Demonstration

single smart home. Afterwards, the attacker injects a payload to obtain operational access in the
corresponding HEMS system. Finally, by controlling HEMS, instructions can be sent to the targeted
HVAC system. The overall attack steps are presented in Figure 3.9. More details are available in our
paper[81].

Figure 3.9: Attack scenario for hijacking of smart HVAC system[81]

In the hijacking of smart meter scenario an attacker exploits vulnerabilities in a household’s smart
meters. In our scenario, the attacker gains via the access point access to the smart meter. After-
wards, an attacker is able to interfere with the smart homes’ energy consumption in different ways.
The use case for this attack is shown in Figure 3.10.

Figure 3.10: Attack scenario for hijacking of smart meter system[81]

An important step in this process is an assessment of the system components from the exploitation
probability point of view. While exploitation probabilities in similar approaches are most commonly
estimated using an extensive literature survey [55, 67], we attempted to formalize this process by
using the CVSS tool 5[81].
In our approach, the CVSS tool is adopted for the calculation of exploitation probabilities, with certain
methodology modifications compared to the existing approaches. The first step is a mapping of the
components in use and their interrelation at the evaluated environment, based on the threats obtained
by the threat modeling process of the specified use cases.
The CVSS tool have several modules available, where the base score module, according to Wad-
hawan et al. [85], provides a good basis for the calculation of the probability of an attack. Base
score module have three sub-modules that can be used for calculating probabilities: exploitability,
scope and impact sub-modules. Exploitability sub-module reflects how easily a vulnerability can be
exploited, while the scope and impact sub-modules quantify the consequences of a successful ex-
ploit. In contrast to Wadhawan et al., our work takes into account, apart from exploitability of the
submodule, also the core and impact sub-modules, because in penetrating the smart grid related
systems, these impact-related parameters are also in the focus of an attacker and, therefore, should
be part of the calculation. The exploitability sub-module takes into account:

• The attack vector – reflects the context by which a vulnerability can be exploited;
• The attack complexity – outlines how much effort in the preparation or execution of the attack

against a vulnerable component the attacker have to invest;

5https://www.first.org/cvss/calculator/3.1

SPARTA D6.4 Public Page 21 of 88

https://www.first.org/cvss/calculator/3.1

D6.4 - Final Release of Demonstration

• Privileges required – denote the level of privileges an attacker must obtain in order to success-
fully attack a component;

• User interaction – if another human user must be involved for a successful attack.
The scope sub-module rates if a vulnerability in one asset affects other assets, which are outside of
this security authority.
The impact sub-module takes into account the CIA Triade:

• Confidentiality – to what extent confidentiality is affected;
• Integrity – refers to the trustworthiness and correctness;
• Availability – rates the impact of a successful attack to the availability of the affected component.

For less complex attacks, the base metric score is higher because such an attack have a higher
likelihood. The score obtained from the CVSS system in range 1–10, and is normalised to the range
0–1 for further calculations.
Selected threats to be modeled, and resulting exploitation probabilities are presented in Tables 3.1
and 3.2.

Table 3.1: Hijacking of smart HVAC system scenario – threats and exploitation probabilites [81]
Threat ID Threat Expl. Prob.
1005 An adversary may gain elevated privileges and execute malicious

code on HEMS host
0,57

1013 An adversary may execute unknown code on Heating/Cooling 0,59
1028 Potential Excessive Resource Consumption for IoT Gateway or

Thermometer
0,65

1111 Elevation by Changing the Execution Flow in IoT Gateway 0,59

Table 3.2: Hijacking of smart meter system scenario – threats and exploitation probabilities [81]
Threat ID Threat Expl. Prob.
857 Elevation by Changing the Execution Flow in DCU 0,57
880 Spoofing the In-house display External Entity 0,68
903 An adversary may block access to the application or API hosted

on In-house display through a denial of service attack
0,65

3.3.2.5 Formal Modeling

In order to perform formal risk analysis and to obtain an indication on how safety and security re-
quirements can be fulfilled within a given environment, selected model checker, PRISM, is applied
on the two described use scenarios, and several example attack scenarios are modeled. It has to
be noted that PRISM model checker requires manual modeling of the system under consideration.
The system is modeled in the PRISM model checker as MDP (Markov Decision Process) because of
the non-deterministic nature of cyber-attacks. In the modeling process it is assumed that an attacker
actively attacks the system, and has skills and means to perform certain attacks by exploiting existing
vulnerabilities. An attacker’s skills are measured through the maximum number of vulnerabilities that
he can try to exploit in one attack scenario—the cost value. For example, the attacker’s skill level in
range one to five (cost = (1 : 5)) means that a less skilled attacker is able to exploit only one vulner-
ability in one attack scenario, while a more skilled attacker can exploit up to five vulnerabilities at the
same time in one attack scenario [81].
After the system modeling is completed, the next step is the definition of the attack properties. These
properties are the formal definition and precondition of the successful attempt of an attack within
the modeled system. The properties are defined by using the Probabilistic Computation Tree Logic
(PCTL) [43], embedded in the PRISM model checker. The formal verification of the defined attack

SPARTA D6.4 Public Page 22 of 88

D6.4 - Final Release of Demonstration

properties results in the maximum likelihoods of successful attack attempt – risk exposure scores.
Modeled attack properties are described bellow.
Hijacking of smart HVAC system scenario:

• Attack scenario 1.1: Hijack heating – An attacker takes control over heating, high or optimal
temperature is detected, heating is switched on, resulting in damage;

• Attack scenario 1.2: Hijack HVAC – An attacker takes control over HVAC, optimal temperature
is detected, both cooling and heating are switched on, resulting in damage and high power
consumption.

Hijacking of smart meter system scenario:
• Attack scenario 2.1: Fraud – A user takes control over his and neighbor’s smart meter or con-

centrator, decreases his own power consumption, increases his neighbor’s power consumption,
responsible actors are not alerted;

• Attack scenario 2.2: Decrease bill – An attacker takes control over his own smart meter or
concentrator, and decreases the power consumption;

• Attack scenario 2.3: Increase bill – An attacker takes control over the user’s smart meter or
concentrator, and increases the power consumption;

• Attack scenario 2.4: Increase bill, no alarm – An attacker takes control over the user’s smart
meter or concentrator, increases the power consumption, the user is not alerted.

3.4 RIOT-AKA: cellular-like authentication over IoT devices

In the Internet of Things (IoT) context, because of the devices’ persistently connected status, secure
communication and authentication take a crucial role. The ”usual” risks, attacks and threats are
amplified and/or call for tailored defense and security measures [54]. When compared with the
security of traditional devices, IoT security comes along with an extra caveat: things (might) move
not only across environments but also across different owners. Note that such ”roaming” may occur
also when things are static or even buried in the environment itself - imagine, for instance, a smart
house which changes ownership: all smart objects deployed in the house are called to ”forget” the
past data history, and be controlled by the new owner.

We concentrate on one specific aspect: authentication and key agreement. An authentication
protocol devised to permit devices to roam through different domains, and to change domain
ownership, must obviously guarantee that no long term secrets are deployed in the entity/agent
which controls the smart environment.

3.4.1 Cellular Networks inspiration

The roaming problem has been widely addressed in cellular networks since their initial digital incar-
nation (i.e. the 2G/GSM system) and the current authentication mechanisms can be considered an
incremental evolution of the original protocol. Despite the technical improvements the authentication
and key agreement (AKA)[92] paradigm employed in cellular network has conceptually remained the
same. It clearly decouples [41] i) a ”home” entity ultimately responsible of maintaining long term
secrets and provide means to verify authenticity, from ii) a ”serving” entity (the visited domain) which
is instead called to run the actual real-time authentication process, without the need to access long
term secrets - it uses a bulk of authentication credentials opportunistically provided offline by the
home server.

3.4.2 RIOT-AKA contribution

We design a prototype as a preliminary proof-of-concept implementation and demonstration in order
to perform an experimental evaluation of our proposed authentication and key agreement protocol

SPARTA D6.4 Public Page 23 of 88

D6.4 - Final Release of Demonstration

called ”RIOT-AKA”, on the RIOT IoT secure Operating System. Our protocol is designed to mimic
as closely as possible the Authentication and Key Agreement (AKA) mechanisms implemented in
3G and beyond cellular networks, but using instead more common cryptography primitives (i.e. the
off-the-shelf HMAC-SHA256 construction already available in RIOT) and different communication
protocols (i.e. CoAP), since we do not have any backward compatibility requirement. As a side
contribution, we further explore the possibility to manage long term secrets generated via a Physical
Unclonable Function (PUF) exploiting the unique randomness of SRAM cells installed in IoT devices
running RIOT OS as their Operating System, thus achieving the possibility to deploy and manage
secrets which are never stored in the device memory. Since the premature state of our prototype, we
remark that it is a preliminary version; some extra details (such as sequence number anonymization
and generation of ephemeral encryption keys) are not yet supported and left to future implementation
work.

3.4.3 RIOT-AKA Authentication Framework

Figure 3.11: RIOT-AKA deployment framework

The RIOT-AKA authentication framework involves three entities: the IoT device, the ”serving” domain
in which the device is deployed, and the ”provider” cloud domain. A gateway placed in the service
domain acts as local authentication server using credentials retrieved offline from a provider’s home
authentication server. More specifically, our proposed scheme involves three phases (Fig. 3.11):
1) IoT device registration - the device is initially provided with a secret key K0. Such secret key is
normally issued by the provider’s home authentication server, and therein registered along with the
unique device identifier. As an alternative option, we further investigated the feasibility of issuing the
secret K0 via an SRAM Physically Unclonable Function (SRAM-PUF) made available by the RIOT
OS.
2) Retrieval of authentication credentials by the serving gateway - this operation is conceptually
identical to what happens in cellular networks, a part from the technical caveats concerning how such
authentication credentials are specifically computed. Specifically, once the IoT device roams into -
or is deployed - in an (eventually temporary) serving domain, the serving gateway retrieves a set of
N authentication ”vectors”, being N a configuration parameter which defines the (maximum) number
of authentications that can be performed by the IoT device before a new set of credentials shall be
retrieved. This operation is repeated every time all the previously retrieved authentication credentials
are consumed.
3) Run-time authentication and key agreement handshake - This is the online phase which occurs
whenever the IoT device performs the actual authentication (or re-authentication). As in the case of
cellular systems, also in our case the handshake performed over the air interface permits mutual
authentication using only two messages, as illustrated in Figure 3.11. First, the gateway sends a
message comprising i) a random challenge, ii) the sequence number of the current authentication,
and ii) an authentication token (AUTN) whose role is to permit the IoT device to verify that the gateway
is authentic (i.e. that it has received proper authentication credentials from the home authentication
server). Then, the IoT device replies with a message XRES which is a proof of its authenticity.

SPARTA D6.4 Public Page 24 of 88

D6.4 - Final Release of Demonstration

3.4.3.1 Protocol design details

In details, every authentication vector retrieved by the serving Gateway contains five quantities:
• RAND = random challenge;
• SEQ = sequence number, used by the IoT device as implicit challenge for the network authenti-

cation (see next discussion), and used by the home authentication server to control the retrieval
process;

• AUTN = HMACK0(RAND | SEQ | ”AUTN”)
the network authentication token that permits the IoT device to verify authenticity of the serving
domain - note the usage of the context string ”AUTN” in the computation;

• XRES = HMACK0(RAND | SEQ | ”XRES”)
the response of the IoT device to the gateway authentication challenge - the usage of a different
context string (namely, ”XRES”) guarantees an independent HMAC output;

• MKEY = HMACK0(RAND | SEQ | ”MKEY”)
the ephemeral master key used to derive the protocol-specific session keys.

Note that an interesting caveat of our approach (actually an improvement with respect to the ap-
proach used in the cellular networks) is the usage of both challenges (RAND and SEQ) in all the
computations - for backward compatibility reasons this is not done for XRES in 4G-AKA.

3.4.3.2 Key Agreement

Another notable difference of our proposed approach with respect to 4G AKA is the possibility to
combine RIOT-AKA with a legacy security protocol. For this purpose, we propose to derive a sin-
gle ephemeral master key (MKEY), and then integrate this key into a different protocol supported
by RIOT. We specifically see two interesting extensions along this line. The first one consists in us-
ing the ephemeral master key MKEY derived during the RIOT-AKA handshake as pre-master key in
the (Datagram) Transport-Layer-Security (TLS/DTLS) stack. Normally (D)TLS derives [71] the pre-
master key using an Ephemeral Diffie-Hellman (DHE) or an Elliptic Curve Diffie-Hellman (ECDHE)
exchange, which is extremely demanding [72] in terms of computational overhead and memory us-
age. (D)TLS also supports the option PSK (Pre-Shared Key) but this would yield a static secret key.
With our RIOT-AKA protocol, the two parties can easily produce a fresh Key at every new authentica-
tion, and provide that as PSK in a TLS handshake. Since we are already relying on CoAP-exchanged
messages, a second interesting approach consists in plugging the ephemeral MKEY in the OSCORE
[76] protocol, in order to protect the application layer request/response messages between the end-
points.

3.4.4 Implementation and Extensions

We provide a working prototype on real hardware in order to demonstrate our scheme. The code is
open-source, and it is published at [56] and [57] for reproducibility. Our experiments were carried out
on nRF52840-DK, Arm Cortex M-based IoT device with 1MB of Flash memory and 256kB of RAM.
For reliable measurements of the communication we used 6LoWPAN over Ethernet over serial. For
our setup, we used RIOT as the real-time operating system in version 2021.01. Our setup uses one
RIOT node communicating to a virtual Python-implemented server ”Gateway” node via a 6LoWPAN/-
CoAP protocol stack. The Gateway sends the request through HTTP(S) to the ”Provider” (which is
Python-implemented too) in order to receive all the hashing material needed for the Authentication
of the IoT device. We confront the two implementations for both PSK and SRAM-PUF key genera-
tion modes. They are not intended as a mere performance comparation between the two since they
are almost entirely the same code-base, but as a general overview of the two modes and how our
scheme impacts on real hardware. For the PSK mode we use a 32 bytes long key. In the SRAM-PUF
mode we can obtain and use a 10 bytes long key from the PUF. The key-provisioning part is not
included in the testing phase. The measurement captures the entire protocol exchange, including

SPARTA D6.4 Public Page 25 of 88

D6.4 - Final Release of Demonstration

network communication and hash generation. We start the measurements when the first packet is
sent out to initiate the authentication and stop them when the last packet is sent.

Table 3.3: Energy consumption
PSK SRAM-PUF Diff

AVG (mA) 1.02 1.06 0.04
MAX (mA) 4.64 4.63 -0.01

Table 3.4: Bandwidth consumption
PSK SRAM-PUF Diff

Linux CoAP (bytes) 149 149 0
RIOT-OS (bytes) 136 136 0
Time (s) 0.041 0.040 -0.001

Table 3.5: Memory consumption
PSK SRAM-PUF Diff

Text (bytes) 70976 71152 176
Data (bytes) 832 832 0
Bss (bytes) 28196 28212 16
Tot (bytes) 100004 100196 192

Table 3.6: ROM and RAM consumption
PSK SRAM-PUF Diff

ROM (bytes) 71808 71984 176
RAM (bytes) 29028 29044 16

Figure 3.12: RAM portions used by our implementation.

Figure 3.13: ROM portions used by our implementation.

SPARTA D6.4 Public Page 26 of 88

D6.4 - Final Release of Demonstration

3.4.4.1 Energy consumption impact

We observe that (Table 3.3) there is a 3.9% increase in the average energy consumption going
from PSK to SRAM-PUF key generation. However, we can safely assume that it is not a relevant
difference caused by the two modes but rather a normal slight fluctuation during execution in such
a small window of time. We can conclude the same for the peak value that sees a 0.22% decrease
from PSK to SRAM-PUF.

3.4.4.2 Bandwidth consumption impact

We observe that (Table 3.4) there is no difference at all on the bytes sent over-the-wire in the two
implementations. That is because the two behave the same, they just use a different key for the
HMACs. Time spent is basically identical (2% decrease from PSK to SRAM-PUF) for the same
reason.

3.4.4.3 Memory Consumption impact

We see (Table 3.5 and 3.6) a minimal difference in the two implementations on the memory consump-
tion. That is caused by the fact that we include (or exclude) the Modules of the SRAM-PUF from the
compilation by changing a flag in our Makefile. ’Text’, ’Data’ and ’Bss’ refers to the objects that divide
the .ELF files of a compiled application: ‘Text’ is what ends up in flash memory (ROM). ‘Data’ refers
to initialized data, which is not constant, so in ends up in both ROM and RAM. ’Bss’ refers to all unini-
talized data and ends up entirely in RAM. Specifically, we can see in a 0.25% ROM usage increase
(176 bytes) and a 0.06% RAM usage increase (16 bytes) going from PSK to SRAM-PUF. Fig. 3.12
and 3.13 graphically highlight our implementation’s used ROM and RAM memory portions in our nrf
board (differences between PSK and SRAM-PUF being negligible). Overall, memory consumption of
our prototype is totally suitable and feasible in a IoT usage environment especially since we still have
room for a lot of optimization.

SPARTA D6.4 Public Page 27 of 88

D6.4 - Final Release of Demonstration

Chapter 4 Intrusion management

Under reasonable assumptions, intrusion events should always be considered possible in any infras-
tructure. Managing these events requires a proper design as well as runtime strategies for minimizing
risk and impact. Intrusion management workflow demonstrates how Intelligent Infrastructure is ca-
pable to mitigate intrusion risks by reorchestrating mobile services in Fog architecture. At runtime
the security of the infrastructure is monitored using IDS systems. To avoid false positive events the
Human-in-the-loop approach is used (see Figure 4.1). The possible intrusion events are detected
by IDS systems, and reported to the human, which can mitigate the increased risk levels by using
means available in the Intelligent Infrastructure.

Figure 4.1: Intrusion management workflow.

Intrusion management demonstration workflow is following:
1. One of the IDS systems detects that security of one of Fog nodes is compromised and shows

corresponding warning to the monitoring specialist using GUI;
2. Human decides to mitigate the security risk by informing the Intelligent Infrastructure that the

security level of the affected Fog node changed from “High” to “Low”. He/she uses GUI and
informs the orchestrator of the corresponding Fog node about the reduced security level;

3. Orchestrator evaluates new situation and decides to reorchestrate services running on the com-
promised Fog node by placing them in the remaining Fog nodes, as their security is still “High”
and available resources are sufficient to run all services;

4. All services from the compromised Fog node migrate to the remaining Fog nodes and overall
security of the intelligent infrastructure is restored.

The remaining of this chapter is organized in the following way: first, the technologies used in two
Intrusion Detection Systems developed by ITTI and Inria are presented, then the method for dynamic
service orchestration in the Fog Computing proposed by KTU is described, and finally the results are
summarized.

4.1 ML-based Network Intrusion Detection System

Network Intrusion Detection Component
The tool responsible for detecting cyberattacks is built upon the Apache Spark. The choice of this
particular framework is motivated by the fact that it has established a great, unrivalled reputation as
being fit for dealing with vast volumes of information, and capable of distributing tasks to multiple
servers. The tool is of modular character and leverages languages such as Python or Scala. This
feature makes it possible to include additional components, and the architecture remains scalable,
as it is able to employ further spark workers and administer work among servers. The pipeline of the
Component has been presented in Figure 4.2.

SPARTA D6.4 Public Page 28 of 88

D6.4 - Final Release of Demonstration

Figure 4.2: The pipeline of the Network Intrusion Detection Component

The intrusion detection tool receives the data for processing via the distributed streaming platform.
As it is done by means of Apache Kafka, it enables receiving, validating, transforming and sending
messages among applications. The process begins with a mode responsible for sourcing data from a
stream and inspects the data on the network traffic. The data is provided in the form of frames on one
of the Kafka topics by the collector module; thus, the data can be collected either from miscellaneous
devices connected to the network, or inspect the live network flow. As soon as the Netflow frames
have been transformed into an exact Kafka topic, the information is then cleaned and scaled, and
the features get extracted. After pre-processing, the data is sent to the classifier module, based
on machine learning. There, the classification of specific frames takes place, by means of a trained
model, such as an artificial neural network. Based on this, a specific label is assigned. The outcomes
are then published to the Kafka bus. The architecture enables employing an infinite number of models
and processes, which contribute to the creation of a machine learning environment which is complex
and convoluted. The entirety of the environment is integrated into Elasticsearch. In turn, thanks to the
application of the Kibana solution, the outcomes are visualized in the form of comprehensive, easily-
understandable dashboards. In this architecture, the network traffic from the configured devices is
analysed and monitored in real time. Delivered in the NetFlow format, the traffic goes through the
machine-learning-based anomaly detection algorithms. The Kafka message on a predefined topic is
sent to the service in the json format (See: Table 4.1); it is also the format of the system’s outcome
(Presented in Table 4.2).

Table 4.1: INPUT. Schema: NetFlow. Input data format: JSON. Documentation NetFlow Collector:
https://www.ntop.org/guides/nprobe/cli options.html#usage-examples

Parameter Name Description
1 IN BYTES Incoming flow bytes (src->dst)
2 IN PKTS Incoming flow packets (src->dst)
3 PROTOCOL IP protocol byte
4 SRC TOS TOS/DSCP (src->dst)
5 TCP FLAGS Cumulative of all flow TCP flags
6 L4 SRC PORT MAP Layer 4 source port symbolic name

SPARTA D6.4 Public Page 29 of 88

D6.4 - Final Release of Demonstration

7 L4 DST PORT MAP Layer 4 destination port symbolic name
8 SRC AS Source BGP AS
9 DST AS Destination BGP AS

10 LAST SWITCHED SysUptime (msec) of the last flow pkt
11 FIRST SWITCHED SysUptime (msec) of the first flow pkt
12 OUT BYTES Outgoing flow bytes (dst->src)
13 OUT PKTS Outgoing flow packets (dst->src)
14 MIN IP PKT LEN Len of the smallest flow IP packet observed
15 MAX IP PKT LEN Len of the largest flow IP packet observed
16 ICMP TYPE ICMP Type * 256 + ICMP code
17 TOTAL FLOWS EXP Total number of exported flows
18 MIN TTL Min flow TTL
19 MAX TTL Max flow TTL
20 DST TOS TOS/DSCP (dst->src)
21 FLOW START SEC Seconds (epoch) of the first flow packet
22 FLOW END SEC Seconds (epoch) of the last flow packet
23 FLOW DURATION MILLISECONDS Flow duration (msec)
25 ICMP IPV4 TYPE ICMP Type
26 ICMP IPV4 CODE ICMP Code
27 APPL LATENCY MS Application latency (msec), a.k.a. server response time
28 SRC TO DST AVG THROUGHPUT Src to dst average thpt (bps)
29 DST TO SRC MAX THROUGHPUT Dst to src max thpt (bps)
30 DST TO SRC MIN THROUGHPUT Dst to src min thpt (bps)
31 DST TO SRC AVG THROUGHPUT Dst to src average thpt (bps)
32 CUMULATIVE ICMP TYPE Cumulative OR of ICMP type packets
33 FLOW PROTO PORT L7 port that identifies the flow protocol or 0 if unknown
34 LONGEST FLOW PKT Longest packet (bytes) of the flow
35 SHORTEST FLOW PKT Longest packet (bytes) of the flow
36 RETRANSMITTED IN BYTES Number of retransmitted TCP flow bytes (src->dst)
37 RETRANSMITTED IN PKTS Number of retransmitted TCP flow packets (src->dst)
38 RETRANSMITTED OUT BYTES Number of retransmitted TCP flow bytes (dst->src)
39 RETRANSMITTED OUT PKTS Number of retransmitted TCP flow packets (dst->src)
40 L7 PROTO Layer 7 protocol (numeric)
41 DURATION IN Client to Server stream duration (msec)
42 DURATION OUT Client to Server stream duration (msec)
43 TCP WIN MIN IN Min TCP Window (src->dst)
44 TCP WIN MAX IN Max TCP Window (src->dst)
45 TCP WIN MSS IN TCP Max Segment Size (src->dst)
46 TCP WIN SCALE IN TCP Window Scale (src->dst)
47 TCP WIN MIN OUT Min TCP Window (dst->src)
48 TCP WIN MAX OUT Max TCP Window (dst->src)
49 TCP WIN MSS OUT TCP Max Segment Size (dst->src)
50 TCP WIN SCALE OUT TCP Window Scale (dst->src)
51 PAYLOAD HASH Initial flow payload hash
52 SRC AS MAP Organization name for SRC AS
53 DST AS MAP Organization name for DST AS

SPARTA D6.4 Public Page 30 of 88

D6.4 - Final Release of Demonstration

Table 4.2: Output. Data format: JSON
Parameter Name Description
1 ID UniqueId
2 version Version of detector
3 partner IP protocol byte
4 timestamp Alert Timestamp
5 alert type Category of Alert
6 src add Source address IP
7 dst add Destination address IP
8 protocol Protocol

4.2 Anomaly-based Intrusion Detection System

The second IDS used in the Intrusion management workflow is an anomaly-based IDS. During a
preliminary phase called ”the learning phase”, a model which characterizes the normal behavior of the
system is built. The normal learned behaviors are observed during executions that are not disturbed
by malicious actions or misuses. As only safe scenarios are learned, the anomaly-based IDS does
not rely on labeled data. The learning phase ends when the knowledge of the set of possible normal
behaviors seems fairly complete. Indeed multiple observations are needed to capture the diversity of
correct behaviors produced by authorized interactions between the various entities of the system. In
a second phase called ”the detection phase”, the built model is used to monitor the progress of the
system: any deviation from the behavior expected by the model is interpreted as the manifestation of
an attack or a misuse that falls out of normal system operation.

4.2.1 Supervision of a Partially Ordered Set of Events

Initially the proposed solution was designed to supervise the execution of distributed applications.
In this context, the observation and the interpretation of a behavior are carried out at the highest
level (source code level). At runtime, thanks to an instrumentation of the application’s source code,
the occurrences of significant actions (corresponding to instructions previously identified within the
code) are captured. Each occurrence is called an event and the whole set of observed events is
called a trace. In the proposed solution, a trace is exploited to build different representations of
the monitored computation (lattice, automaton, list of invariants, ...). All these possible models are
based on the same basic principle: the gathered trace is interpreted as a partially ordered set of
events (POSet). In the case of a distributed computation, the order relation is naturally linked to the
notions of dependency and concurrency between events occurring on different machines. Through
two sub-models used in parallel (one based on an automaton and the other based on invariants), the
proposed IDS checks whether the order of occurence of events is acceptable or not with regard to
the constraints defined by the automaton and the list of invariants. To reduce their sizes and also to
obtain a more general characterization of acceptable behaviors, the two sub-models are based on the
definition of event types. An event is unique and appears only once in the trace while its event type
(more generic) may be present several times. In the case of a distributed computation, the definition
of such event classes can be done in a simple and natural way because, at a minimum, the events
can be grouped according to the instruction of the code which triggered them. In the sub-models, the
notion of event type is central. The set of learned event types is the alphabet of the automaton and
each transition is labelled with a particular event type. An invariant is a temporel property (satisfied
during all the learned executions) that refers to two different event types. For example, the invariant
”an event of type a is never followed by an event of type b” focuses on two event types, namely a and
b.
In [34], we describe how this IDS strategy can be applied to detect attacks against a particular dis-
tributed application, namely a distributed file system called XtreemFS (http://www.xtreemfs.
org/).

SPARTA D6.4 Public Page 31 of 88

http://www.xtreemfs.org/
http://www.xtreemfs.org/

D6.4 - Final Release of Demonstration

4.2.2 Analysis of a Network Traffic

During the second part of the SPARTA project, we have investigated the possibility of using the same
approach to analyse network traffic. In this new context, the traffic is observed in a particular location
of the network by a packet sniffer in charge of capturing packets and presenting them to the IDS
(either on the fly or within a PCAP file). In order to be able to use similar analysis techniques, we
assume that each observed packet is corresponding to an event and the sequence of packets is
interpreted as a totally ordered set of events.
Figure 4.3 describes the four main components of the IDS and their interactions.

Figure 4.3: General View of the Architecture of the Second IDS

• A component ”Pcap Sniffer” is in charge of the capture of the traffic. This component can
either immediately transfer information about each observed packet (online detection phase)
or store this data in a file that will be used later during an offline processing (learning phase
or detection phase). The information delivered includes the main fields of the packet’s header
namely the source and destination IP adresses, the source and destination ports, a frame
number, a timestamp and a label which may identify the used protocol.

• A component ”Builder” is repeatedly executed to create one model (i.e. an automaton plus a
list of invariants) for each captured traffic. For example, in Figure 4.3, the ”Builder” component
is executed n times. During each of its execution, the input is either a classical Pcap file or a
file produced by the ”Pcap Sniffer” component.

• A component ”Generalizer” is in charge of merging the different models that have been created
separately by the previous component. This distribution of roles between the two main compo-
nents used during the learning phase allows to update the model incrementally by learning new
executions when necessary. While merging the models, the component can also used various
techniques to transform the model so that it can now accept more behaviors close to those that
have been learned.

• The last component ”Detector” is used during the detection phase to check if a particular net-
work traffic is compliant or not with the model constructed previously. Detection can be done
online or offline. Packets are analyzed in the order in which they have been observed. An alert
is generated when an event (i.e. a packet) is rejected for at least one reason. An event can be
rejected by the automaton when its event type does not belong to the automaton’s alphabet or
when no transition labeled with this event type allows a progression from the current state. An
event can be rejected by an invariant which refers to its event type if its occurrence at this stage
of the execution violates this invariant. So when an alert is raised, the offending packet may

SPARTA D6.4 Public Page 32 of 88

D6.4 - Final Release of Demonstration

have been rejected for several reasons.

Analyzing a totally ordered set of events rather than a partially ordered set slightly decreases the in-
terest of some features provided in the initial solution. Adaptations to the tools were necessary to take
into account the fact that the order relation between events (corresponding now to network packets)
is much less significant than the dependencies between high level events of a distributed application.
Indeed, the order in which packets of various origins are routed and pass through a point of the net-
work is often meaningless. Consequently, the use of generalization techniques which allow the model
to accept behaviors relatively close to the learned ones has been reinforced. Finally, as the two sub-
models are based on the definition of event types, it is necessary to associate a generic type to each
network packet. Due to the absence of semantic information, the event types that can be defined are
rather artificial. Moreover, several choices are possible and the final choice has a real impact on the
size of the constructed model, the time required for the detection and the accuracy of the detection
(false negative and false positive). Table 4.3 summarizes different definitions of event types that can
be selected by the IDS user when the learning phase starts (the user indicates its choice using a
configuration file). The event types contained in this table are specified using only four fields namely
the source and destination ID (or two keywords ”external” for external addresses and ”internnode”
for internal adresses) and the source and destination ports (or a modulo applied on the port num-
ber or a focus on registered special ports). These possible choices have been evaluated using the
CIC-IDS-2017 dataset (https://www.unb.ca/cic/datasets/ids-2017.html) to determine
their impacts on the IDS. To quickly give an idea of this impact, when the trace corresponding to the
first day of the CIC-IDS-2017 dataset is used to build a model, the number of discovered invariants
is comprised between 488 (if choice number 31 is selected) and 3.461.509 (if choice number 34
is selected). A similar gap appears also when the size of the automaton is considered. Thus the
definition adopted to specify the event types has to be carefully selected depending on the context,
the expected accuracy and the ressource capacities. To provide more flexibility, the two event type
definitions used by the two sub-models (automaton and list of invariants) can be different.

SPARTA D6.4 Public Page 33 of 88

https://www.unb.ca/cic/datasets/ids-2017.html

D6.4 - Final Release of Demonstration

No Event Type Definition Example
20 Source Keyword : Port external:80
21 Destination Keyword : Port internnode:5325
22 Source Keyword : Special Port internnode:21
23 Destination Keyword : Special Port external:neg
30 Source IP 192.168.10.12
31 Destination IP external
32 Source IP : Port 192.168.10.9:80
33 Destination IP : Port external:5325
34 Source IP : Port % Modulo 192.168.10.1:3
35 Destination IP : Port % Modulo 192.168.10.2:4
36 Source IP : Special Port 192.168.10.1:22
37 Destination IP : Special Port 192.168.10.14:neg
40 Source Keyword : Port - Destination Keyword internnode:80-external
41 Source Keyword - Destination Keyword : Port internnode-external:5235
42 Source Keyword : Port - Destination Keyword : Port external:80-internnode:5642
43 Source Keyword : Special Port - Destination Keyword internnode:80-external
44 Source Keyword - Destination Keyword : Special Port internnode-external:neg
50 Destination IP : Port \external external
51 Source IP - Destination IP 192.168.10.1-external
52 Source IP : Port - Destination IP 192.168.10.1:80-192.168.10.2:6423
53 Source IP - Destination IP : Port 192.168.10.1-192.168.10.2.80
54 Destination IP : Port % Modulo \external external
55 Source IP : Special Port - Destination IP external:80-192.168.10.12
56 Source IP - Destination IP : Special Port 192.168.10.12-external:neg

Table 4.3: Some Definitions of Event Types Accepted by the IDS

4.3 Method for Dynamic Service Orchestration in the Fog Computing

The need for dynamic service orchestration rises from the nature of the Fog architecture which in-
cludes various heterogeneous constrained Edge devices. Moreover the situation near the Edge of
the infrastructure is dynamic and changes rapidly during the runtime of the system. The changes may
include: security of the Fog node is compromised and some critical services need to be reallocated;
security of the Edge sensor or actuator is compromised and depending services should no longer
trust them; Edge device moves in space and corresponding services need to be reallocated to meet
the requirements of communication protocols; energy, power, computational resources of the Fog
node are exhausted and services need to be redistributed among all available Fog nodes to achieve
best possible running time of the whole solution; etc. Dynamic service orchestration may be applied
to address these challenges. A more detailed analysis of these issues and proposed novel method
for Dynamic Service Orchestration in Fog Computing is published in paper [68].
The simplified architecture of such approach is presented in Figure 4.4.

SPARTA D6.4 Public Page 34 of 88

D6.4 - Final Release of Demonstration

Figure 4.4: Architecture of Fog orchestrators.

The main parts here are the orchestrators, which are running in all Fog nodes and collect information
about the infrastructure and the services. Orchestrators communicate with each other and exchange
the information about the capabilities of Fog nodes, current status of the software and hardware,
as well as maintain the service catalogue. All services in such architecture are mobile and may
migrate, stop, start, suspend and resume their operation upon request of corresponding orchestrator.
To monitor the situation changes during the runtime orchestrators execute the control loop presented
in Figure 4.5. The control loop allows orchestrators to react to the changing situation and make
corresponding decisions. The main processes in the control loop are the following:

• Monitoring. Collect dynamic information about all Fog nodes and running services and detect
if the situation is changed compared to the previous state.

• Optimization. Find the best service distribution among all available Fog nodes according to the
current situation in the Intelligent Infrastructure while satisfying multiple constraints and optimis-
ing QoS, including security level, available power, available energy, bandwidth limitations, RAM
and CPU utilization, etc.

• Execution. If the new optimal service placement is different from the actual, initiate services
migration from one Fog node to another to achieve optimal distribution of services while pre-
serving the running state.

Figure 4.5: Fog orchestration control loop.

To implement the control loop two solutions described in the next subchapters are used. Multi-agent
based architecture allows to implement mobile services needed for the execution phase. Communi-

SPARTA D6.4 Public Page 35 of 88

D6.4 - Final Release of Demonstration

cation and collaboration oriented nature of the Agents also helps to implement the monitoring phase.
Method for finding optimal placement of the services provides a solution for the optimization phase.

4.3.1 Method for Finding Optimal Placement of the Services

An optimization method must help to distribute the available services among Fog nodes while ensur-
ing the required level of QoS and using minimal resources from Fog and End devices, thus providing
the longest lifecycle of the whole Intelligent Infrastructure. The objective of this method is to find which
placement of n available services in k Fog nodes is the best according to a given multiple constraints
and conditions. To simplify the problem we assume that different Fog nodes have different character-
istics and capabilities, but are able to host all the services. The goal of an optimization is to place the
services in such a way, that a set of QoS parameters is optimal. QoS parameters of the i-th possible
service placement Xi are expressed by the values of the objective functions fj (Xi), j = 1, 2, . . . ,m
(where m is a number of objective functions used for optimization) and constraints (Equation 2).
The objective of the optimization is to find the best service placement Xopt which minimizes all the
objective functions fj :

Xopt = argmin
i
F (Xi) (1)

where F (x) = {f1 (x) , f2 (x) , . . . , fm (x)} is a set of the objective functions, and x ∈ {Xi} is a
member of the set with all the possible service distributions.
Constraints are given by equations:{

gj (Xi) ≥ 0, j = 1, 2, . . . , ng
hk (Xi) = 0, k = 1, 2, . . . , nh

(2)

Some examples of the objective functions considered in this method are following: A security of the
whole system fsec (.) is defined by the lowest security of all the services. Security levels are ex-
pressed in security bits, according to NIST [17] recommendations. CPU usage fCPU (.) and RAM
usage fRAM (.) evaluate how evenly hardware resources of available Fog nodes are used. Power
usage fpw (.) is evaluated using the average power requirements of each service and the available
power of Fog nodes. Criterion of maximum range frng (.) accounts for the preference of local commu-
nications which helps to minimize energy consumption and bandwidth limitations. Other criteria such
as permanent storage capabilities, communication channel bandwidth and latency, etc. may also be
used by defining corresponding objective functions, which must have following characteristics:

• A return value of the function must be a positive real number.
• Better values of the criterion must be represented by smaller numbers.

As one can see, the objective functions are contradicting to each other so there is no single solution
to this multi-objective optimization problem that optimizes all the objective functions at the same time.
So the two stage optimization method, summarized in Figure 4.6 is used.

Figure 4.6: Main steps of service distribution optimization process.

Modified Integer Multi Objective Particle Swarm Optimization (IMOPSO) [68] method is used to find a
set of Pareto optimal solutions. All service placements in this set are non-dominated (Pareto optimal),
which means that each of them is better than all the other ones by at least one criterion. The second

SPARTA D6.4 Public Page 36 of 88

D6.4 - Final Release of Demonstration

step is to choose best solution from the Pareto optimal set by using the Analytical Hierarchy Process
(AHP) [52, 75]. AHP uses only a pairwise comparisons of all alternatives by all objective functions, is
easy to implement and gives consistent results. An example of three-level AHP process structure is
presented in Figure 4.7.

Figure 4.7: Hierarchical structure of AHP [68].

On the top level is an objective of the process – optimal distribution of the services among Fog nodes.
The bottom level is alternatives – all Pareto optimal solutions which were found using the IMOPSO
method in the previous step. All objective functions used in the IMOPSO part of the process are
used as criteria in the middle level of AHP process. In order to get one final answer all criteria
must be assigned a weight. This is done by using a pairwise comparison of the criteria and forming
the so called judgment matrix. This step must be done manually by human, as only the human can
compare two criteria and decide which one is more important in the given application area. Thankfully,
judgment matrix can be formed once, deployed into the orchestrator, and after that the AHP process
is fully automatic and is able to choose one best alternative.

4.3.2 Prototype Architecture for Hosting of Mobile Services

The prototype IoT system (see Figure 4.8) was developed to demonstrate the feasibility of the moni-
toring and execution stages of the dynamic Fog service orchestration.

SPARTA D6.4 Public Page 37 of 88

D6.4 - Final Release of Demonstration

Figure 4.8: Prototype system architecture.

The prototype was implemented as Multi-Agent system [37, 87] using Jade platform [18]. Multi-Agent
architecture is suitable for development of loosely coupled resilient IoT systems [31, 70] and allows
to implement all Fog layer services as independent mobile agents which are able to communicate
between each other, make decisions and migrate between different Agent platforms as needed.
Each Fog node runs an Agent platform (Jade platform), and all services are implemented as Agents.
All agents may be divided into three different classes: sensor and actuator agents, decision agents
and orchestrator agents. Sensor and actuator agents run inside the Fog nodes and are responsible
for monitoring and controlling physical devices placed in the Edge layer. In prototype implementa-
tion we have lighting agents which communicate with lighting sensors using CoAP protocol and are
able to respond to the queries from the other agents providing them the current state of the lighting.
Bulb control agents use CoAP protocol to activate (or deactivate) the physical bulb in the Edge layer.
These agents are able to respond to messages from other agents and according to them control the
bulb they are responsible for. The prototype Edge layer devices were build using ESP8266 microcon-
trollers, which implement CoAP protocol for communications with Fog node services. BH1750 sensor
was used for measurement of lighting and simple LED for emulating the bulbs. “Virtual” versions of
sensor and actuator agents were also implemented. Theses agent act as normal agents of the corre-
sponding type but they do not communicate with real hardware in the Edge layer. These agents allow
to easily increase the number of Fog nodes and services without needing to use additional hardware.
Decision agents are the agent which provide the “useful” service. They are software agents which
are responsible for lighting control in the rooms. To make things simple very straightforward decision
algorithm was used. Each decision agent continually communicates with lighting agents and gets the
current lighting conditions. If the lighting is less than the predefined threshold level, then the decision
agent contacts the bulb control agent ant asks it to activate the bulb. The process is inverted if the
lighting conditions are better than predefined threshold.
Orchestrator agent is the agent responsible for implementing platform status monitoring and execu-
tion of changes. Each Fog node (or Jade platform) has one orchestrator agent, which communicates
with all other local agents and collects basic information about them: the list of available agents, the
current state of the agents (running, suspended, stopped), etc. Each orchestrator is also responsible
for monitoring the local network and detection of the new Fog nodes if they emerge during the run-
time. Each orchestrator communicates with all other known orchestrators and collects the information
about all services available in all know Fog nodes.

SPARTA D6.4 Public Page 38 of 88

D6.4 - Final Release of Demonstration

If some changes occur in such dynamic system then all orchestrators will collect information about
them. After the changes are detected the orchestrator must decide if the current situation is optimal
according to the application specific QoS requirements. This is done by using the method for finding
optimal placement of the service described in the previous subsection. If the new optimal placement
of services differs from the current actual state, then the process of service migration is started.
Orchestrator communicates with all affected agents and tells them to move to the new Fog nodes as
required by optimal placement. To make things simpler in the prototype implementation all services
are provided using WiFi protocol, which has sufficient range to place all services in all available
Fog nodes. Moreover, as Fog nodes are implemented as Docker containers, they have sufficient
resources to host all services without degrading the overall performance of the whole Intelligent
Infrastructure. The main goal of demonstration in such conditions is to ensure ”High” security level of
the whole infrastructure, which means, that all services must be placed only in those Fog nodes which
can provide ”High” security levels. If some security problems are detected (e. g. by IDS system) then
the services from the affected Fog node must be removed and placed into more secure Fog nodes.
The method for finding optimal placement of the services was implemented using Matlab. The
method validation and performance evaluation was performed using the simulation data. This ap-
proach makes it easier to scale the solution and to reproduce the results. The main objective was
to show how the optimization method performs in different situations. Detailed experimental results
are presented in [68]. The implementation of Agent-Based Intelligent Infrastructure was tested using
two, three and four Fog nodes running mixed set of “real” and “virtual” sensor and actuator agents as
well as decision and orchestrator agents. Experimental results show that the system is able to adapt
to situations when one of even two (out of three or four) Fog nodes are compromised.

4.4 Remarks

The main goal of Intrusion management workflow is to show how Intelligent Infrastructure adapt to
environment changes and reorganize itself to maximize compliance to the QoS and security require-
ments. Machine learning and anomaly based intrusion detection systems complement each other to
enable detection of possible security compromising attacks targeted to the devices and/or services
of Intelligent Infrastructure. Human-in-the-loop approach allows to mitigate the risks of false posi-
tive alarms affecting the system and degrading its performance. Multi-agent based implementation
allows to add resilience and ability to easily reorchestrate services according to the changes in the
environment. The orchestrators running in each Fog node enable easy collection of information about
the state of the dynamic infrastructure and provide needed information for decision making process,
which (augmented with mobility of agents) enables to easily mitigate various risks (including security
ones).
All the technologies used in Intrusion management workflow were implemented and tested indepen-
dently by their developers. The integration testing was performed using the virtual infrastructure and
the results are presented in Chapter 6 of this document.

SPARTA D6.4 Public Page 39 of 88

D6.4 - Final Release of Demonstration

Chapter 5 Data & privacy management

Intelligent Infrastructures (IIs) interconnect a variety of Internet of Things (IoT) applications and ser-
vices in order to capture and analyze data and also invoke autonomic responses. Some services that
are operating with personal data may unintentionally cause privacy leakages. Therefore, applying
the privacy-by-design approach is essential while designing and deploying digital services in IIs. The
correctly designed data and privacy management, which aggregates deployed Privacy-Enhancing
Technologies (PETs) and correct business model settings, may provide reasonable user privacy and
compliance with legislation rules such as GDPR.
The PETs usually try to provide the subset from these security and privacy features:

• attribute-based user authentication,
• anonymity (or pseudonymity),
• unlinkability,
• revocation,
• data privacy,
• privacy-preserving post-processing,

The various PETs and their state of the art are described in the deliverable D6.1 or in our recent
survey paper [61].
The GDPR imposes various obligations for the data controller1 to ensure the protection of personal
data2. The core of data protection revolves around transparency, lawfulness, purpose limitation,
minimization of personal data, accuracy, limitation of retention of personal data, and security3. A
scenario and tools that take these requirements into account from the design stage can ensure
effective implementation of the data protection principles4. In Figure 5.1, we focus our analysis of
compliance with the regulation governing the processing of personal data on the technical aspects
to be implemented in the intelligent infrastructure tools. In addition, Figure 5.2 lists the security
requirements for compliance with the principle of privacy by design. The data controller must also
put in place a real internal personal data governance policy. For this, we refer in particular to the
guidelines of the European Data Protection Board5 and the deliverable D6.1.

1According to Article 4.7 of the GDPR, the data controller is the natural or legal person “which, alone or jointly with others,
determines the purposes and means of the processing of personal data”.

2We recall the broadness of the definition of personal data: “any information relating to an identified or identifiable natural
person (‘data subject’); an identifiable natural person is one who can be identified, directly or indirectly, in particular
by reference to an identifier such as a name, an identification number, location data, an online identifier or to one or
more factors specific to the physical, physiological, genetic, mental, economic, cultural or social identity of that natural
person” (Article 4.1 of the GDPR).

3See Articles 5 and 6 of the GDPR.
4The principle of Privacy-by-Design is a core element for the protection of personal data. Article 25.1 of the GDPR states

that: “Taking into account the state of the art, the cost of implementation and the nature, scope, context, and purposes
of processing as well as the risks of varying likelihood and severity for rights and freedoms of natural persons posed
by the processing, the controller shall, both at the time of the determination of the means for processing and at the
time of the processing itself, implement appropriate technical and organizational measures, such as pseudonymization,
which are designed to implement data-protection principles, such as data minimization, in an effective manner and to
integrate the necessary safeguards into the processing in order to meet the requirements of this Regulation and protect
the rights of data subjects”.

5EDPB, “Guidelines 04/2019 on Article 25 Data Protection by Design and by Default”, 20 October 2020. Avail-
able at: https://edpb.europa.eu/our-work-tools/our-documents/guidelines/guidelines-42019-
article-25-data-protection-design-and_en

SPARTA D6.4 Public Page 40 of 88

https://edpb.europa.eu/our-work-tools/our-documents/guidelines/guidelines-42019-article-25-data-protection-design-and_en
https://edpb.europa.eu/our-work-tools/our-documents/guidelines/guidelines-42019-article-25-data-protection-design-and_en

D6.4 - Final Release of Demonstration

Figure 5.1: Technical settings for Privacy-by-Design implementation.

Figure 5.2: A GDPR perspective for a security by design implementation.

This chapter presents our developed privacy-preserving technologies concretely: PEAS, GDPR
checker, and MC-SSE. In particular, we describe the basic principle of each tool/technology and
their final extensions from the initial state described in report D6.3 to their final release. How these
technologies may serve in the concrete scenario is described in Section 6.3.

5.1 Privacy-Enhancing Authentication System

This section presents the final release of the Privacy-Enhancing Authentication System (PEAS) and
how PEAS can support privacy in chosen intelligent infrastructure scenarios, i.e., smart campus and
smart building. PEAS is a privacy-preserving authentication system that does not disclose the whole
user identity to a verifier. Only necessary pieces of the user identity (e.g., age, gender, membership,
access ticket, etc.) are provided during the verification phase. The authentication sessions of PEAS
are mutually unlinkable. Therefore, the protocol protects user identity and avoid profiling and trucking
users. The core of PEAS is based on an Attribute-based Credentials (ABC) cryptography protocol,
namely, Keyed-Verification Anonymous attribute-based Credentials (KVAC), published in [24]. The
PEAS expands the KVAC protocol by the revocation process to Revocable Keyed-Verification Anony-
mous attribute-based Credentials (RKVAC), [42]. PEAS is also practical for running on constrained
platforms such as smartcards, smartphones, wearables, and single-board computers widely used in

SPARTA D6.4 Public Page 41 of 88

D6.4 - Final Release of Demonstration

intelligent infrastructures. PEAS supports a user-centric approach, i.e., users are real owners of their
personal data, and they decide which information provide to who and when. Hence, PEAS mitigates
storing user personal information that are irrelevant for service providers which is in line with the
GDPR regulation.
PEAS can be deployed in these following scenarios:

• Smart parking access control –– PEAS can provide the secure and privacy-enhancing access
of drivers (users) into campus/institution parking lots and parking areas.

• Smart building access control – PEAS can provide the secure and privacy-enhancing access of
persons (users) to smart buildings, rooms, departments, and various areas of the campus/in-
stitution.

Figure 5.3 depicts the basic PEAS topology with the entities such as Issuer, Revocation Authority,
User with a personal device, and Verifier with a reader device.

User

Setup phase

Issue phase

Show/verify phase

Revoke phase

Issuer Revocation Authority

Verifier - Reader
User Devices

Revoke phase

Figure 5.3: Highlevel Topology of PEAS.

The full description of PEAS can be found in report D6.3 and in the paper [42]. The following sub-
sections describe the technical extensions of PEAS (from the version from D6.3 to D6.4) and testing
results.

5.1.1 PEAS Extensions and Implementation Details

The implementation of PEAS is highly modular. PEAS consists of the front-end parts that are real-
ized as web-based or mobile-based applications that can be separately enhanced by new specific
features. PEAS uses the cryptography core part that supports all basic and cryptography operations.
The cryptography core part is realized as a standalone C-library that is then used by front-end parts.
All main PEAS parts can be easily updated and fixed as separated layers. The PEAS core part uses
several third party libraries such as pcsc-lite and ccid libraries for smartcard connections, libcjson
and libwebsockets for web server connections, openssl, gmp, zlib, mcl for the cryptographic support,
and the libpeas library for the RKVAC operation support.
The PEAS has been extended (from version D6.3 to D6.4) as follows:

• upgrading the core PEAS C-library,
• upgrading PEAS demonstrator by graphical user interfaces by using web-based applications,
• creating a Android-based PEAS user application for smartphones,
• integrating the mobile and web-based applications,
• adding the Bluetooth communication interface.

All source codes are stored in the private gitlab repository (gitlab.com/brno-axe/peas/) and
each PEAS software part is developed as the separated project, e.g. peas-web-gui for PEAS
web application, peas-app-android for PEAS Android application, peas-app and libpeas for
PEAS core application and library, and peas-documentation for PEAS documentation. The in-

SPARTA D6.4 Public Page 42 of 88

gitlab.com/brno-axe/peas/

D6.4 - Final Release of Demonstration

stalled demonstration of all web-base parts is available via docker containers and stored in the
peas-docker project gitlab.com/brno-axe/peas/peas-docker.

5.1.2 Web-based PEAS

The web-based demonstrator of PEAS contains 4 applications for each system entity, i.e., Issuer,
Verifier, User and RA. The applications have been implemented by using JavaScript, Node.js, HTML,
CSS and Vue web technologies. The third-party library, Vuetify (2.4.5), has been used for setting
GUI components. For a simple deployment, the docker and YAML language have been used. The
web-based PEAS Issuer provides issuing attributes, users’ management and their revocation. The
web-based PEAS Verifier provides users’ verification, a selection of necessary attributes, and setting
epochs. The web-based PEAS User sends registration and verification requests, and provides a user
device and network management. The web-based PEAS RA aggregates logs of revoked users. The
web-based PEAS implementation supports these communication protocols/interfaces between basic
parts:

• REST API - for communication between the GUI and the web server when the communication
is initiating by the GUI.

• WEB SOCKET - for communication between the GUI and the web server in real time, or when
the communication is initiating by the web server.

• STDIO - for entering commands by web servers into console applications.
Figures 5.4 and 5.5 show dashboards of web-based PEAS Verifier and web-based PEAS Users. The
user can set and register own personal attributes including various memberships, e.g., for parking lots
or for an access to a building/room, via the web-based User application. Then, the user can connect
to the verifier and can prove its attributes for getting the access. The verifier via the web-based PEAS
Verifier can set which attributes should be disclosed (verified) and is able to log successful or faulty
access attempts by various anonymous users.

Figure 5.4: Dashboard of web-based PEAS User.

Figure 5.5: Dashboard of web-based PEAS Verifier.

SPARTA D6.4 Public Page 43 of 88

gitlab.com/brno-axe/peas/peas-docker

D6.4 - Final Release of Demonstration

5.1.3 Android-based PEAS

To enhance PEAS for more real use cases, the Android-based PEAS application has been devel-
oped. The application represents a user side, i.e., Android-based PEAS user, and supports the
communication with other PEAS entities such as Issuer, Verifier and RA. The Android application
reflects current trends in usage of mobiles as personal items and enables users to replace smart
cards. The application is based on the Java programming language version 14.0.1 (Android Studio,
Arctic Fox 2020.3.1), and employs C++ functions and classes. Besides standard Android and Java
libraries, the application deploys the com.herumi.mcl library. The Android-based PEAS works with up
to 9 attributes that can be issued repeatedly. The application performs all necessary cryptographic
operations in order to perform verification of holding the attributes. The application also keeps records
of past communication in the history of events and offers the reset of settings. The communication
with other system entities is based on NFC and Bluetooth technologies. Further, the personal access
to the application can be secured by a 4-digit pin code or by a user fingerprint. Issuing the attributes
can be disabled from security reasons. The application cannot be re-personalized repeatedly without
the reset of all settings and personalized data.

5.2 Model-Driven GDPR Compliance Management

The goal of the Data Protection Officer tool (DPO tool, https://dpotool.cs.ut.ee/) is to sup-
port the model-driven GDPR compliance management approach (see activity DPO modeling and
analysis in Fig.2.4). The approach consists of a few components: the GDPR method [63], the method
to apply the GDPR model [78] for compliance checking, and the modelling language to annotate the
business process model with the GDPR-related information.
In this section, we specifically describe the modelling language to annotate the business process
model with the GDPR-related information. This modelling notation allow the analyst (e.g., DPO) to
express explicitly the GDPR concepts in the business processes modelled using business process
model and notation (BPMN)6. The BPMN language is extended following the language engineering
principles [44], which includes extension of the language semantics, abstract syntax and concrete
syntax. The language acronym is BPMN2GDPR. Next, we illustrate how BPMN2GDPR is used in
the business processes for vehicle charge process.

5.2.1 BPMN2GDPR: BPMN extension to capture process compliance to GDPR regulation

Semantics of the BPMN2GDPR is based on the GDPR model, which presents the structural perspec-
tive of the regulation and provides the conceptual grounding for the modelling language extension.
The GDPR model is discussed in [78].
Abstract Syntax of BPMN2GDPR is build on the BPMN metamodel as presented in Fig. 5.6 ex-
pressed as the UML class diagram. Here, DataHandler (e.g., Controller, Processor, ThirdParty, or
Recipient) is the subclass of the BPMN Pool. DataSubject, ProcessingSystem, and FilingSystem
are also subclasses of the BPMN Pool. The ProcessingSystem attributes (e.g., confidentiality, avail-
ability and others) express the security features of the processing features. Similarly, FilingSystem
attributes chacraterise the type of storage.
SecurityMeasures and ProcessingTask measures are the subclass of the BPMN task. Hence, arti-
facts RecordOdProcessing, PersonalData,
textsfConsent and PrivacyPolicy are extensions of the BPMN DataObjects.
Each abstract syntax extension has their corresponding semantics mapped to the GDPR model con-
cept. And similarly, each abstract syntax construct has its concrete syntax (visual) construct as
discussed below.

6https://www.bpmn.org

SPARTA D6.4 Public Page 44 of 88

https://dpotool.cs.ut.ee/

D6.4 - Final Release of Demonstration

Figure 5.6: BPMN2GDPR Abstract Syntax

Concrete Syntax. The GDPR-BPMN modeling syntax is based on the GDPR Compliance Model
and captures all the classes and their corresponding attributes using BPMN annotations attached to
appropriate BPMN elements. The annotations are described using square brackets:

• Actors such as the controller are described [Controller], e.g., SmartBuilding [Controller] in Fig.
5.7.

• Artifacts are described using [Artifact] Consent, [Artifact] PrivacyPolicy or [Artifact] RecordsOf-
Processing as illustrated in Fig. 5.7.

• Attributes of artifacts are described by annotating the appropriate artifact with labels cor-
responding to the attributes. Multiple attributes are separated by a space. For example,
[clear purpose] [unambiguous] [affirmative action] [distinguishable] [specific] [withdrawable]
[free give] are attributes of [Artifact] Consent as illustrated in Fig. 5.7.

• Personal data is assigned by prefixing the appropriate data object label with the prefix [per-
sonal data], as it is set [personal data] PaymentDetails in Fig. 5.7.

• Data category is assigned by annotating the personal data object with the appropriate label,
e.g., see [general] as annotation [personal data] PaymentDetails in Fig. 5.7.

• Technical measures and processing task are described by prefixing the task label with the tech-
nical measure and the label [processing task] in that order: [PKComputation][processing task]
6. Check payment details as shown in Fig. 5.7.

• Attributes of the processing system, filing system and miscellaneous attributes are annotated
on the controller’s pool, e.g., see [confidentiality] [integrity] [availability [resilient] [pseudonimity]
[data minimization] [redundancies] [tested] [isms standard] annotation to SmartBuilding in Fig.
5.7.

• Legal ground is described by annotating the controller’s pool, e.g. [consent] annotation to
SmartBuilding in Fig. 5.7.

5.2.2 Application of BPMN2GDPR in Intelligent Infrastructures

Let’s consider the vehicle charge process in Fig. 5.7. It is in BPMN2GDPR prepared using the
bpmn.io modelling tool. The process starts when the SmartBuilding displays privacy policy (see
activity C1. Display privacy policy). Privacy policy is an artefact and it has a number of properties
as illustrated by the data object PrivacyPolicy. The DriverPersonalDevice provides the consent (see
activity C2. Provide consent). Here again the consent is a an artifact equipped with a number of
properties as illustrated by the data object [Artifact] Consent. The process then continues with the

SPARTA D6.4 Public Page 45 of 88

D6.4 - Final Release of Demonstration

encryption of the payment details (see C3. Encrypt payment details). This way illustrates the technical
countermeasures (see also 6. Check payment details and C4. Decrypt payment details).

Figure 5.7: Vehicle Charge Process Annotated using BPMN2GDPR

After submitting the payment details, the ParkingLot initialise the charge. Charge is performed by the
Energy Service Provider. The process is then continued with the 6. Check payment details, which is
declared as the processing task in this model. After execution of processing task, Parking lot docu-
ments processing of parking details (see task C5. Document processing of payment details). Here
the artifact of processing (see RecordOfProcessing) is created including its respective properties.

SPARTA D6.4 Public Page 46 of 88

D6.4 - Final Release of Demonstration

The process is completed when Smart Building performs payment transaction (see 8. Perform pay-
ment transaction), informs Parking Lot about the successful payment (see 9. Inform about successful
payment), and sends payment transaction receipt to the Driver Personal Device (send 10. Send
payment transaction receipt).
Hence the Smart Building could also be treated as the filing system where properties such as con-
fidentiality, integrity, availability, resilience and etc. should be guaranteed. In addition, to the PKEn-
cryption technical countermeasure, the process communication is secured using the [TLS Channel].

5.3 Privacy-preserving data processing: MC-SSE for privacy-preserving data pro-
cessing

5.3.1 Introduction and motivation

The use of electronic services today results in the collection and storage of large amounts of data,
whose handling can incur important privacy risks. The post-processing of the collected data though,
can offer valuable insights on the service usage and drive decisions on functionality configurations.
Privacy protection during this processing is important to ensure protection both from data breaches
and unauthorized access and processing inside the system.
A privacy-preserving way of managing the collected data is required, in order to retain the benefits of
the data processing, without compromising the data protection.
To achieve this goal we design and implement a searchable encryption based solution, that allows
storage of the collected data in encrypted form, while allowing queries to be performed on the en-
crypted dataset.
In particular in this work, using as a building block the BIEX searchable encryption scheme [50], that
achieves high efficiency and applicability, we propose an extension for the multi-client setting, while
remaining practical and efficient. The proposed solution is implemented by extending the BIEX-based
SSE library Clusion and tested for the parking use case data.

5.3.2 Searchable Encryption Background

SE, as illustrated in figure 5.8 can be used for data retrieval from untrusted cloud servers, without
revealing any sensitive information to the service provider or any other entities. It is also a suitable
technique for privacy-preserving computations, and counting queries in particular, to determine how
many of the data records in the dataset contain a specific keyword, representing an attribute of inter-
est. Although data remain encrypted on the server side, SE records can be decrypted by the recipient
of the search results, therefore data minimisation still needs to be applied during data collection for
the encrypted dataset, as re-identification could be possible if the decrypted data contain identifiable
information.

Figure 5.8: Searchable Encryption

SPARTA D6.4 Public Page 47 of 88

D6.4 - Final Release of Demonstration

Searchable encryption has been a very active research topic over the last decade, producing in-
creasingly effective and applicable solutions [21, 29]. By applying technologies of cryptography, data
structures, algorithms, information retrieval and databases, state of the art constructs make it possible
to achieve different compromises between security, efficiency and query expressiveness.
Searchable Symmetric Encryption (SSE) is a practical category for searchable encryption providing
a balance between efficiency, functionality and security. A searchable symmetric encryption scheme
consists of an initial database setup algorithm and a search protocol. A database DB is a list of
identifier and keyword-set pairs. During setup, a database DB is used as input with a list of docu-
ment decryption keys, producing a secret key K along with an encrypted database EDB. The search
protocol proceeds between a client C and server E, where C takes as input the secret key K and
a query (a tuple of keywords and a boolean formula) and E takes as input EDB. At the end of the
protocol, C outputs a set of document identifiers. This main structure can be further enhanced to
enable multi-client functionality and dynamic record additions to the encrypted dataset [25, 26, 49].

5.3.3 Multi-client BIEX

To design the proposed solution we use the BIEX SSE scheme [50], which achieves secure and
efficient functionality with boolean query support. This scheme is implemented in the Clusion open
source library [2].
In our system the goal to extend this single-user functionality to the multi-client setting, while retaining
the properties of the BIEX scheme. This way authorised third parties can perform queries on the
encrypted dataset.
The entities interacting in the system are the following:

• The Data owner (D), that creates an encrypted dataset and outsources it.
• The Storage and query server (E), that stores the encrypted dataset and performs queries on

the encrypted dataset.
• Search clients (C) authorised to search on the encrypted dataset.

In the original BIEX SSE scheme, the following algorithms exist:
• Setup: taking as input a security parameter k and an index DB, it outputs the encrypted

database EDB.
• Token generation: using as input a key and a vector of keywords w=(w1, ..., wq), it creates a

token consisting of sub-tokens for each keyword.
• Search: using as input the EDB and a search token tk, it outputs the set of document tags T,

corresponding to the search query.
To extend the BIEX functionality to the multi-client setting, the BIEX token generation algorithm is
modified and split into two stages: the Data owner authorization token creation phase and the Client
search token customisation. During the first phase, D creates an authorisation token for the keywords
they wish to allow C to search for. Given this authorisation token, C is able to construct an BIEX
search token and submit a query to E, containing a combination of the authorised keywords.
With this extension the functionality and properties of the BIEX SSE scheme are preserved, with
support for boolean queries and sub-linear search performance, while enabling multi-client search.

5.3.3.1 MC-BIEX library implementation

The MC-BIEX library has been implemented in Java, as an extension to the Clusion open source
library [2]. The source code is available at: https://github.com/atasidou/MC-Clusion. The
dataset parsing mechanisms has been modified for the needs of the application scenario. The library
can process datasets consisting of one text file per record and keywords separated by line breaks.
Lines can be exluded from keyword parsing by beginning with an exclamation mark. The evaluation
of the implementation is presented in section 7.4.3.

SPARTA D6.4 Public Page 48 of 88

https://github.com/atasidou/MC-Clusion

D6.4 - Final Release of Demonstration

5.3.4 Utilisation within the Intelligent Infrastructure

The proposed privacy-preserving data processing solution can be utilized in the HAII-T infrastructure,
to manage collected data items of any service in the infrastructure and produce statistics on that data.
At the moment the solution is applied in the smart parking service, that manages the smart parking
lot and the charging units. The reservation and billing transaction data from this service provide com-
patible data items for the data processing mechanism. For example, this data can be processed to
produce statistics on the parking and charging spots demand, peak hours and availability, to deter-
mine appropriate policies for the service.

SPARTA D6.4 Public Page 49 of 88

D6.4 - Final Release of Demonstration

Chapter 6 Final demonstration

In this chapter we present the final demonstration of the HAII-T. The demonstration is organized
according to the three workflows presented above in this document.

6.1 Legacy technologies management demonstration

This section presents the demonstration of the modules involved in the legacy technology manage-
ment workflow described in Chapter 3.

6.1.1 PEPPER Demonstration

The demonstration scenario is show in Fig. 6.1. Two tokens are enrolled to a software update
and contact tracing server, securely over the network. The last hop of which is low-power wireless
(BLE) via a commodity wireless access point (Bluetooth), and in particular security bootstrap uses
EDHOC {vucinic2021edhoc. The tokens are used to trace encounters between co-workers, and to
evaluate exposure status, as well as notify exposure, depending on the interaction and the femto-
container logic currently operating on the token. The latter is securely updated, over the network,
to demonstrate system behaviour change, via the remote (update and tracing) server to which the
tokens were initially enrolled.
A video showing the demo is available online [7].

Figure 6.1: PEPPER demo scenario.

6.1.2 Perspectives regarding security-enhanced embedded IoT system software

With PEPPER we have demonstrated low-power contact tracing in a workplace environment with
evolving sanitary regulation, using a secure software update workflow, and cheap hardware token
prototypes. This base can be used to explore alternatives to the currently dominant contact tracing
solution which is restricted to what Google/Apple provide as API.
The open source platform we have developped for PEPPER has furthermore a wider applicability
beyond this use case. Based on RIOT, SUIT end-to-end security, and femto-containers and standard
low-power network protocols, our platform can provide security-enhanced embedded system soft-
ware and secure updates over the network for general-purpose IoT OS firmware update or for more
lightweight and more specific IoT software modules hosted and isolated in femto-containers.

SPARTA D6.4 Public Page 50 of 88

D6.4 - Final Release of Demonstration

6.1.3 Edge-devices control-flow integrity demonstration

This section presents some passages from a practical demonstration of how the analysis and instru-
mentation technique for edge devices described in 3.2 works.
In principle, the technique can be applied to all embedded software run within the infrastructure. For
reasons of simplicity, here are presented the results obtained by applying the technique on a small-
sized benchmarking firmware, UART-string, adapted from the stringsearch program, available
online at the MiBench website1. The application performs a stupid task, i.e., counts the occurrences
of a substring over a text.
The application was compiled for an ST Microelectronics STM32F429 processor (with ARM ISA
version 7). An application consisting of 12960 machine instructions was obtained (see the results
obtained in [40]). Figure 6.2 shows the execution screen of the tool, artistically called PROLEPSIS
by the authors. The script takes as parameter the application disassembled listing (.list) as input, as
well as the ELF executable file itself. The screen shows the execution times of the 5 phases described
in Figure 3.4 (in seconds), and the total execution time. The -report option allows to generate a
detailed report of the result in a file.

Figure 6.2: Execution screen of the analysis and instrumentation tool for control-flow integrity.

Figure 6.3 shows the beginning of this report file (deliberately truncated for its length), which contains
information on the entry point of the code, and on the functions that the Extraction algorithm traces
from that point on. For each call, the address at which it takes place is reported.

1https://vhosts.eecs.umich.edu/mibench/office.tar.gz. Mibench is a free representative embedded
benchmark suite.

SPARTA D6.4 Public Page 51 of 88

https://vhosts.eecs.umich.edu/mibench/office.tar.gz

D6.4 - Final Release of Demonstration

Figure 6.3: Report on the application entry point and cascaded calls from it.

Figures 6.4 and 6.5 show the beginning and end of the list of indirect edges found within the appli-
cation, with primary reference to the function they belong to, and reporting the instruction itself that
originates the edge and its address in memory. This result is obtained before the Reconstruction
phase, so it is still to be determined how many of these edges are actually to be protected.

Figure 6.4: Detail from the beginning of the indirect edge list within the report.

Figure 6.5: Detail from the beginning of the indirect edge list within the report.

Figure 6.6 instead shows the result of the Reconstruction phase. The left subfigure shows the status
of the edges identified as secure before this step. The subfigure on the right, on the other hand,
shows a bigger list, populated by the indirect edges that have been labeled as secure after the
reconstruction of their origin tree. Therefore, there are only 7 remaining insecure edges requiring
instrumentation. This instrumentation causes an overhead in terms of code area which, added to
that necessary for the protection of ISRs (see 3.2.1), reaches 1.98% (cfr. [40])2.

2Table I contained in the aforementioned paper erroneously reports ”Insec. Edges” instead of ”Indir. Edges” due to a typo.

SPARTA D6.4 Public Page 52 of 88

D6.4 - Final Release of Demonstration

(a)

(b)

Figure 6.6: Secure control-flow transfers before and after the Reconstruction phase.

Finally, Figure 6.7 shows the detail on the Instrumentation phase. The highlighted line shows that
inside the MX TIM5 Init function, at line 224 of the original disassembled executable, an instrumen-
tation relating to edge type 1 (see 3.2.1) has been inserted, with the assignment of a random label (in
this case, 3). Figure 6.8 shows the difference between the disassembled of the original executable file
and the disassembled of the instrumented one, according to the technique already described in [64],
whereby this label is passed to the monitor on a standard shared address. In particular, this instru-
mentation here is part of a more complex one which is needed to ensure that the Error Handler
function returns exactly to MX TIM5 Init if called from there.

SPARTA D6.4 Public Page 53 of 88

D6.4 - Final Release of Demonstration

Figure 6.7: Details on the instrumentation sites with edge type and assigned label.

Figure 6.8: Comparison between the original and instrumented application.

SPARTA D6.4 Public Page 54 of 88

D6.4 - Final Release of Demonstration

6.1.4 Protocol verification demonstration

6.1.4.1 Model checking – formal modeling of IoT protocols

A demonstration of a formal modeling of IoT protocols based on model checking is presented in
this section. Demonstration components of phase 1 and phase 2 demonstrators are presented on
Figure 6.9.

Figure 6.9: Model checking demo architecture

Visualisation of modeled unidirectional and bidirectional teach-in procedures, as well as one resulting
console output example are presented on Figures 6.10, 6.11 and 6.12.

Figure 6.10: Unidirectional Teach-in and authentication model in EnOcean protocol[46]

SPARTA D6.4 Public Page 55 of 88

D6.4 - Final Release of Demonstration

Figure 6.11: Bidirectional Teach-in and authentication model in EnOcean protocol[46]

Figure 6.12: Unidirectional teach-in procedure in EnOcean protocol - console output example

Our obtained results shows that in case of a secure key exchange, the communication by using the
high security level is secure. If the teach-in with a pre-shared key is used, there seems to be a po-
tential weakness in the security specification. We double checked the security specification, which
states: “The security mechanism may transform the DATA and R-ORG field of the non-secure mes-
sage. Other fields like message sender ID, receiver ID, repeater counter are not affected or altered.
The RLC and CMAC should be added. Not modified fields like sender ID, receiver ID or repeater
counter are not depicted through the chapter when a message is represented.” The security speci-
fication also states which parts of the message are encrypted in case of wireless teach-in namely:
“For the encryption pre-shared key is used. Encrypted are the RLC and KEY”.
We can therefore conclude that the prevention of replay attacks is based solely on the time limit and
the obligation to (manually) set a device in learning mode and press the teach-in trigger. As we have
seen, in case of a teach-in with pre-shared key, there is a small time window in which a potential
attacker can interact and disturb a proper authentication. Nevertheless, the time limit raises the effort
and an attacker needs to be aware of the ongoing teach-in procedure or automate the process of
actively listening to teach-in messages continuously. Furthermore even in this case, although the
attacker can interfere with a proper authentication, the (strong) secrecy of the payload and the RLC’s
can still be kept.
We further want to emphasize that our model confirms that a proper authentication could also be
disturbed unintentionally, i.e. a set-up of different pairs in neighboring rooms in a house.

SPARTA D6.4 Public Page 56 of 88

D6.4 - Final Release of Demonstration

6.1.4.2 Probabilistic model checking – risk analysis in IoT environment

A demonstration of a risk analysis of smart home IoT network based on probabilistic model check-
ing is presented in this section. As previously stated, this use scenario focuses on a probabilistic
risk analysis of two different smart home system configurations through threat modeling and model
checking. Demonstration components of phase 1 and phase 2 demonstrators are presented on Fig-
ures 6.13 and 6.14, respectively.

Figure 6.13: Probabilistic model checking demo architecture - phase 1

Figure 6.14: Probabilistic model checking demo architecture - phase 2

Previously described preconditions and input data (Section 3.3.2) are modeled in PRISM model
checker in form of a sequential flow of events. The output of this process is probability of successful
attack within given assumptions. All tests are conducted for different cost values – 1-5. Resulting
console output example and risk probabilities for two scenarios are presented on figures below.

SPARTA D6.4 Public Page 57 of 88

D6.4 - Final Release of Demonstration

Figure 6.15: Hijacking of smart HVAC risk analysis - console output example

Figure 6.16: Hijacking of smart HVAC risk analysis - resulting risk probabilities; cost: maximum number of

Figure 6.17: Hijacking of smart meter risk analysis - resulting risk probabilities; cost: maximum number of

SPARTA D6.4 Public Page 58 of 88

D6.4 - Final Release of Demonstration

The results of the Hijacking of smart HVAC risk analysis show that the attack hijack HVAC (attack
1.2) is less likely to be successful comparing to the attack hijack heating (attack 1.1). This is due to
the fact that in order to successfully conduct attack 1.2 more vulnerabilities need to be exploited. The
attack 1.1 requires exploitation of two vulnerabilities, while the attack 1.2 requires exploitation of at
least three vulnerabilities to be successful.
The results of the Hijacking of smart meter risk analysis show that the attack fraud (attack 2.1) has
the least likelihood to be successful, under given assumptions. Attack 2.1 requires the exploitation
of at least three vulnerabilities, while the other three scenarios considered in this use case can be
conducted by exploiting only two vulnerabilities. Attack 2.1 requires the exploitation of at least five
vulnerabilities for maximum likelihood, attack decrease bill (attack 2.2) requires exploitation of three,
while attacks increase bill (attack 2.3) and increase bill, no alarm (attack 2.4) only require the ex-
ploitation of two vulnerabilities for the maximum likelihood. It has to be emphasized that although
both attacks 2.3 (or 2.2) and 2.4 require the exploitation of a minimum of two vulnerabilities to be
successful, the risk exposure scores of 2.4 are lower because this attack requires the exploitation of
parts of the system that have a higher security level (reflected in the lower exploitation probability).
Our results show that in a smart home environment, an attacker needs to exploit at least two vulnera-
bilities to successfully perform an attack, and that more complex attack scenarios requires successful
exploitation of at least three vulnerabilities. These results clearly indicate that all use cases could
benefit from a layered security approach, that includes several protection mechanisms in place. An
additional conclusion is that this methodology provides guidance to address bigger and more complex
scenarios. For example, it can be applied in order to address security in smart cities.

6.1.5 RIOT-AKA Authentication demonstration

We have to remind that ”RIOT-AKA” is a protocol implemented in order to authenticate IoT roaming
devices into federated networks. We recommend to read Section 3.4 to recapitulate all of the phases
and details of the exchanged messages between the three parties. In this demonstration we show
only a generic, virtualized environment in order to represent a real world deployment scenario of the
scheme. The placement of all involved elements inside the WP6 common use case is presented in
Figure 6.18.

Figure 6.18: RIOT-AKA represented in the common WP6 use case infrastructure

6.1.5.1 Test setup

We showed in Section 3.4.4 a detailed evaluation of the scheme’s performances on real working IoT
hardware. Here, we demonstrate it only using the native mode of RIOT OS which is an abstraction
offered by the OS’s tools in order to simulate a physical IoT board by relying on internal system
calls of the host machine to simulate hardware access. The native board will represent the UE

SPARTA D6.4 Public Page 59 of 88

D6.4 - Final Release of Demonstration

in our scheme. We also provide HN and SN representations by developing simple virtual python-
based servers. Finally, we clarify that by using the native implementation we cannot exploit the
SRAM-PUF mode for root key generation on the devices since it is not supported.

6.1.5.2 Execution flow

We start the simulation by triggering the registration of the device.

Figure 6.19: RIOT-AKA IoT IP address showup

Figure 6.20: RIOT-AKA IoT registration to the HN

First we compile the IoT application developed specifically for our native board and launch it in a
terminal. We grab its IPv6 address and paste that in another terminal in which we have to start the
HN server and let it run. This phase initiates all the registration requirements between these two
actors (Fig. 6.19, 6.20).

SPARTA D6.4 Public Page 60 of 88

D6.4 - Final Release of Demonstration

Figure 6.21: RIOT-AKA IoT registration to the HN

Then we can simulate an authentication exchange between the IoT board and a SN. We still have
to paste the IoT’s address to another terminal in which we have to start the SN server. By doing so,
we trigger an authentication request in which the two actors perform their handshake and, eventually,
authenticate (Fig. 6.21).

Figure 6.22: RIOT-AKA packets capture

In Fig. 6.22 we can see the network capture of the CoAP exchange-only between the IoT device and
the SN.

SPARTA D6.4 Public Page 61 of 88

D6.4 - Final Release of Demonstration

6.2 Intrusion management workflow demonstration

To demonstrate the Intrusion management workflow the WP6 common virtual infrastructure was
used. The placement of all involved elements inside the WP6 common use case is presented in
Figure 6.23.

Figure 6.23: Intrusion management workflow components in the common WP6 use case infrastructure.

The two fog nodes were implemented as Docker containers and are running the corresponding ser-
vices. One set of smart bulb and light sensor is implemented using the real hardware prototypes
which are composed from ESP8266 micro controllers, BH1750 light sensor and LED. The services
(implemented as agents) are running inside the Fog node 1 and monitor the sensors and actua-
tors using CoAP protocol. The second set of sensors is virtual, implemented only as corresponding
agents running inside Fog node 2. The IDS servers are running in virtual infrastructure and are
monitoring the whole IoT network using Machine learning and Anomaly based intrusion detection
approaches. The main phases of demonstration are these:

• The first security event which compromises the Fog node 1 is manually triggered and the Ma-
chine learning based IDS system detects it and displays the corresponding event using GUI;

• The second security event which compromises the Fog node 1 is manually triggered and the
Anomaly based IDS system detects it and displays the corresponding event using GUI;

• The human operator sees the security events on the GUI, realizes that security level of Fog
node 1 is compromised, and changes it using the provided GUI. The orchestrator of Fog node
1 detects the situation changes and reorchestrates the services.

All three main steps of the demonstration flow are described in more details in the following three sub
chapters.

6.2.1 Machine Learning-based Network Intrusion Detection component

At test time, the Machine Learning-based Network Intrusion Detection component collects the Net-
Flow frames published on a specific Apache Kafka topic. The tool applies the necessary pre-
processing procedures to the collected data and passes it through to the pre-trained ML compo-
nents. After ML classification, the results are forwarded to a target Apache Kafka topic. This allows
for real-time network intrusion detection. The classified frames are indexed in ElasticSearch and

SPARTA D6.4 Public Page 62 of 88

D6.4 - Final Release of Demonstration

pushed to an informative Kibana dashboard (see. Fig.6.24). The use of Apache Kafka allows for
easy integration with any tool capable of connecting to the broker.

Figure 6.24: The component dashboard

6.2.2 Anomaly-based Detection of Network Intrusion Event

The demonstration focuses on the use of the IDS tool during the detection phase. Indeed the model
used during this detection phase has been produced previously during a learning phase (whose du-
ration is too long to be executed during the demonstration). Before this construction of the model,
execution traces (pcap files) corresponding to normal system behaviors have been collected in con-
texts and conditions of use similar to those adopted on the day of the demonstration. In particular, the
normal interactions between the main monitored entities (Fog node 1 and 2) and the other entities
of the system (the orchestration mechanism for example) must have been observed in order to be
learned. As the learning phase is not part of the actual demonstrations, the pcap files used to build
the model as well as the representations of the intermediate models generated by the successive ex-
ecutions of the ”Builder” component will be made available. Let us recall that it is during the learning
phase that the crucial choice of the definitions of event types is made.
During the demonstration, two main components of the IDS are used, namely the ”Detector” compo-
nent and the ”Pcap Sniffer” component. The latter has to capture the network traffic concerning the
Fog nodes. Information on observed packets are transmitted via a socket to the ”Detector” compo-
nent which will be located on the IDS Server. The ”Detector” component is responsible for analyzing
the received informations about packets and checking their compliance with the model according to
the principles described in Section 4.2. The raised alerts are accessible via a graphical interface
developed in React (See Figure 6.25).

SPARTA D6.4 Public Page 63 of 88

D6.4 - Final Release of Demonstration

Figure 6.25: Display of all the Alerts

Figure 6.26: Display of a Sub-set of Alerts using a Filter on the Source IP

In particular, it is possible to access the list of alerts produced and to focus on subsets of this list
using filters applied on the displayed attributes (See Figure 6.26 where a filter on the source IP is
used).
The security event triggered to disrupt Fog node 1 (inspired from the Mirai attack) has an impact on
the observed traffic, which should allow anomalies to be detected. Depending on the alerts displayed
and their relevance, a human operator decides to re-orchestrate the services if necessary. To make
this judgment, the operator may consider the frequency of the alerts and the reasons for the rejection
of the packets. For example, in Figure 6.25, the alert type attribute indicates that the alerts have been
raised because the corresponding packets were not accepted by the automaton.

6.2.3 Fog service reorchestration

To be able to communicate with orchestrators running in Fog nodes 1 and 2 we need a GUI. The eas-
iest way to achieve this is to add third Fog node which is running on computer with GUI capabilities.
In such case, the situation before the reorchestration of services is presented in Figure 6.27.

SPARTA D6.4 Public Page 64 of 88

D6.4 - Final Release of Demonstration

Figure 6.27: Initial situation in the IoT infrastructure.

In Figure 6.27 we can see the whole IoT system from the point of view of orchestrator 3, which is
running inside the Fog node 3 (top left corner of the window). The left side of the window diplays a list
of all currently known orchestrators. A list of all running services (or agents) along with the numbers of
the Fog nodes in which they are currently residing is presented on the right side of the window. Before
the security event all the Fog nodes have “High” security and all services are distributed evenly. Each
Fog node hosts one set of services, which are initially started by the corresponding orchestrators.
The number in the name of the services indicates the initial Fog node and also acts as a mean to
ensure that all names of the services are unique inside the whole infrastructure.
After the detection of security event, the human operator must inform the corresponding orchestrator
about the reduced security level. To do this, the orchestrator 1 must be selected in the left part of the
window and button “Security compromised” must be pressed. This action sends a special message
to the orchestrator 1 informing it about compromised security level. Then the orchestrator must make
decision on mitigating the security risks. As another two Fog nodes are available, and the resources
on them are sufficient to host all services, it decides to reallocate all service running in Fog node 1
to other two available Fog nodes. The affected agents (or services) are asked to migrate to another
Fog nodes, see Figure 6.28. After several seconds, all orchestrators exchange the information about
the new service placement and the orchestrator 3 (which we are monitoring) shows the situation
summarized in Figure 6.29.

SPARTA D6.4 Public Page 65 of 88

D6.4 - Final Release of Demonstration

Figure 6.28: The process of agent migrations as viewed from Fog node 3.

Figure 6.29: The situation in the IoT infrastructure after the reorchestration.

Now all the services from Fog node 1 are distributed between Fog nodes 2 and 3, which still remain
secure. In such way the Intelligent IoT infrastructure adapted to the changed conditions during the
runtime and ensured that the overall security of the system is still “High”.

6.3 Privacy and Data Management Demonstration

This section presents how the privacy and data management can be supported by our developed
PETs tools (the PEAS system, the MC-SSE system and the DPO tool) in the chosen scenario that
is focused on the privacy-preserving verification of user access inside the smart campus, privacy-
preserving data processing and checking services’ GDPR compliance. Figure 6.30 shows the
privacy-preserving access and data management scenario and explains how the developed PETs
tools can be deployed. The high-level description of this scenario is as follows:

1. users with vehicles can show and prove their attributes, i.e., memberships (parking permit at-
tributes), for getting access to a campus parking lot that is equipped by parking lot machine/ter-

SPARTA D6.4 Public Page 66 of 88

D6.4 - Final Release of Demonstration

minal (a verifier). This process can be realized by the PEAS system that provides the privacy-
preserving authentication of users. Details are in 6.3.1.

2. the compliance of the system business model to GDPR regulation management can be directly
checked by the application of the Data Protection Officer (DPO) tool.

3. users who require access to buildings (areas) can prove their possession of the memberships
(area attributes) also by the PEAS system, more details can be found in 6.3.1.

4. all usage data from the system containing user access logs, to parking spots and buildings can
be used to produce privacy-preserving post-processing statistics. This is achieved by using
the MC-SSE data storage and processing solution. This is a multi-client searchable encryp-
tion based solution, that supports boolean queries. Collected data is stored in encrypted form
and multiple search clients can submit queries to be performed on the encrypted dataset. Us-
ing encrypted keywords that act as trapdoors for encrypted documents that contain them, the
encrypted dataset can be searched to produce system usage statistics without revealing any
sensitive information about the searched documents.

Vehicle

(OBU)

Parking Lot Terminal

(PLT)

Campus Parking

Zone

1

Parking Permit AttributeDriver with PEAS

 app on smartphone

Parking Permit
Attribute
- Credential

Park vehicle (proving
attribute and getting access
by PEAS via NFC/BLE/5G)

User with PEAS

 app on smartphone

3

Area (membership) Permit
Attribute

Secure Access to
Building/Room - Area (proving
attribute and getting access by

PEAS via NFC/BLE/5G)

Campus Services Provided (CSP)
with MC-SSE privacy-preserving

data storage and proccessing

P

Campus Buliding, Detp.
(AREAs)

Attribute

Verification

Attribute

Verification

4
Data

management
and statiistics

2 Compliance to GDPR
regulation management -

application of the Data
Protection Officer (DPO) tool

Figure 6.30: The demonstration scenario of privacy-preserving access and data management in smart
campus.

6.3.1 Privacy-preserving access supported by PEAS

The privacy-preserving access scenarios can be supported by PEAS. The scenarios considers ac-
cess to parking lots and access to protected areas (buildings/departments/rooms).

Privacy-preserving access to parking lots

Parking credentials/attributes are firstly issued by the internal trusted entity (Issuer) in the campus and
can be released to various users such as visitors (a short term membership), students or campus
staff (a long term membership). The issuer part can be realized by the web-based PEAS Issuer
application that enables a manager to set all system parameters and watch log events. The graphical
interface of Issuer is depicted in Figure 6.31. Then, the users can simply use the Android-based
PEAS user applications in their smartphones to provide their parking credentials. The Android-based
user application can communicate with a verifier-parking lot terminal via the Bluetooth or the NFC
(Near Field Communication) interface. Figures 6.32 and 6.33 show the graphical activities of Android-
based PEAS User application. The verifier part can be realized by the web-based PEAS Verifier

SPARTA D6.4 Public Page 67 of 88

D6.4 - Final Release of Demonstration

application (depicted in Figure 5.5) which can run at the embedded PC and can be accessed through
a web interface using a smartphone or a tablet controlled by a security staff who can check the results
from the authentication process. The core application of the verifier can automatically verify parking
credentials/attributes provided by users and several other attributes. Further, the issuer can revoke
users who break rules or stop using this service. The attributes are verified under specific epoch time
periods to make the user revocation possible. Furthermore, the user can run only a certain number
(in our implementation max. 100) of authentications within one epoch. Exceeding this value would
impact user privacy, and therefore, it is controlled and prevented by the system. The length of the
epoch is configurable by the system administrator.

Figure 6.31: Dashboard of web-based PEAS Issuer.

Figure 6.32: GUI of Android-based PEAS User - login and main menu.

Figure 6.33: GUI of Android-based PEAS User - logs and communication.

SPARTA D6.4 Public Page 68 of 88

D6.4 - Final Release of Demonstration

Privacy-preserving access to protected areas

The user can use the same Android-based PEAS user application and the web-based PEAS User
application (depicted in Figure 5.4) as in privacy-preserving access to parking lots. However, he/she
shows a different attribute, i.e., the area attribute membership. The verifier with a terminal (e.g. em-
bedded computer unit close to the door) controlling an entrance can check that users have valid
access to the concrete building/department/area again via the Verifier application. The web-based
PEAS Verifier application can be used for setting which attributes should be checked and disclosed
from users. The verifier is able to log successful or faulty access attempts. The PEAS can be set for
both application scenarios (access to parking lots, access to areas) by the campus manager with the
web-based PEAS Issuer application. The complete video demonstration of web-based applications
for all parties (User, Issuer, Verifier) for setting, issuing, proving the department attributes, verifica-
tion and revocation can be downloaded at https://www.vut.cz/www_base/vutdisk.php?i=
280744ab24. All PEAS source codes including the web-based demo in docker containers are stored
in the private GitLab repository (gitlab.com/brno-axe/peas/).

6.3.2 DPO tool

DPO tool is a Web-based prototype tool (https://dpotool.cs.ut.ee/) to support the model-
driven GDPR compliance management approach at the business process level. The PDO source
code is stored in the github repository at https://github.com/motekaj/gdpr-analyzer. The
tools interface is given in Fig. 6.34. Currently the tool’s main functionality includes upload of the
business process model for compliance analysis, evaluation of of the business process compliance,
viewing the model, editing the model and deleting the model. In this section we will shortly discuss
the function for compliance checking.

Figure 6.34: DPO tool interface

SPARTA D6.4 Public Page 69 of 88

https://www.vut.cz/www_base/vutdisk.php?i=280744ab24
https://www.vut.cz/www_base/vutdisk.php?i=280744ab24
gitlab.com/brno-axe/peas/
https://dpotool.cs.ut.ee/
https://github.com/motekaj/gdpr-analyzer

D6.4 - Final Release of Demonstration

A method of checking compliance is described in [63] and shown in Fig. 6.35. In the first step (i.e., 1.
Extract AS-IS compliance model), the BPMN2GDPR process model is considered. Once the model
is annotated with the GDPR concepts (as discussed in Section 5.2.2, see Fig. 5.7), no additional
user input is required in the first step.

Figure 6.35: Method for achieving regulation compliance, adapted from [63]

In the second step and the third steps of the method, the DPO tool automatically compares the AS-IS
compliance model and the GDPR model. Based on the comparison results, the compliance issues
are defined. If compliance issues are found, the analyst needs then to refine the business process
model (i.e., step 4. Change business process model). This can be done using the DPO tool (e.g.,
function for editing) or the external bpmn.io tool. In our example (Fig. 5.7), there is no compliance
issues as indicated in the DPO-generated AS-IS compliance model, see Fig. 6.36. Thus, in the given
case, the process is finished after the third step.
As the result, compliance of the BPMN2GDPR model is checked using the DPO tool which supports
the model-driven compliance analysis of the business processes. In our example, we define the
business model in a way that no compliance issues are shown in the outcome. The resulting model
AS-IS compliance model (see Fig. 6.36) can be exported in the PlantUML format, which can be
integrated to other analysis (see https://plantuml.com/running).

SPARTA D6.4 Public Page 70 of 88

bpmn.io
https://plantuml.com/running

D6.4 - Final Release of Demonstration

Figure 6.36: Compliance Check of Vehicle Charge Process Annotated using BPMN Extension for GDPR

6.3.3 MC-SSE demonstration

The MC-SSE demo tool implementation consists mainly of two interfaces, one for the Data Owner,
where they can select the keywords to be included in the authorisation token and export it in a
.json file format, as illustrated in Figure 6.37 A live demo of the tool is accessible at: https:
//www-public.imtbs-tsp.eu/˜lauren_m/SPARTA_MC-SSE/ where the tool can be tested
with a dataset of 10000 documents, containing synthetic parking transactions with 21 keywords per
document, resulting in 210K document-keyword pairs. A docker container of the MC-Clusion library
and the demo tool is also available for downloading at https://hub.docker.com/r/atasidou/
multi-client_clusion. By replacing the documents in the data folder, the tool can be used with
any appropriately formatted dataset (as described in section 5.3.3).

SPARTA D6.4 Public Page 71 of 88

https://www-public.imtbs-tsp.eu/~lauren_m/SPARTA_MC-SSE/
https://www-public.imtbs-tsp.eu/~lauren_m/SPARTA_MC-SSE/
https://hub.docker.com/r/atasidou/multi-client_clusion
https://hub.docker.com/r/atasidou/multi-client_clusion

D6.4 - Final Release of Demonstration

Figure 6.37: Data Owner interface for authorisation token creation

In the Client search interface, the authorisation token created by the Data Owner can be loaded,
displaying the authorised keywords available for the search query, as illustrated in Figure 6.38. The
search query is formulated by adding keywords separated by spaces in each subquery line, to for-
mulate the final query. Keywords within the same subquery are disjuncted, while subqueries are
conjuncted. The query result displayed under the search button contains the total number of docu-
ments and the document ids relevant to the submitted query.

Figure 6.38: Client search interface for authorisation token loading and query execution

SPARTA D6.4 Public Page 72 of 88

D6.4 - Final Release of Demonstration

Chapter 7 Relevant security aspects and evaluation

In this Chapter, we asseess the effectiveness of the technical results produced by the HAII-T pro-
gram. Initially, we survey the main security concerns relevant for the HAII-T demonstration. Then, we
discuss on the effectiveness of the proposed methodologies in relationship with the security aspects
introduced above.

7.1 Vulnerabilities

In the context of Intelligent Infrastructures, Edge Computing, and especially IoT environments, certain
types of vulnerabilities are relevant. In general, they can be classified by the potential attack surface,
their class of attack as well as their root causes. In [86], an in-depth description of these three
elements is given. Also visit [22, 84] for further details.
After laying down the foundations, we will analyse the relevance of the root causes in regard to the
three workflows that are described in this deliverable. We identify the most relevant vulnerabilities
and provide the the codes of the Common Weaknesses Enumerations (CWE) database [66].

7.1.1 Attack surface

Weak Computation Power and Poorly Secured Devices
The computation power at the edge is weaker compared to cloud servers. This might lead to a poorly
configured secured edge device that leads to weaker defence mechanisms and attacks that do not
work on cloud servers still might work at the edge infrastructure.

Attack Unawareness
Users have limited knowledge about the state of IoT devices, nor is it likely to realize ongoing attacks.

OS and Protocol Heterogeneities
Different types of operating systems and communication protocols or (open source) implementations
makes it difficult to unify the defence mechanisms.

Coarse-Grained Access Control
Managing access to IoT devices requires more fine-grained definition, than currently exists.

Misalignment across device edge and service provider edge
Involvement of third-party service providers might lead to shared responsibilities which are not
clearly defined.

7.1.2 Attack classification

DDoS attacks
• Flooding-based attacks:

Security has been ignored in the design phase and resulted in flaws at the protocol level.
Countermeasures: Real-time based detection per-packet; detection based on statistics

• Zero-day DDoS attacks:
Vulnerabilities on code-level that can cause memory corruptions.
Countermeasures: Pointer taintedness detection; ECC-memory

Side-channel attacks

SPARTA D6.4 Public Page 73 of 88

D6.4 - Final Release of Demonstration

• Attacks exploiting communication channels:
Conclusions made on base of side-channel information that is publicly available and an un-
known hidden correlation with the sensitive data.
Countermeasures: Data perturbation; Restricting accesses to side channel

• Attacks exploiting power consumption
Malware injection attacks

• Server-side injections:
Design flaws on protocol-level, e.g., SQL injection, Cross-site request forgery, server-side re-
quest forgery, XML signature wrapping
Countermeasures: Detection filter

• Device-side injections:
Design flaws at the device, e.g. Firmware modification attacks, Design flaws on code-level
Countermeasures: Analysis on code-level for malicious behaviour; Coarse-grained access con-
trol model adaption; Fine-grained access control

Authentication and authorisation attacks
• Dictionary attacks:

Weak credentials in authentication protocols.
Countermeasures: Adding an additional authentication layer with stronger properties; Harden-
ing the process of password verification

• Attacks exploiting vulnerabilities in authentication and authorisation protocols:
Design flaws on protocol-level or flaws on implementation-level.
Countermeasures: Patching and strengthening the current protocols; Conducting code-level
analyses

• Over-privileged attacks:
Design flaws on protocol-level or flaws on implementation-level.
Countermeasures: Strengthening the current permission models; Patching and strengthening
the current protocols; Conducting code-level analyses

Routing Information Attacks
• Manipulation of data paths:

Deleting incoming/outgoing network data, replaying that data in different networks, or creating
routing confusion by broadcasting wrong messages.

Man-in-the-middle attacks
• Intercept and change data:

Flaws on protocol-level design or implementation-level might allow to interfere the communica-
tion link between two parties and intercept and change the exchanged data.

Bad-data injection attacks
• Compromises Sensor Readings:

An attacker compromises sensor readings to introduce undetected errors in the calculations.
Malicious Hardware/Software Injections

• Unauthorised injection
Inject unauthorised hardware components as well as unauthorised software into the edge net-
work.

• Node replication:
A node is added to the network with an existing ID.

• Hardware trojan injection:
Control integrated circuits of a node already at build time

Physical Tampering and Attacks
• Change or modification:

Node software or operating system

SPARTA D6.4 Public Page 74 of 88

D6.4 - Final Release of Demonstration

• Manipulation:
Node circuits

• Extraction:
Sensitive cryptographic information

• Destruction:
Nodes

7.1.3 Root causes

Protocol-Level Design Flaws The vulnerability is already part of the design of the protocol and not
a bug in the implementation.

Implementation-Level Flaws The protocol is secure, but there are logic flaws in the implementation.
This might come from a misunderstanding of the protocol or by inconsistencies due to the migration
of the protocol from other contexts into the edge-computing environment.

Code-Level Vulnerabilities The protocol is secure and there are no logic flaws. But the program-
ming introduces the risk for cause memory failures and corruption, e.g., format string vulnerability,
heap overflow, stack overflow, use-after-free with dangling pointer.

Lacking Fine-Grained Access Controls Due to limitations of the edge-computing environment, the
barriers of gaining access rights that are higher than foreseen can open the door for different types
of attacks (man-in-the-middle, authorisation attacks).

Data Correlations There might be a relation between the insensitive data that is produced in the
edge computing environment and other sensitive data, that is not obvious. If someone can identify
that relation, it opens the path to some types of attacks.

7.1.4 CWE Codes

CWE manages a list of common vulnerabilities, that can be referenced by a number or code. Num-
bered categories combine a set of vulnerabilities, in case these vulnerabilities belong to the same
group of problems.
Code-Level Vulnerabilities
The descriptions of the workflows are referring to programming errors that causes problems like
memory leakage and buffer overflows, which fall under the root cause of this section.

• CWE-118: Incorrect Access of Indexable Resource (’Range Error’)
• CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
• CWE-120: Buffer Copy without Checking Size of Input (’Classic Buffer Overflow’)
• CWE-121: Stack-based Buffer Overflow
• CWE-122: Heap-based Buffer Overflow
• CWE-125: Out-of-bounds Read Before Release (’Heap Inspection’)
• CWE-134: Use of Externally-Controlled Format String
• CWE-244: Improper Clearing of Heap Memory
• CWE-401: Missing Release of Memory after Effective Lifetime
• CWE-415: Double Free
• CWE-416: Use After Free
• CWE-465: Pointer Issues

SPARTA D6.4 Public Page 75 of 88

D6.4 - Final Release of Demonstration

• CWE-787: Out-of-bounds Write
• CWE-788: Access of Memory Location After End of Buffer
• CWE-825: Expired Pointer Dereference
• Category-465: Pointer Issues

Protocol-Level Design Flaws & Lacking Fine-Grained Access Controls
Another important elements of the workflows are authentication and key agreement. Flaws in that
area are part of the flaws in the protocol design as well as flaws specific to access control.

• CWE-284: Improper Access Control
• CWE-287: Improper Authentication
• CWE-295: Improper Certificate Validation
• CWE-303: Incorrect Implementation of Authentication Algorithm
• CWE-322: Key Exchange without Entity Authentication
• CWE-670: Always-Incorrect Control Flow Implementation
• Category-320: Key Management Errors
• Category-957: SFP Secondary Cluster: Protocol Error

Data Correlation
In regard to data privacy as described in the workflows, flaws that enable the disclosure of sensitive
data is important.

• CWE-200: Exposure of Sensitive Information to an Unauthorized Actor
• CWE-213: Exposure of Sensitive Information Due to Incompatible Policies
• CWE-311: Missing Encryption of Sensitive Data
• CWE-312: Cleartext Storage of Sensitive Information
• CWE-319: Cleartext Transmission of Sensitive Information
• CWE-359: Exposure of Private Personal Information to an Unauthorized Actor
• CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere
• CWE-668: Exposure of Resource to Wrong Sphere
• CWE-693: Protection Mechanism Failure
• CWE-921: Storage of Sensitive Data in a Mechanism without Access Control
• CWE-922: Insecure Storage of Sensitive Information
• Category-934: OWASP Top Ten 2013 Category A6 - Sensitive Data Exposure
• Category-1029: OWASP Top Ten 2017 Category A3 - Sensitive Data Exposure

OWASP Top Ten 2021 Categories
It is worth to mention that some vulnerabilities, which are relevant for the described workflows, fall
into the top ten 2012 categories of OWASP. These categories combine vulnerabilities of the different
root causes.

• Category-1345: OWASP Top Ten 2021 Category A01:2021 - Broken Access Control
• Category-1347: OWASP Top Ten 2021 Category A03:2021 - Injection
• Category-1348: OWASP Top Ten 2021 Category A04:2021 - Insecure Design
• Category-1352: OWASP Top Ten 2021 Category A06:2021 - Vulnerable and Outdated Compo-

nents
• Category-1353: OWASP Top Ten 2021 Category A07:2021 - Identification and Authentication

Failures
• Category-1354: OWASP Top Ten 2021 Category A08:2021 - Software and Data Integrity Fail-

ures
• Category-1356: OWASP Top Ten 2021 Category A10:2021 - Server-Side Request Forgery

(SSRF)

SPARTA D6.4 Public Page 76 of 88

D6.4 - Final Release of Demonstration

7.2 Legacy technologies management evaluation

The goal of this workflow is hardening legacy components. As such, the effectiveness of this workflow
breaks down to the effectiveness of its constituents, which we discuss in detail below.

7.2.1 Control-flow integrity for edge devices evaluation

As regards the control-flow integrity solution described in 3.2 and demonstrated in 6.1.3, the following
parameters described in 7.1 can be taken into consideration:

• Attack surface: Weak Computation Power and Poorly Secured Devices, Attack Unawareness
• Attack classification: Malware injection attacks (Device-side injections)
• Root causes: Code-Level Vulnerabilities
• CWE Codes: All numbers related to Code-Level Vulnerabilities as reported in 7.1.4

The solution proved to be 100% effective in avoiding control-flow redirection attacks in the specific
application scenario within the smart building demonstrator (Figure 7.1, also cfr. [34]).

Figure 7.1: The door sensor component inside Legacy technologies management workflow in the common
WP6 use case infrastructure.

Here, a physical access monitoring application within the facility was built using the GATT protocol
over BLE. The smartphone, acting as a GATT server, communicates to the GATT client (i.e., the door
sensor), which asks for a unique identification key. The smartphone instead acts as a malicious agent
by exploiting a buffer overflow vulnerability that is inside a readChar() function, which lies in the only
connection to the user outside the network and which internally uses the unsafe strcpy() instead
of the memcpy(). The attacker thus manages to send more characters than the ones required for
the identifier, corrupting the stack and inserting the address of a single gadget, i.e., the address of
the recordSet() function, plus some parameters necessary for the attack to work. Through this,
the attacker is successful in changing the admin access PIN, allowing a subsequent successful login
from the admin side during a connection to the door sensor attempted from the internal network.
More details on the attack experiments can be found at [39].

7.2.2 RIOT-AKA evaluation

RIOT-AKA aims to cover multiple aforementioned vulnerabilities as described in 3.4 and demon-
strated in 6.1.5. The following parameters described in 7.1 can be taken into consideration:

• Attack surface: Weak Computation Power and Poorly Secured Devices, Attack Unawareness

SPARTA D6.4 Public Page 77 of 88

D6.4 - Final Release of Demonstration

• Attack classification: Authentication and authorisation attacks
• Root causes: Protocol-Level Design Flaws and Lacking Fine-Grained Access Controls
• CWE Codes: All numbers related to Protocol-Level Design Flaws & Lacking Fine-Grained Ac-

cess Controls as reported in 7.1.4. Data correlation codes will be also taken into account in
future iterations.

The detailed security analysis of the robustness of the protocol is reported in [20]. We remind that
RIOT-AKA implementations is still at a premature prototype state so deep evaluation of the practical
effectiveness of its solution will be showed in future releases.

7.2.3 Evaluation of secure software updates for wearable low-power IoT with RIOT, SUIT, and
femto-containers

The open source platform we have developped for the PEPPER demo (low-power IoT wearables,
see Section 6.1.1) has wider applicability beyond this use case. Based on RIOT, SUIT end-to-end
security, and femto-containers and standard low-power network protocols, our platform can provide
security-enhanced embedded system software and secure updates over the network for general-
purpose IoT OS firmware update or for more lightweight and more specific IoT software modules
hosted and isolated in femto-containers.
Our software (firmware or femto-container) update security guarantees include:

• Tampered Firmware Update Attacks – An attacker may try to update the IoT device with a
modified and intentionally flawed firmware image. To counter this threat, our prototype based
on SUIT uses digital signatures on a hash of the image binary and the metadata to ensure
integrity of both the firmware and its metadata.

• Unauthorized Firmware Update Attacks – An unauthorized party may attempt to update the IoT
device with modified image. Using digital signatures and public key cryptography, our prototype
based on SUIT ensure that only the authorized maintainer (holding the authorized private key)
will be able to update de device.

• Firmware Update Replay Attacks – An attacker may try to replay a valid, but old (known-to-be-
flawed) firmware. This threat is mitigated by using a sequence number. Our prototype based
on SUIT uses a sequence number, which is increased with every new firmware update.

• Firmware Update Mismatch Attacks – An attacker may try replaying a firmware update that
is authentic, but for an incompatible device. Our prototype based on SUIT includes device-
specific conditions, which can be verified before installing a firmware image, thereby preventing
the device from using an incompatible firmware image.

Moreover, we evaluate the performance of femto-containers as general-purpose building block for se-
cure DevOps and Function-as-a-Service use cases in more details in the report we published in [89].
In this report we analyze that femto-containers incur very small memory footprint overhead (below
10%) and very small startup time (tens of microseconds) compared to native code execution. We
also show that Femto-Containers can satisfy the constraints of both low-level debug logic inserted in
a hot code path, and high-level business logic coded in a variety of common programming languages.
Compared to prior work, femto-containers thus offer an attractive new trade-off in terms of memory
footprint, energy consumption, agility and security.

7.3 Intrusion management workflow evaluation

The effectiveness of this workflow depends on the following two aspects.
1. The effectiveness of intrusion detection methodologies in identifying dangerous activities.
2. The effectiveness of the Fog reorchestration mechanisms in reacting to critical, intrusion events.

Below we discuss these two idems in detail.

SPARTA D6.4 Public Page 78 of 88

D6.4 - Final Release of Demonstration

7.3.1 Evaluation of the Anomaly-based Intrusion Detection System

The anomaly-based intrusion detection system aims at identifying deviations from a learned model
of normal behaviors. Referring to the classification defined in Section 7.1, the proposed IDS can be
characterized as follows:

• Attack surface: different attack surfaces can be considered but the main ones are obviously
� Weak Computation Power and Poorly Secured Devices � and � Attack Unawareness �.

• Attack classification: Any class of attack can be detected as long as it violates the behavior
model used by the IDS. When the analysis is based on an observation of the network traffic,
DDos attacks which have often an high impact on the communication pattern are among the
important targets of the IDS.

• Root causes: any. Indeed, the tool focuses on the consequences of an attack rather than on
its causes.

• CWE Codes: mainly those that are related to � Code-Level Vulnerabilities �.
Note that, during the learning phase, the tool requires only unlabeled traces corresponding to normal
behaviors. Consequently, during the detection phase, when an alert is raised, the class of attack that
has been conducted cannot be identified. Only an analysis of the reasons that led to raise an alert
can provide hints about the followed attack scenario.
Evaluation of the IDS tool have been performed using a distributed application, namely a distributed
file system called XtreemFS (http://www.xtreemfs.org/). Main results appear in the previ-
ous delivered document [34]. The adaptation of the tool to cope with network traffic has also been
evaluated using a well-known dataset that includes several attack scenarios (CIC-IDS-2017 dataset:
https://www.unb.ca/cic/datasets/ids-2017.html). The results show that the detection
is clearly better when the events are corresponding to high level actions of a distributed application
rather than to packets captured at a single point of the network. All the evaluations aim to analyse
the quality of the detection (false positive, false negative, ...) but also the complementarities between
the different sub-models that are used.

7.3.2 Evaluation of dynamic service orchestration in the Fog computing

Method of dynamic service orchestration in the Fog Computing as described in 4.3 and demonstrated
in 6.2.3 is actually more related to the security countermeasures than to the attack detection. If used
with external intrusion detection technologies it may be considered as a part of intrusion prevention
system. In such context the method has such security characteristics:

• Attack surface: Weak Computation Power and Poorly Secured Devices
• Attack classification: DDoS attacks, Attacks exploiting power consumption
• Root causes: may vary

The method allows Intelligent Infrastructure to react to the changes and reorganize itself according
to the preferences of the area of application. In such way the method may protect the infrastruc-
ture from some attacks exploiting power consumption by reorchestrating services to Fog nodes with
bigger energy reserves. The services also may be dynamically moved from compromised devices
or devices under DDoS attack to other, more secure devices, thus mitigating the risks of potential
service availability problems. The implementation of the method was performed using prototype sys-
tem. The experimental result are published in [68]. All practical implementations of the infrastructure
still are at a prototype state so more detailed experimental evaluation will be performed in the future
research.

7.4 Privacy and data management evaluation

The effectiveness of this workflow is related to two distinct aspects, i.e., (i) the effectiveness of the
DPO tool in detecting design flaws and (ii) the effectiveness of PEAS and MC-SSE tool in dealing

SPARTA D6.4 Public Page 79 of 88

http://www.xtreemfs.org/
https://www.unb.ca/cic/datasets/ids-2017.html

D6.4 - Final Release of Demonstration

with such flaws. In the following, we discusse these aspects in detail.

7.4.1 Evaluation of DPO tool

There are several initiatives to evaluate and validate the Data Protection Officer tool (DPO tool).
Firstly, in the deliverable D6.3 we have discussed how DPO tool corresponds to the requirements of
the ISO27701:2019 standard. The overview presented the standard controls included in the DPO
tool, controls partially included in the DPO tool, and control not included in the DPO tool.
Secondly, despite the vehicle charge process, which is discussed in this document, DPO tool is also
applied for a few other cases. For instance, in [63] the Tollgate scenario is considered. Elsewhere
in [16], the DPO tool is applied to explain how personal passenger’s data could be protected in the
interaction with the autonomous vehicle. In the later study, an integration of the DPO results to the
privacy leakage analysis is discussed, too. These DPO tool applications show the feasibility and
usefulness to explain how business processes are compliant to the GDPR regulation.

7.4.2 Evaluation of PEAS

PEAS provides the security properties typical for privacy-preserving authentication schemes such
as correctness, soundness, anonymity, and revocation. The detailed security analysis of PEAS can
be found in the previous report D6.3 and the papers [24] and [42]. The first performance results of
PEAS have been published in D6.3. To prove the practicality of the design, PEAS has been also
implemented at the off-the-shelf card platforms (smart cards). The benchmarks and a comparison
with existing solutions can be found in [42].
In addition, the PEAS implementation has been enhanced by a web-based GUI and the Android
applications. Figure 7.2 shows how a smart phone (Nokia 7.2) with the Android PEAS application
speeds up the PEAS authentication protocol in comparison with the smart card (Multos ML4). Users
using smart cards for storing their attributes need for the authentication process around 2.6 seconds.
Users with the Android-based PEAS application can prove their attributes within less than 461 ms.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1,000

2,000

3,000
2,656

2,507
2,306

2,157
2,012

461 446 417 405 381

Revealed attributes

Ti
m

e
t

[m
s]

5 attributes

Smart Card Smart phone

Figure 7.2: Performance test of PEAS authentication phase (Smart Card MultOS ML 4 and Smartphone
Nokia 7.2).

7.4.3 Evaluation of the MC-SSE tool

The MC-Clusion library implementation was evaluated by performing experiments with up to 1M
documents, containing synthetic parking transactions, resulting in 21M document-keyword pairs. Ex-
periments were executed on the Grid’5000 testbed [1] with Intel Xeon Gold 6130 (Skylake, 2.10GHz,

SPARTA D6.4 Public Page 80 of 88

D6.4 - Final Release of Demonstration

4 CPUs/node, 16 cores/CPU) processors and 60GB of RAM, running Debian 11 (64-bit) OS. The ex-
perimental results confirm the correct functionality of the multi-client extension of the Clusion library.
The performance evaluation of the library implementation shows that the properties of the original
BIEX SSE scheme algorithm are retained, offering practical and efficient boolean search function-
ality. Finally, the MC-SSE demonstration implementation also verifies the usability of the solution,
illustrated through the parking use case scenario.

SPARTA D6.4 Public Page 81 of 88

D6.4 - Final Release of Demonstration

Chapter 8 Conclusion

In this document we presented the final demonstration of the HAII-T. Our integration strategy lever-
aged on the HAII-T orchestrator for combining all the methodologies and tools developed in WP6.
Also, to better highlight how HAII-T supports the Security-by-Design approach, we put forward three
security workflows dealing with common issues which affect many II. Below, we briefly discuss some
conclusive remarks for each of them.

Legacy technologies management
We remind that this conclusions are derived from work showed in Section 3.4 and 6.1.5. We con-
firm that widely established authentication means, exploited since decades in the cellular networking
domain, can be also considered for IoT devices. Their simple and consolidated roaming model fits
very well with the need for IoT deployments to permit relocation of objects or change of smart space
ownership. We still require to address many other aspects which our preliminary proof-of-concept
work has so far neglected. Indeed, our current work in progress revolves around two main goals:
i) hardening and extension of the protocol, with more thorough registration and management proce-
dures and handling of desynchronization events/attacks, and ii) integration with security protocols,
specifically (D)TLS and OSCORE, already available in the RIOT OS.

Intrusion management
The Intrusion management workflow shows how Intelligent Infrastructure is able to adapt itself to the
changing environment and reorganize services in order to maximize security or comply with other im-
portant QoS requirements. It was demonstrated that Intrusion detection systems, based on Machine
learning and Anomaly detection approaches, are able to detect possible security risks affecting de-
vices comprising the Intelligent Infrastructure. The demonstrator also shows that multi-agent based
implementation of Fog layer services allows to implement orchestrator services, which are able to
constantly collect current information about dynamic infrastructure as well as to perform service mi-
grations from security compromised Fog nodes to more secure ones. We used Human-in-the-loop
approach to mitigate the risks of false positive alarms affecting the system and degrading its perfor-
mance. Integration of multiple Intrusion detection systems using different technologies and dynamic
service orchestration results in an interesting system which could be called Intrusion detection and
prevention solution.

Data and privacy management
The data and privacy management workflow focused on practical aspects of the privacy-by-design
approach and presented how various PETs tools can be deployed in HAII-T infrastructure, i.e., smart
campus, smart building etc. Privacy-Enhancing Authentication System (PEAS) has been presented
and demonstrated on common smart campus services, i.e., checking parking permits and access
to protected areas. Using the Android-based PEAS user application and multi-platform web-based
PEAS applications for Verifier and Issuer may provide an efficient and privacy-preserving authentica-
tion system in IIs. Then, the Multi-client - Searchable Symmetric Encryption (MC-SSE) tool has been
proposed to support privacy-preserving data processing for the intelligent infrastructure services. Fi-
nally, we also presented the DPO tool - Data Protection Officer tool for checking business process
compliance to the GDPR regulation. The three tools can be used in combination to construct a practi-
cal common application scenario, presented in Section 6.3. In conclusion, each of the three PET tools
covers a different privacy aspect (regulation compliance, authentication and data processing) and all
three together provide a practical toolset that can offer privacy support for intelligent infrastructure
services.

SPARTA D6.4 Public Page 82 of 88

D6.4 - Final Release of Demonstration

Chapter 9 Bibliography

[1] Grid’5000 testbed. https://www.grid5000.fr/.
[2] Clusion library. https://github.com/encryptedsystems/Clusion.
[3] Microsoft threat modeling tool. https://docs.microsoft.com/en-us/azure/

security/develop/threat-modeling-tool. Accessed at 2021-04-26.
[4] Getting around non-executable stack (and fix). https://seclists.org/bugtraq/1997/

Aug/63, 1997. [Online; accessed 07-June-2021].
[5] DP3T Decentralized Privacy-Preserving Proximity Tracing. https://github.com/DP-3T/

documents, 2020. [Online; accessed 01-Dec-2021].
[6] Top Programming Languages 2021 - IEEE Spectrum. https://spectrum.ieee.org/top-

programming-languages/, 2021. [Online; aAccessed December 07, 2021].
[7] PEPPER Demo Video. https://github.com/future-proof-iot/PEPPER, 2021. [On-

line; accessed 13-Dec-2021].
[8] SUIT-based Security-Enhanced IoT Operating System Software. https://github.com/

future-proof-iot/RIOT/tree/H2020-Sparta-Deliverable-D6-2, 2021. [Online;
accessed 01-Dec-2021].

[9] Singapore TraceTogether Token. https://token.gowhere.gov.sg/, 2021. [Online; ac-
cessed 01-Dec-2021].

[10] CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer. https:
//cwe.mitre.org/data/definitions/119.html, 2021. [Online; Accessed December
07, 2021].

[11] CWE-401: Missing Release of Memory after Effective Lifetime. https://cwe.mitre.org/
data/definitions/401.html, 2021. [Online; accessed 07-June-2021].

[12] Femto-Containers Tutorials. https://github.com/future-proof-iot/Femto-
Container_tutorials, 2021. [Online; accessed 13-Dec-2021].

[13] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity principles, implementa-
tions, and applications. ACM Transactions on Information and System Security (TISSEC), 13
(1):1–40, 2009.

[14] Martı́n Abadi and Cédric Fournet. Mobile values, new names, and secure communication. Acm
Sigplan Notices, 36(3):104–115, 2001.

[15] Martı́n Abadi, Bruno Blanchet, and Cédric Fournet. Just fast keying in the pi calculus. ACM
Transactions on Information and System Security (TISSEC), 10(3):9–es, 2007.

[16] M. Bakhtina. Securing Passenger’s Data in Autonomous Vehicles. Master’s thesis, University of
Tartu, 2021.

[17] Elaine Barker. Nist special publication 800-57 part 1 revision 4, recommendation for key man-
agement part 1: General. NIST, 2016.

[18] Fabio Bellifemine, Federico Bergenti, Giovanni Caire, and Agostino Poggi. Jade — A Java
Agent Development Framework. In Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal
El Fallah Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms and Appli-
cations, pages 125–147. Springer US, Boston, MA, 2005. ISBN 978-0-387-26350-2. doi:
10.1007/0-387-26350-0 5.

[19] Karthikeyan Bhargavan, Cédric Fournet, Ricardo Corin, and Eugen Zalinescu. Cryptographically
verified implementations for tls. In Proceedings of the 15th ACM conference on Computer and
communications security, pages 459–468, 2008.

[20] Giuseppe Bianchi, Alberto La Rosa, and Gabriele Restuccia. Riot-aka: cellular-like authentica-
tion over iot devices. In 2021 IEEE 29th International Conference on Network Protocols (ICNP),
pages 1–6, 2021. doi: 10.1109/ICNP52444.2021.9651952.

SPARTA D6.4 Public Page 83 of 88

https://www.grid5000.fr/
https://github.com/encryptedsystems/Clusion
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://seclists.org/bugtraq/1997/Aug/63
https://seclists.org/bugtraq/1997/Aug/63
https://github.com/DP-3T/documents
https://github.com/DP-3T/documents
https://spectrum.ieee.org/top-programming-languages/
https://spectrum.ieee.org/top-programming-languages/
https://github.com/future-proof-iot/PEPPER
https://github.com/future-proof-iot/RIOT/tree/H2020-Sparta-Deliverable-D6-2
https://github.com/future-proof-iot/RIOT/tree/H2020-Sparta-Deliverable-D6-2
https://token.gowhere.gov.sg/
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/401.html
https://github.com/future-proof-iot/Femto-Container_tutorials
https://github.com/future-proof-iot/Femto-Container_tutorials

D6.4 - Final Release of Demonstration

[21] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas Peter. A survey of provably secure
searchable encryption. ACM Computing Surveys (CSUR), 47(2):1–51, 2014.

[22] Daniel Brett. Is edge computing secure? here are 4 security risks to be aware of. Online (ac-
cessed 2021-12-13), December 2020. URL https://www.trentonsystems.com/blog/
is-edge-computing-secure.

[23] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instructions go bad: Gen-
eralizing return-oriented programming to risc. In Proceedings of the 15th ACM conference on
Computer and communications security, pages 27–38. ACM, 2008.

[24] Jan Camenisch, Manu Drijvers, Petr Dzurenda, and Jan Hajny. Fast keyed-verification anony-
mous credentials on standard smart cards. In IFIP International Conference on ICT Systems
Security and Privacy Protection, pages 286–298. Springer, 2019.

[25] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin Roşu, and
Michael Steiner. Highly-scalable searchable symmetric encryption with support for boolean
queries. In Annual cryptology conference, pages 353–373. Springer, 2013.

[26] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk, Marcel-
Catalin Rosu, and Michael Steiner. Dynamic searchable encryption in very-large databases:
data structures and implementation. In NDSS, volume 14, pages 23–26. Citeseer, 2014.

[27] Claude Castelluccia, Nataliia Bielova, Antoine Boutet, Mathieu Cunche, Cédric Lauradoux,
Daniel Le Métayer, and Vincent Roca. Robert: Robust and privacy-preserving proximity tracing.
2020.

[28] Claude Castelluccia, Nataliia Bielova, Antoine Boutet, Mathieu Cunche, Cédric Lauradoux,
Daniel Le Métayer, and Vincent Roca. Desire: A third way for a european exposure noti-
fication system leveraging the best of centralized and decentralized systems. arXiv preprint
arXiv:2008.01621, 2020.

[29] Khadijah Chamili, Md. Jan Nordin, W. Ismail, and A. Radman. Searchable encryption: A review.
International journal of security and its applications, 11:79–88, 2017.

[30] Richard Chang and Vitaly Shmatikov. Formal Analysis of Authentication in Bluetooth Device
Pairing. FCS-ARSPA07, 2007.

[31] Ionut,-Adrian Cojoacă, Constantin Bulac, and Claudiu-Ionut, Popı̂rlan. A proposed multi-agent
based platform for monitoring and control of Active Power Distribution Systems. In 2021 3rd
Global Power, Energy and Communication Conference (GPECOM), pages 214–219. IEEE,
2021.

[32] F. Conceicao, N. Oualha, and D. Zeghlache. Security Establishment for IoT Environments in
5G: Direct MTC-UE Communications. In 2017 IEEE 28th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), pages 1–5, Oct 2017. doi: 10.
1109/PIMRC.2017.8292693.

[33] Gabriele Costa, Alessandro Armando, Joaquin Garcia-Alfaro, Jean-Max Dutertre, Jean-
Luc Danger, Gianluca Roascio, Paolo Prinetto, Michel Hurfin, Ludovic Me, Giorgio
Bernardinetti, Francesco Mancini, Sergej Proskurin, Claudia Eckert, Uwe Roth, Qiang
Tang, Lukas Malina, Petr Dzurenda, Manon Knockaert, Jean-Marc Van Gyseghem,
Raimundas Matulevicius, Abasi-Amefon O. Affia, Kaspar Kala, Branka Stojanovic, Katha-
rina Hofer-Schmitz, Marek Pawlicki, Tewodros Beyene, and Nerijus Morkevicius. D6.1
Security-by-Design Framework for the Intelligent Infrastructure. SPARTA, Feb 2020.
URL https://www.sparta.eu/assets/deliverables/SPARTA-D6.1-Security-by-
design-framework-for-the-intelligent-infrastructure-PU-M12.pdf.

[34] Gabriele Costa, Alessandro Armando, Joaquin Garcia-Alfaro, Jean-Max Dutertre, Jean-Luc
Danger, Gianluca Roascio, Paolo Prinetto, Michel Hurfin, Ludovic Me, Giorgio Bernardinetti,
Francesco Mancini, Sergej Proskurin, Claudia Eckert, Uwe Roth, Qiang Tang, Lukas Malina,
Petr Dzurenda, Manon Knockaert, Jean-Marc Van Gyseghem, Raimundas Matulevicius, Abasi-
Amefon O. Affia, Kaspar Kala, Branka Stojanovic, Katharina Hofer-Schmitz, Marek Pawlicki,

SPARTA D6.4 Public Page 84 of 88

https://www.trentonsystems.com/blog/is-edge-computing-secure
https://www.trentonsystems.com/blog/is-edge-computing-secure
https://www.sparta.eu/assets/deliverables/SPARTA-D6.1-Security-by-design-framework-for-the-intelligent-infrastructure-PU-M12.pdf
https://www.sparta.eu/assets/deliverables/SPARTA-D6.1-Security-by-design-framework-for-the-intelligent-infrastructure-PU-M12.pdf

D6.4 - Final Release of Demonstration

Tewodros Beyene, and Nerijus Morkevicius. D6.3 First Release of Demonstration. SPARTA,
Feb 2021.

[35] Roudy Dagher, Francois-Xavier Molina, Alexandre Abadie, Nathalie Mitton, and Emmanuel Bac-
celli. An open experimental platform for ranging, proximity and contact event tracking using ultra-
wide-band and bluetooth low-energy. In CNERT 2021-IEEE INFOCOM Workshop on Computer
and Networking Experimental Research using Testbeds, 2021.

[36] Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE Transactions on
information theory, 29(2):198–208, 1983.

[37] Ali Dorri, Salil S. Kanhere, and Raja Jurdak. Multi-Agent Systems: A Survey. IEEE Access, 6:
28573–28593, 2018. ISSN 2169-3536. doi: 10.1109/ACCESS.2018.2831228.

[38] EnOceanAlliance. Security of EnOcean Radio networks v2.5. URL https://www.enocean-
alliance.org/wp-content/uploads/2019/04/Security-of-EnOcean-Radio-
Networks-v2_5.pdf.

[39] Antonio Ettore Epifani. Control-Flow Integrity for Embedded Systems: Study Case of an FPGA-
Based Solution. PhD thesis, Politecnico di Torino, 2021.

[40] Valentina Forte, Nicolò Maunero, Paolo Prinetto, and Gianluca Roascio. Prolepsis: Binary analy-
sis and instrumentation of iot software for control-flow integrity. In 2021 International Conference
on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pages 1–
6, 2021. doi: 10.1109/ICECCME52200.2021.9591080.

[41] Vangelis Gazis, Nikos Housos, Athanasia Alonistioti, and Lazaros Merakos. Generic system
architecture for 4g mobile communications. In The 57th IEEE Semiannual Vehicular Technology
Conference, 2003. VTC 2003-Spring., volume 3, pages 1512–1516. IEEE, 2003.

[42] Jan Hajny, Petr Dzurenda, Raul Casanova-Marques, and Lukas Malina. Privacy abcs: Now
ready for your wallets! In 2021 IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events (PerCom Workshops), pages 686–691,
2021. doi: 10.1109/PerComWorkshops51409.2021.9431139.

[43] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6, 02 1995. doi: 10.1007/BF01211866.

[44] D. Harel and B. Rumpe. Meaningful Modeling: What’s the Semantics of ”Semantics”? Computer,
37(10):64–72, 2004. doi: 10.1109/MC.2004.172.

[45] Jaap-Henk Hoepman. A critique of the google apple exposure notification (gaen) framework.
arXiv preprint arXiv:2012.05097, 2020.

[46] Katharina Hofer-Schmitz. A formal analysis of enocean’s teach-in and authentication. In The
16th International Conference on Availability, Reliability and Security, pages 1–8, 2021.

[47] M. Howard and LeBlanc D. Writing secure code. Redmond: Microsoft Press, 2014.
[48] ISO/IEC. Iso/iec 14543-3-10:2012. URL http://www.iso.org/cms/render/live/en/

sites/isoorg/contents/data/standard/05/98/59865.html.
[49] Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel Rosu, and Michael Steiner. Out-

sourced symmetric private information retrieval. In Proceedings of the 2013 ACM SIGSAC con-
ference on Computer & communications security, pages 875–888, 2013.

[50] Seny Kamara and Tarik Moataz. Boolean searchable symmetric encryption with worst-case
sub-linear complexity. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 94–124. Springer, 2017.

[51] Georgios Kambourakis, Constantinos Kolias, Dimitrios Geneiatakis, Georgios Karopoulos,
Georgios Michail Makrakis, and Ioannis Kounelis. A state-of-the-art review on the security of
mainstream iot wireless pan protocol stacks. Symmetry, 12(4):579, 2020.

[52] Ashish Khaira and R. K. Dwivedi. A State of the Art Review of Analytical Hierarchy Process.
Materials Today: Proceedings, 5(2, Part 1):4029–4035, 2018. ISSN 2214-7853. doi: https:
//doi.org/10.1016/j.matpr.2017.11.663.

SPARTA D6.4 Public Page 85 of 88

https://www.enocean-alliance.org/wp-content/uploads/2019/04/Security-of-EnOcean-Radio-Networks-v2_5.pdf
https://www.enocean-alliance.org/wp-content/uploads/2019/04/Security-of-EnOcean-Radio-Networks-v2_5.pdf
https://www.enocean-alliance.org/wp-content/uploads/2019/04/Security-of-EnOcean-Radio-Networks-v2_5.pdf
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/98/59865.html
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/98/59865.html

D6.4 - Final Release of Demonstration

[53] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated verification for secure
messaging protocols and their implementations: A symbolic and computational approach. In
2017 IEEE European Symposium on Security and Privacy (EuroS&P), pages 435–450. IEEE,
2017.

[54] David Kotz and Travis Peters. Challenges to ensuring human safety throughout the life-cycle of
smart environments. In Proceedings of the 1st ACM Workshop on the Internet of Safe Things,
pages 1–7, 2017.

[55] S. Krivokuća, B. Stojanović, K. Hofer-Schmitz, N. Nešković, and A. Nešković. Smart water
distribution system communication architecture risk analysis using formal methods. In 2020
28th Telecommunications Forum (TELFOR), pages 1–4, 2020. doi: 10.1109/TELFOR51502.2020.
9306654.

[56] Alberto La Rosa. Riot-security/examples/riot aka at sparta-dev deus-ex-mortis/riot-security.
GitHub, . URL https://github.com/Deus-Ex-Mortis/RIOT-security/tree/
SPARTA-dev/examples/riot_aka.

[57] Alberto La Rosa. Deus-ex-mortis/aiocoap. GitHub, . URL https://github.com/Deus-Ex-
Mortis/Aiocoap.

[58] Douglas J Leith and Stephen Farrell. Measurement-based evaluation of google/apple exposure
notification api for proximity detection in a light-rail tram. Plos one, 15(9):e0239943, 2020.

[59] Paul Lipton, Chris Lauwers, Matt Rutkowski, Claude Noshpitz, and Calin Curescu.
TOSCA Simple Profile in YAML Version 1.3. Technical report, OASIS, February 2020.
URL https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/
TOSCA-Simple-Profile-YAML-v1.3.pdf.

[60] Gavin Lowe. Breaking and fixing the needham-schroeder public-key protocol using fdr. In In-
ternational Workshop on Tools and Algorithms for the Construction and Analysis of Systems,
pages 147–166. Springer, 1996.

[61] Lukas Malina, Petr Dzurenda, Sara Ricci, Jan Hajny, Gautam Srivastava, Raimundas Mat-
ulevičius, Abasi-Amefon O. Affia, Maryline Laurent, Nazatul Haque Sultan, and Qiang Tang.
Post-quantum era privacy protection for intelligent infrastructures. IEEE Access, 9:36038–
36077, 2021. doi: 10.1109/ACCESS.2021.3062201.

[62] S. Marksteiner, V. J. E. Jimenez, H. Valiant, and H. Zeiner. An Overview of Wireless IoT Protocol
Security in the Smart Home Domain. In 2017 Internet of Things Business Models, Users, and
Networks, pages 1–8, Nov 2017. doi: 10.1109/CTTE.2017.8260940.

[63] R. Matulevičius, J. Tom, K. Kala, and E. Sing. a method for managing gdpr compliance in
business processes. In CAiSE Forum 2020: 100-112 CAiSE Forum 2020: 100-112 CAiSE 2020
Forum, pages 100–112.

[64] N. Maunero, P. Prinetto, G. Roascio, and A. Varriale. A fpga-based control-flow integrity solution
for securing bare-metal embedded systems. In 2020 15th Design & Technology of Integrated
Systems in Nanoscale Era (DTIS), pages 1–10. IEEE, 2020.

[65] Nicoló Maunero, Paolo Prinetto, and Gianluca Roascio. Cfi: Control flow integrity or control flow
interruption? In 2019 IEEE East-West Design Test Symposium (EWDTS), pages 1–6, 2019.
doi: 10.1109/EWDTS.2019.8884464.

[66] MITRE. CWE Version 4.6. Online (accessed 2021-12-13), October 2021. URL https://cwe.
mitre.org/data/published/cwe_v4.6.pdf.

[67] M. Mohsin, M. U. Sardar, O. Hasan, and Z. Anwar. IoTRiskAnalyzer: A probabilistic model
checking based framework for formal risk analytics of the internet of things. IEEE Access, 5:
5494–5505, 2017. ISSN 2169-3536. doi: 10.1109/ACCESS.2017.2696031.

[68] Nerijus Morkevicius, Algimantas Venčkauskas, Nerijus Šatkauskas, and Jevgenijus Toldinas.
Method for Dynamic Service Orchestration in Fog Computing. Electronics, 10(15), 2021. ISSN
2079-9292. doi: 10.3390/electronics10151796.

SPARTA D6.4 Public Page 86 of 88

https://github.com/Deus-Ex-Mortis/RIOT-security/tree/SPARTA-dev/examples/riot_aka
https://github.com/Deus-Ex-Mortis/RIOT-security/tree/SPARTA-dev/examples/riot_aka
https://github.com/Deus-Ex-Mortis/Aiocoap
https://github.com/Deus-Ex-Mortis/Aiocoap
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf
https://cwe.mitre.org/data/published/cwe_v4.6.pdf
https://cwe.mitre.org/data/published/cwe_v4.6.pdf

D6.4 - Final Release of Demonstration

[69] Roger M Needham and Michael D Schroeder. Using encryption for authentication in large net-
works of computers. Communications of the ACM, 21(12):993–999, 1978.

[70] Agnė Paulauskaite-Taraseviciene, Egidijus Kazanavicius, Nerijus Morkevicius, Vaidas Jukavi-
cius, and Laura Kizauskiene. Agent-Based System Architecture for Intelligent Lighting Control
Based on Resident’s Behavior. International Journal of Modeling and Optimization, 5(1):48–54,
2015. ISSN 2010-3697. doi: 10.7763/ijmo.2015.v5.435.

[71] Eric Rescorla and Tim Dierks. The transport layer security (tls) protocol version 1.3. 2018.
[72] Gabriele Restuccia, Hannes Tschofenig, and Emmanuel Baccelli. Low-Power IoT Communica-

tion Security: On the Performance of DTLS and TLS 1.3. in Proceedings of IFIP/IEEE PEMWN,
December 2020.

[73] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented programming: Systems,
languages, and applications. ACM Transactions on Information and System Security (TISSEC),
15(1):2, 2012.

[74] Mark Dermot Ryan and Ben Smyth. Applied pi calculus. Formal Models and Techniques for
Analyzing Security Protocols, 5:112–142, 2011.

[75] Thomas Saaty and Luis Vargas. The Seven Pillars of the Analytic Hierarchy Process. In Int. Ser.
Oper. Res. Manage. Sci., volume 175, pages 27–46. July 2011. doi: 10.1007/978-1-4615-1665-
1 2. Journal Abbreviation: Int. Ser. Oper. Res. Manage. Sci.

[76] Göran Selander, John Mattsson, Francesca Palombini, and Ludwig Seitz. Object security for
constrained restful environments (oscore). Work in Progress, 2019.

[77] Adam Shostack. Threat modeling: Designing for security. John Wiley & Sons, 2014.
[78] J. Tom, E. Sing, and R. Matulevičius. Conceptual Representation of the GDPR: Model and

Application Directions. In BIR 2018, pages 18–28, 2018.
[79] Rajae Touzani, Emilien Schultz, Seth M Holmes, Stéphanie Vandentorren, Pierre Arwid-

son, Francis Guillemin, Dominique Rey, Alexandra Rouquette, Anne-Déborah Bouhnik, Julien
Mancini, et al. Early acceptability of a mobile app for contact tracing during the covid-19 pan-
demic in france: national web-based survey. JMIR mHealth and uHealth, 9(7):e27768, 2021.

[80] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning. On the expressiveness of
return-into-libc attacks. In International Workshop on Recent Advances in Intrusion Detection,
pages 121–141. Springer, 2011.

[81] Heribert Vallant, Branka Stojanović, Josip Božić, and Katharina Hofer-Schmitz. Threat modelling
and beyond-novel approaches to cyber secure the smart energy system. Applied Sciences, 11
(11):5149, 2021.

[82] Serge Vaudenay. Analysis of dp3t. Cryptology ePrint Archive, Report 2020/399, 2020. https:
//ia.cr/2020/399.

[83] Serge Vaudenay. Centralized or decentralized? the contact tracing dilemma. Technical report,
2020.

[84] Jaikumar Vijayan. 4 ways edge computing changes your threat model. Online (accessed 2021-
12-13), May 2020. URL https://www.csoonline.com/article/3543191/4-ways-
edge-computing-changes-your-threat-model.html.

[85] Yatin Wadhawan, Anas AlMajali, and Clifford Neuman. A comprehensive analysis of smart grid
systems against cyber-physical attacks. Electronics, 7(10):249, 2018.

[86] Yinhao Xiao, Yizhen Jia, Chunchi Liu, Xiuzhen Cheng, Jiguo Yu, and Weifeng Lv. Edge com-
puting security: State of the art and challenges. Proceedings of the IEEE, 107(8):1608–1631,
2019. doi: 10.1109/JPROC.2019.2918437.

[87] Jing Xie and Chen-Ching Liu. Multi-agent systems and their applications. Journal of International
Council on Electrical Engineering, 7(1):188–197, 2017. doi: 10.1080/22348972.2017.1348890.

[88] Koen Zandberg and Emmanuel Baccelli. Minimal virtual machines on iot microcontrollers: The
case of berkeley packet filters with rbpf. In 2020 9th IFIP International Conference on Perfor-
mance Evaluation and Modeling in Wireless Networks (PEMWN), pages 1–6. IEEE, 2020.

SPARTA D6.4 Public Page 87 of 88

https://ia.cr/2020/399
https://ia.cr/2020/399
https://www.csoonline.com/article/3543191/4-ways-edge-computing-changes-your-threat-model.html
https://www.csoonline.com/article/3543191/4-ways-edge-computing-changes-your-threat-model.html

D6.4 - Final Release of Demonstration

[89] Koen Zandberg and Emmanuel Baccelli. Femto-containers: Devops on microcontrollers with
lightweight virtualization & isolation for iot software modules. 2021.

[90] Koen Zandberg, Kaspar Schleiser, Francisco Acosta, Hannes Tschofenig, and Emmanuel Bac-
celli. Secure firmware updates for constrained iot devices using open standards: A reality check.
IEEE Access, 7:71907–71920, 2019.

[91] J. Zhang, L. Yang, W. Cao, and Q. Wang. Formal Analysis of 5G EAP-TLS Authentication
Protocol Using Proverif. IEEE Access, 8:23674–23688, 2020. ISSN 2169-3536. doi: 10.1109/
ACCESS.2020.2969474.

[92] Yu Zheng, Dake He, Xiaohu Tang, and Hongxia Wang. Aka and authorization scheme for 4g
mobile networks based on trusted mobile platform. In 2005 5th International Conference on
Information Communications & Signal Processing, pages 976–980. IEEE, 2005.

SPARTA D6.4 Public Page 88 of 88

	1 Introduction
	2 Integration strategy
	2.1 Secure orchestrator architecture
	2.2 Security workflows
	2.2.1 Legacy technologies management workflow
	2.2.2 Intrusion management workflow
	2.2.3 Data and privacy management workflow.

	2.3 Workflow implementation
	2.3.1 TOSCA workflows
	2.3.2 Custom workflows

	3 Legacy technologies management
	3.1 Secure software updates for wearable low-power IoT with RIOT, SUIT, and femto-containers
	3.1.1 Related work on Contact Tracing
	3.1.2 Architecture for Low-power Contact Tracing
	3.1.3 Femto-Containers for Low-power Business Logic DevOps
	3.1.4 PEPPER Prototype: IoT Hardware and Software

	3.2 Software instrumentation for control-flow integrity on edge devices
	3.2.1 Protection features
	3.2.2 Protection algorithm

	3.3 Protocol verification
	3.3.1 Model checking – formal modeling of IoT protocols
	3.3.2 Probabilistic model checking – risk analysis in IoT environment

	3.4 RIOT-AKA: cellular-like authentication over IoT devices
	3.4.1 Cellular Networks inspiration
	3.4.2 RIOT-AKA contribution
	3.4.3 RIOT-AKA Authentication Framework
	3.4.4 Implementation and Extensions

	4 Intrusion management
	4.1 ML-based Network Intrusion Detection System
	4.2 Anomaly-based Intrusion Detection System
	4.2.1 Supervision of a Partially Ordered Set of Events
	4.2.2 Analysis of a Network Traffic

	4.3 Method for Dynamic Service Orchestration in the Fog Computing
	4.3.1 Method for Finding Optimal Placement of the Services
	4.3.2 Prototype Architecture for Hosting of Mobile Services

	4.4 Remarks

	5 Data & privacy management
	5.1 Privacy-Enhancing Authentication System
	5.1.1 PEAS Extensions and Implementation Details
	5.1.2 Web-based PEAS
	5.1.3 Android-based PEAS

	5.2 Model-Driven GDPR Compliance Management
	5.2.1 BPMN2GDPR: BPMN extension to capture process compliance to GDPR regulation
	5.2.2 Application of BPMN2GDPR in Intelligent Infrastructures

	5.3 Privacy-preserving data processing: MC-SSE for privacy-preserving data processing
	5.3.1 Introduction and motivation
	5.3.2 Searchable Encryption Background
	5.3.3 Multi-client BIEX
	5.3.4 Utilisation within the Intelligent Infrastructure

	6 Final demonstration
	6.1 Legacy technologies management demonstration
	6.1.1 PEPPER Demonstration
	6.1.2 Perspectives regarding security-enhanced embedded IoT system software
	6.1.3 Edge-devices control-flow integrity demonstration
	6.1.4 Protocol verification demonstration
	6.1.5 RIOT-AKA Authentication demonstration

	6.2 Intrusion management workflow demonstration
	6.2.1 Machine Learning-based Network Intrusion Detection component
	6.2.2 Anomaly-based Detection of Network Intrusion Event
	6.2.3 Fog service reorchestration

	6.3 Privacy and Data Management Demonstration
	6.3.1 Privacy-preserving access supported by PEAS
	6.3.2 DPO tool
	6.3.3 MC-SSE demonstration

	7 Relevant security aspects and evaluation
	7.1 Vulnerabilities
	7.1.1 Attack surface
	7.1.2 Attack classification
	7.1.3 Root causes
	7.1.4 CWE Codes

	7.2 Legacy technologies management evaluation
	7.2.1 Control-flow integrity for edge devices evaluation
	7.2.2 RIOT-AKA evaluation
	7.2.3 Evaluation of secure software updates for wearable low-power IoT with RIOT, SUIT, and femto-containers

	7.3 Intrusion management workflow evaluation
	7.3.1 Evaluation of the Anomaly-based Intrusion Detection System
	7.3.2 Evaluation of dynamic service orchestration in the Fog computing

	7.4 Privacy and data management evaluation
	7.4.1 Evaluation of DPO tool
	7.4.2 Evaluation of PEAS
	7.4.3 Evaluation of the MC-SSE tool

	8 Conclusion
	9 Bibliography

