

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 830892.

D7.6
Validation and evaluation report

Project number 830892

Project acronym SPARTA

Project title
Strategic programs for advanced research and

technology in Europe

Start date of the project 1st February, 2019

Duration 36 months

Programme H2020-SU-ICT-2018-2020

Deliverable type Report

Deliverable reference number SU-ICT-03-830892 / D7.6 / V1.0

Work package contributing to the

deliverable
WP7

Due date January 2022 – M36

Actual submission date 1st February, 2022

Responsible organisation TUM

Editor Mohammad Reza Norouzian

Dissemination level PU

Revision V1.0

Abstract

This report specifies the results for testing and
evaluation of SPARTA SAFAIR solutions. The focus
is on protection against adversarial attacks and
ensuring machine learning models' robustness. The
report describes an open AI contest that will be
organized by SAFAIR program to check the
proposed solutions. Besides, we developed a
machine learning adversarial tool to benchmark
machine learning solutions in a standardised way.

Keywords
Adversarial Machine Learning, Secure AI,

Robustness, Testing, Validation, AI Contest

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page I

Editor

Mohammad Reza Norouzian (TUM)

Contributors (ordered according to beneficiary numbers)

Augustin Lemesle, Serge Durand, François Terrier (CEA)

Erkuden Rios, Eider Iturbe, Carmen Palacios, Cristina Martinez (TEC)

Xabier Etxeberria Barrio, Amaia Gil Lerchundi, Raul Orduna (VICOM)

Marek Pawlicki (ITTI)

Reviewers (ordered according to beneficiary numbers)

Robertas Damaševičius (KTU)

Rimantas Zylius (L3CE)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information
is fit for any particular purpose. The content of this document reflects only the author’s view – the European
Commission is not responsible for any use that may be made of the information it contains. The users use the
information at their sole risk and liability.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page II

Executive Summary

The current report D7.61 is the final delivery of the SPARTA SAFAIR program project (WP7), which
is tightly coupled to the deliverable D7.32 . It presents the final version of the work done in the SAFAIR
program, particularly in the testing and evaluation of the results presented in previous deliverables.
This work aims to address recent primary issues faced in Artificial Intelligence (AI) systems based
on Machine Learning (ML). This report presents the extensive results of the SPARTA SAFAIR
adversarial AI Contest, an adversarial benchmark tool for testing and evaluation of ML solutions, the
evaluation of the SAFAIR AI Threat Model and Knowledge Base, and an external validation of
defence method through a peer review. This report presents the extensive evaluation results,
including: i) the results of the SPARTA SAFAIR adversarial AI Contest (proposed in D7.3), ii) an
adversarial benchmark tool for testing and evaluation of ML solutions (proposed in D7.3), iii) the
feedback of the evaluation of the SAFAIR AI Threat Model and Knowledge Base (described in D7.13
and D7.54), and iv) an external peer review of a SAFAIR defence method (presented in D7.5).

It is important to note that the focus of this document is on adversarial machine learning, and not on
Artificial Intelligence (AI) systems in general (such as expert systems, reasoners, fuzzy systems,
etc.). Nonetheless, because this delivery is the scope of the SAFAIR program tasks, we will refer to
ML concepts as AI concepts in this document too.

To this end, we designed and developed methods and tools to benchmark the robustness of current
ML algorithms and models, ensuring their security and reliability. In the SAFAIR adversarial AI
contest, we pitted models against various adversarial perturbations. This shall facilitate measurable
progress towards robust machine learning models. The adversarial benchmark tool will provide a
standardised benchmark on the performances of models in the adversarial machine learning domain.
It will also ease in evaluating the performance of the models in an adversarial setting.

As part of SAFAIR results evaluation, the latest updated version of the SAFAIR AI Threat Model and
Knowledge Base, created in D7.1 and updated in D7.5, was also evaluated by a team of Tecnalia
AI experts not working in SAFAIR and the results of the evaluation are presented in this report.
Please note that D7.5 presented the updates performed on the Model and the KB, including enlarged
knowledge corpus and the latest advances in trustworthy AI works, as well as countermeasures,
explainability, and fairness solutions resulting from SAFAIR works. The followed evaluation plan was
also introduced in D7.5.

The report D7.6, due for Month 36 (January 2022), presents the final results of the AI contest in
Chapter 2, the adversarial machine learning benchmark tool with example results in Chapter 3, the
AI threat model testing and evaluation in Chapter 4, and external evaluation and validation of defence
methods through a peer review in Chapter 5.

1 D7.6 - Validation and evaluation report
2 D7.3 - Validation and evaluation plan
3 D7.1 – AI systems threat analysis mechanisms and tools
4 D7.5 - Final version of AI systems security mechanisms and tools

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page III

Table of Content

Chapter 1 Introduction ... 1

Chapter 2 The SAFAIR AI contest ... 2

2.1 Introduction ... 2

2.1.1 Overview of adversarial attack scenarios ... 2

2.1.2 Overview of defences .. 3

2.2 Contest tasks .. 4

2.3 Dataset .. 4

2.4 Contest schedule .. 9

2.5 Contest structure and rules ... 10

2.6 Evaluation metrics ... 10

2.7 Development toolkit of the contest .. 11

2.7.1 Installation ... 11

2.7.2 Installation procedure .. 11

2.7.3 Dataset .. 11

2.7.4 Example of attacks and defences .. 12

2.7.5 Attacks and defences structure .. 12

2.7.6 Dev_toolkit structure .. 12

2.7.7 Attacks .. 13

2.7.8 Defences ... 14

2.7.9 Execution Steps ... 14

2.7.10 Data Augmentations .. 15

2.7.11 Docker ... 15

2.8 Contest results .. 16

2.8.1 1st place in defence track: team SD (CEA) ... 16

2.8.2 2nd place in defence track: Vicomtech team ... 19

2.8.3 3rd place in defence track: BPI team .. 19

2.8.4 ITTI team ... 20

2.9 Conclusion .. 20

Chapter 3 Adversarial machine learning benchmark tool .. 21

3.1 The adversarial benchmark tool .. 21

3.1.1 Tool structure .. 22

3.1.2 How to use the tool .. 25

3.1.3 Reporting benchmark results ... 28

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page IV

3.1.4 Conclusion ... 30

Chapter 4 AI threat model testing and evaluation ... 31

4.1 Introduction ... 31

4.2 SAFAIR AI Threat Knowledge Base evaluation .. 31

4.2.1 Evaluation Objectives .. 31

4.2.2 Evaluation Dimensions .. 32

4.2.3 Evaluation Questionnaire ... 32

4.2.4 Evaluators ... 33

4.2.5 Evaluation process .. 33

4.2.6 Evaluation results .. 35

4.3 Conclusions .. 41

Chapter 5 External validation through peer review ... 42

5.1 Defending network intrusion detection systems against adversarial evasion attacks .
 .. 42

5.2 The application of preprocessing adversarial defences to robustify face
reidentification systems .. 43

Chapter 6 Summary and Conclusion ... 51

Chapter 7 List of Abbreviations .. 52

Chapter 8 Bibliography .. 53

Appendix A AI Threat Knowledge Base evaluation questionnaire 55

Appendix B AI Threat Knowledge Base evaluation presentation 62

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page V

List of Figures

Figure 1: CelebA Dataset Bias: distribution of the attribute labels throughout the dataset: presence
(blue) or absence (tan) .. 17

Figure 2: Architecture and main components of Adversarial Benchmark Tool 22

Figure 3: List of attacks available at Git repository .. 25

Figure 4: Example output of benchmark tool for attribute alteration task 27

Figure 5: Example output of benchmark tool for untargeted re-identification task 27

Figure 6: Example output of benchmark tool for targeted re-identification task 27

Figure 7: SAFAIR AI Threat Knowledge Base Evaluation process .. 34

Figure 8: The Adversarial Detector Training/Testing Pipeline .. 42

Figure 9: Results of ANN-based Adversarial Attack Detector over the test set activations 43

Figure 10: Results of Adversarial Attack Detection with other ML methods 43

Figure 11: Introduction to the Questionnaire ... 55

Figure 13: Section 1 - Profile ... 56

Figure 14: Section 2 – Current Practice .. 57

Figure 15: Section 3 – Correctness ... 58

Figure 16: Section 4 – Completeness ... 58

Figure 17: Section 5 – Usefulness .. 59

Figure 18: Section 6 – Re-usability ... 60

Figure 19: Section 7 – Background knowledge and suggestions ... 61

List of Tables

Table 1: Top three defence submission results ... 16

Table 2: Benchmark tool results against Vicomtech defence methods .. 28

Table 3: Classifier performance on the test set containing the 14 most populated classes. 43

Table 4: The effects of PGD eps=4 on the performance of the classifier. 44

Table 5: The results of the classifier using JPEG compression with quality set to 20 on PGD attacks
with epsilon=4. .. 45

Table 6: The results of the classifier using BMCNN with sigma set to 20 used on adversarial samples
created with PGD using with epsilon set to four. .. 46

Table 7: The results of the classifier using spatial smoothing with JPEG compression, gaussian
augmentation, total variance minimisation and BMCNN with sigma set to 20 on PGD images
with epsilon set to four. ... 47

Table 8: The results of the classifier using spatial smoothing with JPEG compression, gaussian
augmentation and BMCNN with sigma set to 20 on PGD images with epsilon set to four, without
total variance minimisation. ... 47

file:///C:/Users/AL253370/Documents/SPARTA_SVN/03-WPs/WP7-Program-4-SAFAIR/Deliverables/D7.6/SPARTA-D7.6-Final-version-of-evaluation--and-validation-plan-PU-M36.docx%23_Toc94284026
file:///C:/Users/AL253370/Documents/SPARTA_SVN/03-WPs/WP7-Program-4-SAFAIR/Deliverables/D7.6/SPARTA-D7.6-Final-version-of-evaluation--and-validation-plan-PU-M36.docx%23_Toc94284026

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page VI

Table 9: The results of the classifier using spatial smoothing with JPEG compression on PGD images
with epsilon set to four. .. 48

Table 10: The results of the classifier using JPEG compression, gaussian augmentation and BMCNN
on PGD images with epsilon set to four. .. 49

Table 11: Results of classification with preprocessing defences on a clean dataset. 50

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 1 of 66

Chapter 1 Introduction

Machine learning has been revealed to be susceptible to complicated attacks, such as test-phase
evasion (i.e., adversarial examples) and training-phase poisoning [1-5]. The primary hypothesis
behind such adversarial attacks has formalised them as optimisation problems and uses gradient
based to produce the related attack samples [6].

They are adversarial, which means that, after produced perturbations are included to the inputs of
the classifiers, human observations do not alter what they perceive, but the predictions of a classifier
can be exploited. Investigations on the robustness of the ML model's research can be approximately
categorised into the following: (i) developing powerful and efficient attacks [7, 8]; (ii) detecting
adversarial examples [9]; (iii) defences on the trained models [10]; (iv) training robust models [11];
(v) evaluating the robustness of classifiers [12, 13].

However, this research domain had growled when Szegedy [3] revealed a vulnerability on the state-
of-the-art classifiers. After that, adversarial examples have been presented in various domains such
as intrusion detection, spam detection, biometric authentication (e.g., facial recognition system), and
etc. Despite many publications in this field, appropriately, evaluation of the robustness and security
of machine learning algorithms and developing practical defences against adversarial attacks is still
challenging open problems, and during the recent years, the vulnerability of neural networks against
adversarial perturbations shifted from a strange situation to a primary subject in deep learning.
Despite extensive engagement, however, improvement towards the model's robustness is still
degraded by the difficulty to evaluate the robustness of neural network models.

To this end, the hypothesis behind a security evaluation is to expect the attacker's behaviour to
recognise potential vulnerabilities of ML algorithms and develop appropriate countermeasures
before the related attacks may happen.

To tackle these issues, we propose a dual approach. First, we proposed an adversarial AI contest
which gives a useful intermediate form of evaluation. Each defence is pitted against attacks built by
the participating teams. The evaluation of such scenarios is not as conclusive as theoretical proof
but, however, it represents a better real-world case study. The evaluation carried out by the proposer
of a defence technique, though valid, has no guarantee about the techniques that were not evaluated
against. As such, having an open-ended evaluation scheme is much more beneficial.

Second, we propose a method and adversarial benchmark tool that supports developing more robust
ML models. It will provide a standardised benchmark on the performances of models. The proposed
tool provides reference implementations of the attacks, which are intended to be used for
constructing more robust models and motivate researchers and developers to use the standardised
reference implementation of attack and defences.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 2 of 66

Chapter 2 The SAFAIR AI contest

One of the most effective and thriving ways to explore and push the adversarial machine learning
research domain is to build up an open contest. We have comprehensively described in the
deliverable D7.3, the objectives and motivation for having such an adversarial machine learning
contest. The SAFAIR AI contest [18] was trying to simulate a challenging IT security use case
scenario in order to explore the latest attacks and defences in the community and also was trying to
motivate the researchers and developers to design and implement new techniques and algorithms.

2.1 Introduction

One of the most remarkable distinctions between machine learning (ML) and human perception is
the vulnerability of recent ML algorithms to particularly little and nearly invisible perturbations of their
inputs [2, 35, 36]. For instance, a small piece of noise in an image is usually adequate to cause a
failure in object recognition with neural networks. These perturbations are typically characterised as
adversarial, and the techniques to identify them are named adversarial attacks.

Adversarial perturbations in the field of artificial intelligence demonstrate that decision-making in
existing DNNs is due to correlational instead of causal features. As a security viewpoint, they are
challenging and problematic because they make many opportunities to be manipulated by attackers,
which will be unseen for humans with causing a seriously impact on machine decisions.

So far, current attacks [7, 32]) have had merely little success to challenge real-world software such
as autonomous driving that does not conduct model information to an adversary. Actually, existing
transfer-based attacks could be defended by adversarial ensemble training. Moreover, if model
information is obtainable for attackers, most current attacks are simply unarmed via gradient masking
or natural noise. An essential objective of the contest was to encourage the development of more
powerful attacks and more robust defences.

Adversarial examples show that NNs do not depend on the exact causal attributes that humans
perceive in their visualisations. There are reasons to address this gap: it could facilitate safety-critical
applications of NNs, could lead to interpreting the NNs better, could cause humans to have a more
profound understanding of ML visual systems and could improve the transferability in how to learn
the features. However, regardless of these benefits and various published articles, there is little
progress to have more robust NNs [1, 6]. The essential issue is still the accurate and valid way of
model robustness evaluation. A model will be identified robust if the developed attacks fail.

Therefore, as it happens in cryptography, the proper way of testing the model robustness is to study
the attacks that are particularly developed against it. Subsequently, the adversarial AI contest was
designed as a two-player game that attacks and defences continually pitted against each other. This
could lead to the evolution of attacks that they can adapt themselves against defence’s mechanisms.

In chapter 2 of the deliverable D7.6 report, we explain the SAFAIR AI contest on adversarial attack
and defences, besides to have an overview of main challenges involving adversarial examples
(sections 2.1.1 and 2.1.2), the structure and organisation of the contest (sections 2.2, 2.4 and 2.5),
the submitted solution results that are developed by the contest participants (section 2.8), and the
conclusion of the contest (section 2.9).

2.1.1 Overview of adversarial attack scenarios

First, the attack techniques can be categorised as:

 Non-targeted attack. In such a scenario, the attacker tries to modify the classifier outputs
in order to predict any incorrect class label.

 Targeted attack. In such a scenario, the attacker tries to modify the classifier outputs in
order to predict some particular class label.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 3 of 66

Second, attack strategies can be categorised by the portion of knowledge that the attacker knows
about the model:

 White box. In such a scenario, the attacker has complete knowledge about the model. For
instance, knows the architecture, parameters or even the weights the model trained.

 Black box. In such a scenario, on the other hand, we assume the attacker has no knowledge
of the model and perform attacks continuously by querying the target model.

 Grey box. Unlike the previous two, the attacker has limited knowledge and access to the
model during the training phase in this scenario.

Third, attack strategies categorised as the attacker inject data into the classifier:

 Digital attack. In this scenario, the attacker has access to the real data injected into the
classifier. For example, the attacker can determine particular float values as input for the
model. This might happen in a real-world use-case when an adversary uploads a JPEG file
to a web service and deliberately develops the file to be read wrongly [34].

 Physical attack. In this case, the attacker does not have access to the digital environment
that the model exist, but, on the other hand, the adversary can change, add, or remove
physical objects that sensors such as cameras or microphones are running. In the end, the
model which has been designed and developed for the physical world deviates from its
behaviour.

The attack method examples which are implemented in different settings and scenarios were
described in the deliverables D7.2, D7.3, D7.4 and D7.5.

2.1.2 Overview of defences

Defending methods against adversarial examples are still not satisfying, and it requires more
research in most cases. We have described many defence methods in different deliverables such
as D7.2, D7.3, D7.4, and D7.5, which are implemented in the SAFAIR program. Besides, we will
summarize the most successful defence methods submitted in the SAFAIR AI contest in the section
of contest results 2.8.

Most defences that exist can be classified as "gradient masking". Many white-box attacks perform
by calculating gradients of the model and therefore not succeed if it is impossible to calculate proper
gradients. Gradient masking makes the gradient ineffective, either by altering the model to construct
it non-differentiable or with zero gradients or making the gradient points out of the decision boundary.
Gradient masking represents cheating the optimiser without substantially changing the class
decision boundaries. Since the class decision boundaries are mostly similar, defences established
on gradient masking are extremely susceptible to black-box attacks [34]. Like adversarial training,
other defences are not developed with gradient masking as a purpose, but they appear as gradient
masking in practice.

Numerous defences are developed to detect adversarial examples, and if they are aware of any form
of tampering [28], they reject to classify the input. As long as the attacker does not aware of the
detector or the technique is not strong enough, this way of defence strategy works. Otherwise, the
adversary can create an attack deceiving the detector that the input is legitimate, and the classifier's
output is an incorrect classification [5].

In recent research studies, adversarial training [22] is the most favoured defence method. The
concept is to inject adversarial examples into the model in the training time. One of the essential
disadvantages of adversarial training is that it can overfit to the exact attack used in the training
phase. However, by adding some noise intentionally in small datasets, adversarial training can be
effective [27]. An additional essential weakness related to adversarial training leads to unintentionally
learning to perform gradient masking instead of moving the decision boundary [34]. This can be
resolved by having an ensemble detector consisting of several models. However, as a motivation for
evaluating various defence methods, we have designed the SAFAIR AI contest to test and
benchmark the robust model against numerous attacks.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 4 of 66

2.2 Contest tasks

As we have described the tasks in the deliverable D7.3, here we have just summarised them in four
main different tracks:

1. Targeted Face Re-Identification. The purpose of the targeted face re-identification attack
is to modify the input image in order to classify the image in a particular class label.

2. Face Attributes Alteration. The purpose of the face attributes alteration attack is to modify
the input image, but the k-features specified should be classified wrongly.

3. Defence against Attribute Alteration. The purpose of this task is to create a machine
learning model which is robust to adversarial perturbations in the attribute alteration
scenarios

4. Defence against Targeted Face Re-Identification. The purpose of this task is to create a
machine learning model, which is robust to adversarial perturbations to cause the model to
classify the sample image as the particular target class.

In all of the tracks mentioned above, participants submitted their code that executes the desired
tasks, and we executed their code utilizing our evaluation infrastructure. The submitted code fed a
set of images as input and made either an adversarial image (for attack tracks) or classification label
(for defence tracks). We should notice that our classification problem has a binary (Face Re-
Identification) or multi-class classification (Face Attributes Alteration).

2.3 Dataset

For having a dataset for the contest, we have been decided on three main points:

1. To make the contest interesting, we have used a large dataset with a recent challenging
problem.

2. With having a well-known problem, participants can reuse various existent models.
3. Creating hidden test set in the dataset that never existed before.

These conditions were fulfilled by having an image classification problem and having a public
dataset, which was studied in many research studies. To accomplish that, we use the CelebA dataset
[15] to train the models. Each of the images is annotated with 40 facial attributes. The images are
focused on celebrity faces and consist of 10K unique identities with 40 binary attributes per image.
We have released a data loader to simplify access to the data. We expected classification models
to be trained on CelebA. In general, we collected and created two datasets for the contest:

 The development toolkit (dev_toolkit) [16] was released for the participants at the beginning
of the contest to develop and implement their solutions based on that.

 The final hidden test set was kept secret throughout the contest days and was utilised to
evaluate and rank the participant solutions.

The dev_toolkit consists of PyTorch code for baseline models. For the final evaluation, we have
collected 1000 test images, which are similar to the training dataset. Participants should make use
of only the CelebA dataset and the publicly available "train-val-test" split to train their models. The
dev_toolkit enables easy access to the various splits and the training pipeline for the model.

To create the final hidden test set for the evaluation of the submissions, we would refer to this dataset
as the benchmark dataset. Since we had two main scenarios in our contest, it also required to have
two main different benchmark dataset that with describe as follows:

1. Attribute Alteration. For the attribute alteration task, we would need another dataset

different from CelebA (remember, CelebA is a public dataset, and we did not have access to

their hidden test set. If we tried using the same images, the contestant has an undue

advantage. They could train their models on the entire publicly available dataset. We could

not try many augmentations since things such as contrast change, or random rotation would

require updating certain labels (e.g., 5_o_Clock_Shadow or heavy_makeup attributes would

require a change). However, the images could not be very different from the CelebA dataset

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 5 of 66

either; else, we fall into issues related to the domain shift. As such, we found a sweet

compromise by using the Labelled Faces in the Wild (LFW) dataset [14]. The dataset can be

used out of the box and is already available in the adversarial benchmark tool folders (see

Chapter 3).

2. Targeted Face Re-Identification. However, the LFW dataset does not use the same labels

for the celebrity identities. Many celebrities from CelebA are missing in LFW and, similarly,

many celebrities in LFW that are not present in CelebA. Hence, until and unless we can find

a one-to-one mapping of image labels in the two datasets, we cannot use them for the re-

identification task. As such, to give a fair chance to participants, we decided to use the CelebA

dataset itself. However, the samples would have many augmentations applied. The code to

handle the task is as follows:

""
This file shall be used to perform a random rotation on our test set samples and save them for the evaluation.
This way
the process becomes deterministic (compared to stochastic nature used in augmentation task)
"""
import csv
import os

import PIL
import torch
from torchvision import transforms

from environment_setup import PROJECT_ROOT_DIR
from networks.utils.mtcnn import MTCNN

root = os.path.join(PROJECT_ROOT_DIR, 'data')
base_folder = "celeba"

random_transforms = transforms.Compose([
 transforms.RandomChoice([
 transforms.ColorJitter(brightness=0.4, contrast=0.4),
 transforms.Grayscale(num_output_channels=3),
 transforms.RandomHorizontalFlip(p=0.7),
 transforms.RandomRotation(degrees=5)
])
])

mtcnn = MTCNN(
 image_size=160, margin=0, min_face_size=20,
 thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True,
 device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
)

def load_data(csv_file):
 """
 The function reads data stored in the form of a csv file
 :param csv_file: filename obtianed based on the split
 :return: list of tuples of image, label pair
 """
 image, label = [], []
 with open(csv_file) as csvfile:
 reader = csv.DictReader(csvfile)
 for row in reader:
 image.append(row['image'])
 label.append(int(row['label']))
 return list(zip(image, label))

def handle_single_sample(image):
 """
 Apply the transformations to an image. If the transformations are not successful, repeat 25 times else skip

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 6 of 66

 :param image: Input image to apply transformations to
 :return: The transformed image
 """
 X, prob = perform_transforms(image)
 ctr = 0
 while prob is None:
 X, prob = perform_transforms(image)
 ctr += 1
 if ctr == 25:
 print(f"Skipping Image -------------------> {image}")
 return None
 return X

def perform_transforms(image):
 """
 Apply the transformations on the given image. The MTCNN ensures that the transformations do not occlude
 central object that needs to be detected.
 :param image: Input images to the model
 :return: Transformed image and associated probability that it is properly detected by MTCNN
 """
 X = PIL.Image.open(os.path.join(root, base_folder, "img_align_celeba", image))
 X = random_transforms(X)
 _, prob = mtcnn(X, return_prob=True)
 return X, prob

def bootstrap():
 """
 Bootstrap method for dataset generation
 :return: None
 """
 filename = 'test.csv'
 csv_file = os.path.join(root, 'reid_dataset', filename)
 data = load_data(csv_file)
 dest_folder_name = 'transformed_img'
 # creating destination folder
 os.makedirs(os.path.join(root, 'reid_dataset', dest_folder_name))
 for image, target in data:
 rotated_img = handle_single_sample(image=image)
 # Now let us save the image
 if rotated_img is not None:
 rotated_img.save(os.path.join(root, 'reid_dataset', dest_folder_name, image))

if __name__ == '__main__':

bootstrap()

A natural question arises about the justification of using these rotations and testing the models. Does

this give an unfair advantage to participants? Please remember, we are testing the model under the

"L infinity" constraint. Even a slight amount of rotation would break this constraint, and thus the

examples are implicitly harder for our models. Still, one possible way in which the defence teams

might be at an advantage is by training their model on augmentations same as the ones we have

used and memorized the entire training dataset. We can not rule out this possibility. One way to

handle this might be to download a few more images from the internet or find a direct correspondence

between LFW and CelebA dataset labels. This is an open task that can be explored further.

Since we have collocted and generated 1000 test samples for the evalution, we have selected them

from LFW and our hugely augmented CelebA datasets. It simply performed a random sampling and

generates examples for us while most of the heavy lifting is done by modules we discussed above.

Here, you the code is as follows:

import os

import mat73

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 7 of 66

import pandas as pd

import random

base_path = '/path/to/lfwa'

from environment_setup import PROJECT_ROOT_DIR

category_names = os.listdir(os.path.join(base_path, 'lfw'))
category_dict = {}
for idx, name in enumerate(category_names):
 category_dict[name] = idx

def generate_dataset():
 # PART - 01: Attribute Alteration Dataset Creation
 attr_list = 'lfw_att_40.mat'
 att_dict = mat73.loadmat(os.path.join(base_path, attr_list))

 df_label = pd.DataFrame(att_dict['label'], columns=att_dict['AttrName'], index=att_dict['name'])
 df_label.index = [name.replace('\\', '/') for name in df_label.index]

 random.seed = 42
 selected_rows_df = df_label.sample(n=1000, replace=False)
 selected_rows_df.to_csv(os.path.join(PROJECT_ROOT_DIR, 'data', 'benchmark', 'benchmark_attr.csv'))

 # PART - 02: Now we try to get the dataset for reid task
 test_set_df = pd.read_csv(os.path.join(PROJECT_ROOT_DIR, "data", "reid_dataset", "test.csv"))
 selected_samples = test_set_df.sample(n=1000, replace=False)
 selected_samples.to_csv(os.path.join(PROJECT_ROOT_DIR, 'data', 'benchmark', 'benchmark_reid.csv'), index=False)

if __name__ == '__main__':
 generate_dataset()

Finally, we would simply loaded the datasets created for final testing and benchmarking the models.
The module also had code for some visualizations of the model as well as logic for computing
accuracy metric for attribute alteration and targeted re-identification tasks. It is a self-contained
module and essentially follows the overall project structure. The code is as follows:

import csv
from torchvision import transforms
import torch
import PIL

from networks.utils.mtcnn import MTCNN

from torch.utils.data import Dataset, DataLoader

import os
import pandas as pd
import matplotlib.pyplot as plt

from environment_setup import PROJECT_ROOT_DIR

class BenchMarkDataset(Dataset):
 def __init__(self, task_type, min_val, max_val, use_mtcnn):
 super(BenchMarkDataset, self).__init__()
 data_dir = os.path.join(PROJECT_ROOT_DIR, 'data', 'benchmark')
 self.task_type = task_type
 self.min_val = min_val
 self.max_val = max_val
 if task_type == 'attr':
 self.transform = transforms.Compose([
 transforms.Resize((256, 256)),
 transforms.ToTensor()
])

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 8 of 66

 csv_file = os.path.join(data_dir, 'benchmark_attr.csv')
 self.img_folder = os.path.join(data_dir, 'lfw')

 elif task_type == 'reid':
 csv_file = os.path.join(data_dir, 'benchmark_reid.csv')
 self.img_folder = os.path.join(PROJECT_ROOT_DIR, 'data', 'reid_dataset', 'transformed_img')
 self.data = self.load_data(csv_file)
 self.use_mtcnn = use_mtcnn
 if use_mtcnn:
 self.transform = None # No additional transformation used
 self.mtcnn = MTCNN(
 image_size=160, margin=0, min_face_size=20,
 thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True,
 device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
)
 else:
 self.transform = transforms.Compose([
 transforms.ToTensor()])

 else:
 raise AttributeError("Invalid Task Selection")
 self.data = self.load_data(csv_file)

 def __len__(self):
 """
 Total number of samples in the dataset
 :return: Integer value representing the total number of samples
 """
 return len(self.data)

 def __getitem__(self, item):
 """
 Return a single instance of the dataset object
 :param item: index from dataset
 :return: image_index, transformed image, gt_label
 """
 image, target = self.data.iloc[item, 0], torch.as_tensor(self.data.iloc[item, 1:].tolist()).squeeze()
 X = PIL.Image.open(os.path.join(self.img_folder, image))
 if self.transform is not None:
 X = self.transform(X)
 if self.task_type == 'reid' and self.use_mtcnn:
 X, prob = self.mtcnn(X, return_prob=True)
 if prob is None:
 print(f"culprit image is {image}")
 return item, X, target

 def load_data(self, csv_file):
 """
 The function reads data stored in the form of a csv file
 :param csv_file: filename obtianed based on the split
 :return: list of tuples of image, label pair
 """
 df = pd.read_csv(csv_file)
 return df

 def pred_acc(self, prediction, gt_label):
 """
 Each of the datasets defines their own criterion for accuracy
 :param prediction: (B, 40) tensor of logits
 :param gt_label: (B, 40) ground truth tensor
 :return: Accuracy value
 """
 if self.task_type == 'attr':
 return (prediction >= 0).eq(gt_label).sum().item() / 40
 elif self.task_type == 'reid':
 _, predicted_label = torch.max(prediction, 1)
 return predicted_label.eq(gt_label).sum().item()

 else:

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 9 of 66

 raise AttributeError("Invalid Task Selection")

 def viz_sample_with_index(self, idx):
 """
 Utility method to visualize an input sample
 :param idx: Index of the input dataset element
 :return: None
 """
 image, target = self.data.iloc[idx, 0], torch.as_tensor(self.data.iloc[idx, 1:].tolist())
 X = PIL.Image.open(os.path.join(self.img_folder, image))
 plt.imshow(X)
 plt.show()
 items = list(self.data.columns)[1:]
 for sample in zip(items, target):
 print(sample)

def get_benchmark_data_loader(batch_size, task_type, min_val, max_val, num_workers=4, use_mtcnn=False):
 """
 Method to get the hidden Test set dataloader
 :param use_mtcnn: If we are using MTCNN for the reid task
 :param max_val: The maximum value for the input samples
 :param min_val: The minimum value for the input samples
 :param batch_size: int
 :param task_type: reid/attr
 :param num_workers: int. number of cores. Default 4
 :return: Dataloader object
 """
 return DataLoader(dataset=BenchMarkDataset(task_type=task_type, min_val=min_val, max_val=max_val,
use_mtcnn=use_mtcnn),
 num_workers=num_workers,
 shuffle=True,
 batch_size=batch_size
)

if __name__ == '__main__':
 from tqdm import tqdm
 dataloader = get_benchmark_data_loader(batch_size=1, task_type='reid', num_workers=0, min_val=-1, max_val=1,
use_mtcnn=True)
 dataset = dataloader.dataset
 for img_name, img, label in tqdm(dataloader):
 print(img_name)
 print(img.shape)
 print(img.max())
 print(img.min())
 print(label.shape)

 break

2.4 Contest schedule

The contest was announced and advertised in February 2021, launched at the beginning of March
2021 and finished on June 13 2021. Meanwhile, to have more participants in the contest, we have
extended the initial deadline from May 15 to June 13 2021. The updated schedule was the following:

 March 1, – June 13, 2021. The contest started on the 1st of March, and Participants were
working on their solutions.

 June 13, 2021. Deadline for the final submission.

 June 13 – June 21, 2021. Organisers evaluated submissions.

 June 21, 2021. Announce contest results.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 10 of 66

2.5 Contest structure and rules

As we have described the rules and structures of the contest briefly in the deliverable D7.3, here we
explain the rest.

1. Participants were allowed to take on three tasks at the same time, but they could not play for
both "attack" and "defence" teams for the same task.

2. We had Grey box attack scenario. The attack team had knowledge about the input data on
which defence models were trained on. They could ran gradient-based update for generating
adversarial perturbations. However, they had no information about the defence technique
used by the other team.

3. Every submission evaluated against several baseline methods provided by the organisers,
as well as the models submitted by the other participants playing for the opposite team.

4. Every participant had only have a limited amount of submissions; this prevented participants
from trying to guess our test labels.

5. We had a maximum allowed perturbation of epsilon = 8/255.
6. We used L-inf norm for all the submissions.
7. We used 2 Nvidia GPUs (Titan X Pascal and GeForce GTX) with 12 GB VRAM. We had a

32 core AMD CPU with 128 GB RAM. The code ran using docker containers which used
Ubuntu:18.04 base image and cuda:10.1 with access to both the available GPUs.

8. The adversarial sample generation process had an upper limit time of 4 hours (240 minutes)
for 1000 samples.

9. An attack had to produce an image, i.e. with discrete pixel values in {0, 1, …, 255}.

We have also explained the procedures and guidelines of the contest on the contest websites. For
more information, please check out the website, which is hosted on the TUM homepage [18] and
GitLab5 version.

2.6 Evaluation metrics

All evaluations are made based on the L infinity norm. We have described the evaluation metrics
comprehensively in deliverable D7.3 and on the contest website [18]. However, minor changes
happened because we have not received any submissions in the attack tracks, and we just have
used our proposed baseline attacks to evaluate the model robustness. In the end, we have computed
the delta value, which is computed by the difference between the initial accuracy and final accuracy.

delta = A_initial - A_final

We ran the model against test samples and compute its initial accuracy 𝐴_𝑖𝑛𝑖𝑡𝑖𝑎𝑙. Then we ran the
same model on the same dataset against the baseline’s attack method and compute the decrease
in the accuracy. Let us say that the new accuracy is 𝐴_𝑓𝑖𝑛𝑎𝑙. The defence teams are ranked based
on the delta value with the smallest first.

However, there might be a question regarding the metric accuracy itself. A defence that particularly
reduces the accuracy of the model on the actual task (the clean data) may not be practical in many
circumstances. If the chance of an existing attack is pretty low and the error's cost on adversarial
examples is not significant, then it might be inappropriate to cause any decrease in clean accuracy.
Sometimes there would be a distinction in consequence of an error on random input and an attacker
who determined the input. It can depend on different domain use cases that the system is running
on.

When a defence method rejects to classify the inputs and detect them as adversarial, it is crucial to
evaluate how this influences accuracy on the clean inputs. Also, in some cases, it is satisfactory to
reject classifying inputs with considerable noise. On the other hand, other cases must be able to
classify simple noisy inputs accurately. There can be a suggestion to produce a Receiver Operating

5 https://git.sec.in.tum.de/Norouzian/safair-ai-contest

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 11 of 66

Characteristic (ROC) curve to indicate how selecting the threshold for refusing inputs drives the clean
accuracy to drop.

2.7 Development toolkit of the contest

The dev_toolkit6 was designed to facilitate the ease of participation in the contest and a way to
standardise the way to evaluate the submissions. The dev_toolkit includes:

 Dev dataset, which participants can use for development and testing of their attacks and
defences.

 Adversarial attacks examples.

 Example of defence models.

 A method to execute attacks against models and calculate the scores.

2.7.1 Installation

Following software are required to use the dev_toolkit:

 Python 3.6 with installed Numpy7 and Pillow8 packages.

 Docker9

All provided examples were written with use of the PyTorch10. Additionally, other utility packages
required can be obtained by taking a look at the requirements.txt file.

2.7.2 Installation procedure

The requirements were placed in the requirements.txt file and the participants had to use the
following command:

pip install -r requirements.txt

To set up the dependencies, we also suggested making virtual environments by using conda or
python virtual environment using the following commands:

python3 -m venv /path/to/new/virtual/environment

2.7.3 Dataset

The toolkit includes Dev dataset which uses the publicly available celebA dataset which is described
in section 2.3.

The data loaders provided with the dev_toolkit will take care of downloading the dataset. However,
since the celebA dataset is hosted on google drive automatically, often time the direct download
would fail with a warning message indicating that the download limit is exceeded. This is an expected
behaviour. Participants could try again later to download the dataset. However, oftentimes, even if
the direct download fails, it is still possible to download the dataset using a browser. You can
download the zip file and extract it in the data folder. Here are the expected structure of the folders:

--- data

 --- reid_dataset

 --- train.csv

 --- val.csv

 --- test.csv

6 https://git.sec.in.tum.de/Norouzian/safair-ai-contest/-/blob/master/dev_toolkit
7 https://numpy.org/
8 https://pypi.org/project/Pillow/
9 https://www.docker.com/
10 https://pytorch.org/

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 12 of 66

 --- celeba

 --- img_align_celeba

 --- identity_celebA.txt

 --- list_attr_celeba.txt

 --- list_bbox_celeba.txt

 --- list_eval_partition.txt

 --- list_landmarks_align_celeba.txt

2.7.4 Example of attacks and defences

The toolkit consist of examples of attacks and defences in the following directories:

 Attacks, the directory with examples of attacks:
o attacks/attack_models/fgsm/ - Fast Gradient Sign Method attack
o attacks/attack_models/bim/ - Basic Iterative Method Attack
o attacks/attack_models/pgd/ - Projected Gradient Descent Attack
o attacks/attack_models/ CarliniWagnerL2Attack/ - The Carlini Wagner Attack based on L2

metric

 Defences, the directory with examples of defences:
o defence/defence_models/NoDefence - baseline model, that essentially does not deliver any

defence against adversarial examples.
o defence/defence_models/AdversarialTraining - A class which acts as a wrapper and allows

for the adversarial training of the model
o defence/defence_models/autoencoder_defence - Uses a denoising autoencoder [17] for the

robustness.

2.7.5 Attacks and defences structure

Each attack and defence has to be saved in a individual subdirectory, and expected to be execute
into a Docker container.

One can create a new attack model by extending the attacks/attack_models/AbstractAttack.py. Along with
this, for an easy interplay between different methods, we have attacks/attack_config.ini file where one
can put the required configurations. We also provided with the attacks/adversarial_factory file which can
be used to expose the attack method. This comes in handy during final evaluation of the methods.
An example from the config file (attack_config.ini) is given here:

alpha=0.01

num_iterations=400

save_folder = pgd

targeted=False

 save_folder indicates the location to store generated adversarial perturbations.

 targeted indicates whether the mechanism uses targeted or untargeted attack. Other attribute
specific to the model can be included as well.

 alpha value is specific to the PGD attack

 num_iterations indicates the number of iterations we have to run through for the attack

The perturbations are computed using infinity norm.

2.7.6 Dev_toolkit structure

Overall, the dev_toolkit is structured as follows:

1. The attack related configurations and model source code are present in attacks folder.
2. The defence related configurations and model source code is present in defence folder.
3. The pytorch dataset files are present in dataset folder

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 13 of 66

4. Raw data is present in data folder
5. All the generated tensorboard logs and saved models are present in execution_results folder.

Even the adversarial examples that are going to be generated would be present in the
execution_results folder

6. For loading a pretrained model, the code searches it in the model_weights subdirectory in the
execution_results/<output_dir> folder (where output_dir is the specific directory name given in each
execution). So in case someone want to load a pretrained model, they should make sure
model weights are placed in this subfolder.

Let us say someone ran the code with --output_dir=adv5, in that case one could see:

--- execution_results

 --- adv5

 --- logs

 --- adv

 --- train

 --- val

 --- model_weights

 --- nn.txt

 --- perturb_samples

 --- fgsm

 --- images

 --- json

 --- orig_images

 -- pgd

 --- images

 --- json

 --- orig_images

2.7.7 Attacks

To create adversarial examples, one could take a look at AbstractAttack.py in attacks folder. All the

adversarial classes should be a subclass of this class. The attack_config.ini file is created to
enable easy configuration management. Here is a snippet of the file.

[ADVERSERIAL]

name = bim

[fgsm]

save_folder = fgsm

targeted=False

[bim]

alpha = 0.01

num_iterations = 100

save_folder = bim

targeted=False

The name configuration in [ADVERSARIAL] section determines the active attack. To create a new attack
class, one had to follow by:

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 14 of 66

1. Extend from AbstractAttack in attacks/attack_models/AbstractAttack.py
2. Create a section in the attack_config.ini file
3. Change the name in attack_config.ini to the new attack name
4. Update the adversarial_factory.py class with instantiation of the new type
5. The generated samples can be stored by using save=True in Adversarial.py while calling the

method get_perturbed_acc()

The generated samples can also be visualized using a simple matplotlib utility.

visualizations/visualize_attributes.py file has the logic built in. This file is dependant upon the

logic used for saving generated samples in save() method of attacks/AbstractAttack.py. So any
change in the method should lead to corresponding changes in the file.

2.7.8 Defences

All defence methods extend the AbstractDefence class. For creation of the defence type we used

defence.config file:

[DEFENCE]

key = adv_train

[no_defence]

[autoencoder]

attack_type=fgsm

attack_epsilon = 0.05

[adv_train]

attack_type=fgsm

attack_epsilon = 0.05

This is very similar in spirit to the attack counterpart. The method used for defence would depend

upon the key in defence_config.ini file. The defence_factory.py is executed in order to get the
correct defence mechanism. . To create a new defence class, one had to follow by:

1. Extend from AbstractDefence in defence/defence_models/base.py
2. Create a section in the defence_config.ini file
3. Change the key in defence_config.ini to the new defence name
4. Update the defence_factory.py class with instantiation of the new type

2.7.9 Execution Steps

To start with execute:

python main.py -h

To get a list of options and instructions to execute the program. For starting a simple training loop,
simply use:

python main.py --mode train --task_type attr

Since the options have default arguments in most of the cases, one can make use of the default
options and reduce the above command to:

python main.py

Since default operation mode is train and default task is attr, we supported two tasks. This can be
selected by using task_type argument. For instance:

python main.py --output_dir adv5 --task_type reid --lr 0.01

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 15 of 66

The results shall be computed on the CelebA dataset. Once the training is done, adversarial samples
can be generated using:

python main.py --mode adv --output_dir adv5 --model_number 9

The mode argument should be adv and the execution also expects a saved model to load the

weights. For this it will use output_dir argument as passed from the command line. For instance, if

one use --output_dir adv5 as an argument, the framework would search for the model weights

within execution_results/adv5/model_weights/. The models are saved with names such as

step_0.pth. The prefix can be changed from network_config.ini file. This is a required parameter

for the model. The default value for output_dir is checkpoints/ but since the folder is pivotal to the
code execution, we strongly encourage not using the default folder name. To execute a defence
method, one would use:

python main.py --output_dir adv6 --defence --task_type reid

The --defence switch is used to start training the model with the configured defence technique.

2.7.10 Data Augmentations

Data augmentations have proven to be really useful for improving performance of the Deep Neural
Networks (DNNs). We strongly encouraged the participants to explore different data augmentation
techniques. PyTorch provides some built in augmentation methods which might prove to be really
useful for the training process. However, in general, different augmentation methods would lead to
different range of values for the inputs. Deep Learning models and attack methods are very sensitive
to the range of these inputs values. Hence, one needs to be really careful with the augmentation
techniques. To make things easier, we provided the TaskWrapper.py class which can be used to
handle it.

my_transform = transforms.Compose([

 transforms.Resize((256, 256)),

 transforms.ToTensor()

])

dataloader_test = get_reid_data_loader(self.args.batch_size, split='test', use_mtcnn=True,

 transform=my_transform, shuffle=False, num_workers=0,

 dataset_min_val=0, dataset_max_val=1)

We explicitly provide the minimum and maximum value that the dataset is expected to have. For
instance, the ToTensor() methods scales the inputs in the range of [0, 1] and the values are explicitly
passed to the data loader. This encourages seamless interaction between the attack mechanisms.
One should make sure that it updates the value range in case it want to use different augmentation
techniques.

Also, the code can be run on multiple GPUs without any configuration change needed. The code
detects for presence of multiple GPUs and if present, it can handle the multi-processing itself.
Similarly, the code handles execution on CPU seamlessly.

2.7.11 Docker

The code snippets submitted would be run as a Docker container. This ensures easy dependency

management. The participants submitted their Dockerfile along with the code. The Docker container

was built by us. We used nvidia/cuda:10.0-cudnn7-devel-ubuntu18.04 as our base image.
Participants are encouraged to use the same base image since it is compatible with our
infrastructure. A sample Docker file is provided which shows aids in creating the Docker images. For
building the image, one can use:

docker build -t sparta_image:1.0 --build-arg USER_ID=<some_user_id> --build-arg GROUP_ID=<user's group id>

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 16 of 66

Here some_user_id and user's group id is to ensure that the Docker container does not run with
ROOT privileges. Once the container is built, it can be run using:

docker run --gpus all --ipc=host --rm -it -v ${PWD}/data/:/app/data/ -v ${PWD}/execution_results:/app/execution_results
sparta_image:1.0 --mode train --task_type reid --output_dir adv5

Here, we allow GPU access to the containers by using --gpus all and allow for memory sharing

with the host machine by using --ipc=host.These two steps are essential. We also mount the data

folder to allow access to dataset and finally, mount execution_results folder so that we can have

access to all generated logs, model_weights and perturbed_samples. The sparta_image:1.0

indicates the Docker image and version number and --mode train --task_type reid --output_dir

adv5 indicate the task and mode for the code execution.

2.8 Contest results

Since we did not get any submissions in the attack tracks, we just report the best three score results
in the defence tracks. However, throughout the contest submission days, as the participants can
submit three times, we have seen improvement compared to their first submissions. The final results
of the top best defence submissions are provided in Table 1. The column Rank is the submission
ranks among different participants, the Best score is the best delta value (see section 2.6) every

team achieved within their various submissions, and the Worst score is the worst delta value they
have achieved against the hidden test sets.

Table 1: Top three defence submission results

Ran

k

Team

name

Defence Tasks Clean

accuracy

Best perturbed

accuracy score

Worst perturbed

accuracy score

Delta

value

1 SD Targeted Face

Re-Identification

0.87 0.85 0.67 0.02

2 Vicomtech Targeted Face

Re-Identification

0.85 0.72 0.72 0.13

Attribute

Alteration

0.80 0.65 0.65 0.15

3 BPI Targeted Face

Re-Identification

0.84 0.68 0.68 0.16

As it has shown in Table 1, the best defence method demonstrated 87% accuracy on all adversarial
images produced by the baseline attacks. On the other hand, the worst-case score of SD defence
achieved 61% of accuracy. This shows us that the last submission by the team SD got more powerful
by mixing different methods 2.8.1. This indicates that with such a high level of 88% accuracy
achieved by the best submission against the adversarial images, the model is still vulnerable to
adversarial examples that could bypass the classifier. However, the BPI team achieved the worst
score because their model was highly over-fitted to the CelebA public dataset.

The next sections explain the best submission methods and techniques that participated in the
contest.

2.8.1 1st place in defence track: team SD (CEA)

For this contest, the CEA team submitted three models in the defence track for the task of re-
identification using the CelebA dataset. The three submitted models were the results of various
experimentation for this contest, and only the three best models we had were submitted for this
contest. Here we will briefly describe each model and the rationales behind the choices and their
submission. All the submissions are specific to neural networks models; the extension of any method
to other types of models is not clear.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 17 of 66

2.8.1.1 First submission: Adversarial training

The first submitted model in the contest is based on adversarial training. During the initial trials for
the contest, they started by the standard of defences, i.e. training the model on adversarial samples.
Here they tested different adversarial training settings, using transferred attacks, i.e. obtained on
another model, using pre-computed attacks on the model or computing adversarial samples on the
model itself as they trained. They encountered the classical disadvantages of adversarial training,
i.e. the balance between the time of training, accuracy on clean data and robustness on adversarial
samples.

To assess the performances of the model, they based themselves on the calculated according to
the rules of the competition with multiple types of attacks (FGSM, BIM, PGD). They compared the
attacks computed directly on the model itself and transferred attacks computed on another model
trained on the CelebA dataset. Overall, for normal adversarial training, they achieved quite a low
delta ~2-3 using direct attacks but transferred attacks result in delta > 20, which remains largely
unsatisfying.

Nonetheless, during their investigation they encountered a rather specific case, which ended up
becoming the first model. This model is a simple convolutional network adversarially trained using
PGD attacks samples with an epsilon parametrized to 0.3 for the attack. This epsilon corresponds
to 30% total perturbation on an image; this is an overly robust epsilon as we hover generally around
3%. Nevertheless, they trained this model and noticed that after a certain number of epochs for the
training, the model has only the same output regardless of the input image. This is not in any way
hardcoded by them but naturally the result of the training. Since the output remains for all, even for
adversarial samples, the robustness of the model never decreases and achieves a 𝑑𝑒𝑙𝑡𝑎 = 0.

Of course, they need to take here another parameter into consideration, the accuracy of the model
on clean samples. Surprisingly, this model has around 80% clean accuracy, which was not perfect
remains a good score here. We believe this is due to the distribution of the dataset (see Figure 111).
In the subset we have we evaluate the model on 40 attributes but some of them are a lot rarer than
others. For example, the absence of the moustache attribute already includes all women and some
part of men, which makes easily more than 80% of the dataset. With this always predicting the
majority attributes seem to be the best solution for the model to optimise it loss.

11 From https://www.researchgate.net/figure/CelebA-Dataset-Bias-This-figure-shows-the-distribution-of-the-
attribute-labels_fig1_30183830

Figure 1: CelebA Dataset Bias: distribution of the attribute labels throughout the dataset:
presence (blue) or absence (tan)

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 18 of 66

It might be difficult to envision this as a proper defence, and maybe they can see it more as a gap in
the dataset/rules of the contest as this would be equivalent to only using statistics and not using a
neural network after training to learn this only best output. However, considering the accuracy of the
model on the dataset and that it can in no way be attacked, we believe it remains something to
consider.

2.8.1.2 Second submission: Transfer learning + obfuscating gradient

Following the investigation on adversarial training, they used transfer learning in a concern of
efficiency during the training. They selected models trained for classification on the ImageNet12
dataset and used them as a basis to train on CelebA. The models came from the timm library
available on Github13. To train them on CelebA they had to first change the number of class to predict
to 40 and then they did a classical training using an Adam optimizer.

They combined this transfer learning with ensemble methods, i.e. they used multiple trained models
to predict together the result. Here they selected six “efficientnet_b3_ap” models [19] and three
“ecaresnet101d_pruned” models [20]. Each model was individually trained on a random (with
replacement) subset of the training set following a bootstrapping method.

They tried multiple solutions to obtain the final decision of their ensemble, selecting the output either
by voting or by averaging the results of the models. The advantage of the voting method is that this
is not a differentiable operation; this means that any attack using the gradient to compute the
adversarial sample will fail on this operation and thus not work for their ensemble. On the other hand,
averaging the results of the models leads here to a better accuracy but is a differentiable operation.
Note here that the ensemble method does not really bring any substantial benefit to the defence or
robustness. It mostly increases the clean accuracy of their solution.

As mentioned, the averaging method leads to better accuracy; thus, they chose to use this method
instead of the voting and then add another non-differentiable operation to obfuscate the gradient. As
the network output for the 40 attributes is a binary value for each attribute using the criteria, the score
is either positive or negative, and they can easily replace this with a threshold on the logits. For any
positive logit in the output vector, they assigned the value ten, and for any negative logits, the value
-10. This new layer did not change in any way the performance of the solution but is not differentiable,
and thus any gradient-based attack will now fail on this model.

On this model, following their previous criteria to evaluate the model, the direct attacks are not able
to compute the gradient and thus are not working properly. However, they hover around 92%
accuracy for the model and 79% accuracy on transferred adversarial attacks, which would mean a

𝑑𝑒𝑙𝑡𝑎 of 13 here. This score remains high, but as they successfully defend from any gradient-based
attacks which made this model promising.

2.8.1.3 Third submission: Transfer learning + obfuscating gradient + adversarial training

To improve on this low robustness to transferred attacks, they tried their third model to add
adversarial training to the second model. Unfortunately, as they have informed us, limited by their
hardware, they were unable to train, similarly to nine models on adversarial examples for the second
model. Thus in this third model, they limited themselves to only one model. As noticed in the last
part, the ensemble method was mainly directed at improving the accuracy of the model. Thus, they
could suppose this third model be implemented with the addition of ensemble without any loss to the
defence and an increase in terms of accuracy.

They selected an “ecaresnet101d_pruned” trained on ImageNet as the starting point and then learnt
on a subset of CelebA. For the next step of adversarial training, they used the efficient training
method described in [21]. It used PGD attacks limited to three steps at each epoch of the training
building at each epoch upon the adversarial sample computed at the previous epoch. This method

12 https://www.image-net.org/

13 https://github.com/rwightman/pytorch-image-models

https://github.com/rwightman/pytorch-image-models

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 19 of 66

did not increase the accuracy versus a standard PGD training with a higher number of steps, but it
saves a lot of training time with only a slight decrease in accuracy and robustness.

Finally, they applied on this model the same technique of gradient obfuscating as in the second
model, i.e. transforming the output logits into -10/10. With this, the model was able to defend itself
from any attack that relies on the computed gradient of the attacked model.

To compare this model to the second model, we can look at the robustness and 𝑑𝑒𝑙𝑡𝑎 on transferred
attacks. Here, they had around 87% accuracy on clean images, and they achieved 84-85% of

robustness on these attacks and a 𝑑𝑒𝑙𝑡𝑎 of 2~3. Thus, in conclusion, we can see that the adversarial
training they did in this third model brings a real advantage to increase the defence and robustness
of the model compared to the second model.

As a further step, we have seen the advantage of the adversarial training in this third model, but the
clean accuracy remains lower than the second model. As mentioned in the beginning, they could
extend this third model training all nine ensemble models with adversarial training.

2.8.2 2nd place in defence track: Vicomtech team

They presented two models in the contest. One of them for defence against targeted face re-
identification and the other one for defence against attribute alteration. For both cases, they started
from an original pre-trained model for the specific task and them a middle autoencoder is added in
order to generate the defended model (dimensional reduction middle autoencoder defence [22, 23]).
Both original models were formed by a convolutional neural network (CNN) and deep neural network
(DNN). In both tasks, the CNN is the pre-trained model MovileNetV3Large [24] architecture with
Imagenet weights.

The DNN in the face re-identification task defence the is formed by a flatten layer, hidden dense
layer (with 1536 neurons and relu activation), a batch normalization layer, a dropout layer of 0.3, an
output dense layer (with 10178 neurons and softmax activation) and all compiled with adam and
categorical crossentropy function.

For the attribute alteration task defence, the DNN is formed by a flatten layer, hidden dense layer
(with 1536 neurons and relu activation), a batch normalization layer, a dropout layer of 0.3, and
output dense layer (with 40 neurons and sigmoid activation) and all compiled with adam delta and
cosine similarity function.

Once the original task models were trained with original data (without adversarial examples) in order
to generate the defended method, in both cases an autoencoder layer was added between CNN and
DNN. This autoencoder layer was trained with adversarial samples obtained using FGSM, BIM and
PGD attacks (the ones to be defended from). The intention of this layer is to reduce the noise used
to generate the adversarial examples and therefore obtain a more robust defended model.

As these models are generated using tensorflow, equivalent gradient function was defined to be the
benchmark compatible with contest defined torch functions. Similar work has been done with the
prediction function to allow calls from torch tensors to defended tensorflow models. By such
architectural model the Vicomtech team got 85% clean accuracy in the task of face re-identification,
achieved 72% of accuracy against adversarial images, and the 𝑑𝑒𝑙𝑡𝑎 at the end was 13 on average.
We should mention that for all of the accuracy calculations we had ten time cross-validation. Besides,
in the task of attribute alteration they got 80% accuracy on the clean data test sets and achieved
65% accuracy against the adversarial images which subsequently leads to 15 in the 𝑑𝑒𝑙𝑡𝑎 value.

2.8.3 3rd place in defence track: BPI team

This submission used a modified version of the adversarial training [25, 26] method with the DNN
model. In each training iteration phase, they used an effective iterative attack to generate adversarial

example 𝑥′. In the training phase, they tried to minimise the cross entropy of the generated
adversarial example.

𝑅′(𝑥, 𝑦, 𝛾) = 𝑅(𝑥′, 𝑦, 𝛾)

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 20 of 66

Their technique is trying to optimise the 𝑥′ to the closest perturbed data.

 𝛿
𝑚𝑖𝑛 ||𝛿||2 subject to max 𝑃(𝑦𝑟|𝑥 + 𝛿, 𝛾) ≠ 𝑦𝑡𝑟𝑢𝑒 and 0 ≤ 𝑥 + 𝛿 ≪ 𝑁

Here in the formulas, the 𝑥 is the input, 𝑦𝑡𝑟𝑢𝑒 is the true label and 𝑁 the pixel range from 0 to 255.

They have used the default PyTorch version of contest dev_toolkit, and by such adversarial tanning
modification method, they have got 84% clean accuracy in the task of targeted face re-identification.
When the generated perturbed data applies to the model, they achieved 68% of accuracy against

our baseline attacks, which leads to the 16 in 𝑑𝑒𝑙𝑡𝑎 value on average. we should again mention that
for all of the accuracy calculations we had ten time cross-validation.

2.8.4 ITTI team

The ITTI team submitted a preprocessing pipeline that is capable of mitigating the effects of
adversarial evasion attacks on any computer vision model, along with a model trained on the CelebA
dataset - which was the benchmark chosen by the contest organisers. The detailed description of
the submission was included in D7.5. The approach to the problem, the experiments and results of
the experiments have been published in a top-tier scientific journal with Impact Factor of 3.012 [27].

2.9 Conclusion

The objective of the AI Contest was to encourage the development of more practical and typically
powerful decision based adversarial attacks and classifiers more robust against optimisation-based
attacks.

The winning defence developed a broad range of methods to achieve this purpose, running by
adversarial training, transfer learning, and obfuscating gradient.

However, during the contest, we faced an issue regarding the number of participants. We have got
six submissions in total, which weakens our idea of the two-player game of attacks and defences.
One of the lessons we have learned was the prize of contest that drives the motivation for the
researchers investing their worthy time to solve our challenges. We have dedicated around 100
Euros for the winners which were suitable to our budget, but it seemed not enough. One of the other
aspects that influenced our contest was the Covid pandemic which decreased the number of
voluntary works. Our contest was designed for developers, students or researchers that have free
time to explore, but the Covid pandemic made a strong obstacle.

To end that, considerably more additional work is required towards even better attacks and defences;
however, the AI Contest tried to push the community to move one step more.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 21 of 66

Chapter 3 Adversarial machine learning benchmark

tool

Altering a few data points in input can simply change the predictions of a neural network. This
vulnerability endangers developed ML models and emphasises a gap between machine perception
and humans. It has comprehensively investigated since its finding in deep learning [28], but progress
has been slow [29].

One essential problem causing this deficiency is the lack of tools evaluating the robustness of ML
models reliably. Many published defences addressing adversarial perturbations have been
discovered to be ineffective [29]. The defences methods just seemed robust with the first look due
to general adversarial attacks could not detect the actual minimum adversarial perturbations.
Existing advance attacks like PGD [30] or C&W [31] fail for several reasons, for instance, an
inadequate number of optimisation steps or masking of the backpropagated gradients.

As it has been described in the deliverables D7.3 (please read it due to its explanation regarding our
approaches in D7.6), there are many concrete arguments to investigate defences to the adversarial
attacks and thus to have an adversarial benchmark tool. The four main reasons and motivations are:

1. Defending the systems against any adversarial attacks.
2. Testing the robustness of machine learning models in the worst-case scenario.
3. Measuring the progress of ML methods in regards to the level of human capabilities.
4. Having reference implementations of several attacks and defence procedures as open-

source.

To this end, possible attacks against the provided classifier are simulated concerning a provided
attackers' model by manipulating the train and test data, and their consequences on the targeted
model's performance are evaluated.

In this work, we present the adversarial benchmark tool which has been developed in SAFAIR
program for the final deliverable D7.6.

3.1 The adversarial benchmark tool

In this work, we present the SAFAIR adversarial benchmark tool, an open-source Python tool that
strives to improve address the problems mentioned above and favour the implementation of more
secure ML techniques.

The adversarial benchmark tool has a flexible architecture. We have determined abstract interfaces
for the tool components, such as models, attacks, datasets, or loss functions. Our tool integrates the
components and also has a well-designed wrapper to utilize powerful open-source tools or libraries
like Foolbox [33]. We have integrated many attack implementations from Foolbox.

Our tool supports deep neural networks by having a PyTorch library, which can be extended to
incorporate various widespread neural network frameworks, such as TensorFlow and Keras. This
facilitates us to execute attacks natively developed in Foolbox against PyTorch or TensorFlow and
Keras models. The adversarial benchmark tool is available on Git repository14.

Our tool could provides reference implementation of various attack mechanisms, we have a tool
which can aid in benchmarking. Due to the need for a standard reference implementation, we cannot
compare different benchmarks. A benchmark resulting in high accuracy may indicate more
robustness; however, it may additionally show that the attack implementation is weak too. By using

14 https://git.sec.in.tum.de/Norouzian/adversarial-benchmark-tool

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 22 of 66

the proposed tool, our researchers, especially in the SAFAIR program, can be ensured that the
reporting high accuracy on our benchmarking approach corresponds to a robust model.

Besides, developers and researchers are able to utilize our proposed tool to evaluate the robustness
of their proposed solutions against standardised, state-of-the-art attacks and defences. Then, if a
defence demonstrates a top score accuracy against the tool attack, the evaluation conclusively
indicates that the defence defeats this standardised implementation of attacks; on the other hand, if
an attack demonstrates a top score failure rate against a tool defence, the evaluation conclusively
indicates that the attack is being capable of defeating a definite implementation of the defence.

3.1.1 Tool structure

The adversarial benchmark tool has a modular architecture oriented software. As it shows in Figure
2 it consists of five primary modules:

1. Attacks: The module contains some various attack implementations. One can use these as
a template, easily implement other Foolbox adversarial attacks, and extend it attack
scenario to the modular tool.

2. Datasets: Contains the code for loading different dataset such CelebA.
3. Models: Contains the source code for a model. We have a PyTorch model in the directory

as an example. Please note that we expect that the model is already trained and we are
going to test it against adversarial perturbations.

4. Use cases: Contains the logic specific to different use cases such as the Face Re-
identification and Face Attribute Alteration tasks in the SAFAIR AI Contest.

5. Wrapper: Contains the model converter. This would take a model, for example, implemented
in PyTorch and convert it into other open-source tools, such as Foolbox.

Figure 2: Architecture and main components of Adversarial Benchmark Tool

It can run the following steps: (i) it uses the train_test_split to randomly split the data; (ii) for each
training piece, learn the related classifiers; (iii) starting to attack each learned model; and (iv)
present the results. Any investigation is run according to the parameters determined in the setup
files (like config file), such as the type and parameters of the selected attacks, the chosen datasets,
or the use cases. It is possible to execute various investigations via a proper definition of various
setup files.

We would like to reiterate in a way that the model is already trained. Hence, one should make sure
have saved the model weights. The model conversion process would first load the model weights
and then convert the model to Foolbox.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 23 of 66

3.1.1.1 Attacks

This module implements interfaces to various popular ML adversarial attacks. Each attack takes a
model and apply the chosen attacks on the classifiers. The default measure is misclassification. In
Figure 3 you can see the attacks that has been implemented in the benchmark tool. Here are two
mian examples of the attack_base interface and the list of attacks (attack_lists) which can be use and
exten by reseachers and developers.

attack_base

import os

import torch

from foolbox.attacks import LinfPGD

import eagerpy as ep

from environment_setup import PROJECT_ROOT_DIR

class Attack:

 def __init__(self):

 pass

 def instantiate_attack(self):

 """

 Attack the model

 :return: NotImplementedError

 """

 raise NotImplementedError

 def attack_description(self):

 """

 String description for the attack

 :return: NotImplementedError

 """

 raise NotImplementedError

 def get_use_case_loss_fn(self, model, labels):

 """

 Selected between reid/attr tasks for proper loss computation. We can switch between cross entropy and bce

 depending upon the task (reid/attr respectively). One can extend this class to accommodate more loss

 functions.

 :param model: Foolbox model :param labels: labels for the inputs

 :return: cross_entropy/bce_with_logits loss

 """

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 24 of 66

 # can be overridden by users

 def loss_fn(inputs):

 logits = model(inputs)

 if self.task_type == 'reid':

 return ep.crossentropy(logits, labels).sum()

 else:

 # binary cross entropy case in here

 return ep.astensor(

 torch.nn.functional.binary_cross_entropy_with_logits(logits.raw, labels.raw.to(torch.float),

 reduction="sum"))

 return loss_fn

attacks_lists

"""

Helper function for loading all the attacks defined in `attacks/attack_types folder`

"""

import importlib

import os

import pkgutil

import sys

from attacks.base import Attack

from environment_setup import PROJECT_ROOT_DIR

import config

def load_all_modules_from_dir(dirname):

 """

 Loads all the attack modules in the current run

 :param dirname: base directory to search from

 :return: None

 """

 for root_dirname, module_name, ispkg in pkgutil.iter_modules([dirname]):

 relative_module_name = f'attacks.attack_types.{module_name}'

 importlib.import_module(relative_module_name, PROJECT_ROOT_DIR)

def get_attacks(task_type):

 """

 Create a list of all the attack instances

 :param task_type: reid/attr attacks

 :return: list of all attack instances

 """

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 25 of 66

 # First load all modules in the

 attack_base_dir = os.path.join(PROJECT_ROOT_DIR, 'attacks', 'attack_types')

 load_all_modules_from_dir(dirname=attack_base_dir)

 attack_subclasses = Attack.__subclasses__()

 attack_list = []

 for subclass_name in attack_subclasses:

 subclass = subclass_name(task_type=task_type)

 if subclass.attack_description() not in config.skip_list:

 attack_list.append(subclass)

 return attack_list

if __name__ == '__main__':

 print(get_attacks(task_type='attr'))

Figure 3: List of attacks available at Git repository

3.1.2 How to use the tool

Following software required to use the package:

 It has been tested on GNU/Linux, and macOS systems running Python 3.6, and 3.7 installed.

 Other utility packages required can be obtained by taking a look at the requirements.txt file.

3.1.2.1 Installation procedure

The requirements are placed in the requirements.txt file.

pip install -r requirements.txt

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 26 of 66

To set up the dependencies. We also suggest making virtual environments by using conda or python
virtual environment using:

python3 -m venv /path/to/new/virtual/environment

3.1.2.2 Execution Steps

To start with execute:

python main.py -h

To get a list of options and instructions to execute the program. For starting a simple training loop,
simply use:

python main.py --task_type attr --checkpoint_dir saved_models --model_number 0

In our examples, we support two use cases currently (targeted face re-identification and attribute
alterations). Everyone can easily develop its own use case to use the tool. This can be selected by
using task_type argument. For instance:

python main.py --checkpoint_dir saved_models --task_type reid --model_number 0

Here we specify the checkpoint_dir and model_number (specific model to load). We expect that

model weights are present in the saved_models folder before starting the conversion process. The
results shall be computed on the CelebA dataset.

3.1.2.3 Creating a new Attack

To create a new Attack, one has to create a new python file in the attacks/attack_types package.

Please make sure all attacks extend the attacks.base.Attack class. The class has three methods

that are used:

 instantiate_attack(). Which is used in order to create an instance of attack type defined in
Foolbox framework.

 attack_description(). A string representation of the attack.

Once this is done, the tool would automatically recognize the new Attack and compute the model
performance against the new attack along with the previous ones (basically all the attacks that are

present in the attacks.attack_types package).

3.1.2.4 Configuration

There may be scenarios in which you want to skip certain attack types (for instance Carlini and

Wagner). This can be done by editing the config.py file. The skip_list can be used to skip attacks.
The tool performs string matching based on the string representation of each attack class. For
instance, if you want to skip C&W attack, just use:

skip_list = ['carlini_wagner']

The string representation of Carlini and Wagner attack is carlini_wagner and the same name needs

to be used in the configuration list. If the skip_list is empty, we run the model against all the test
types.

3.1.2.5 Targeted Attacks

One can perform targeted attacks as well. For this simply pass --target label flag with an appropriate
target label. For instance:

python main.py --checkpoint_dir saved_models --task_type reid --model_number 3 --target_label 17

The targeted attacks are not defined for attribute alteration tasks and the tool would throw an error

before starting. There are certain attacks such as FGSM for which targeted attacks are not defined by
Foolbox. They would be skipped and the tool would compute results for the remaining attack types.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 27 of 66

3.1.2.6 Sample Output

Here are some sample output obtained from the execution of the tool. For example, When executed
with the command:

python main.py --checkpoint_dir saved_models --model_number 8

Figure 4: Example output of benchmark tool for attribute alteration task

Similarly, when we execute the tool for performing “Un-targeted Re-Identification” task.

python main.py --checkpoint_dir saved_models --task_type reid --model_number 3

Figure 5: Example output of benchmark tool for untargeted re-identification task

Finally, when we execute the tool for targeted ReIdentification task, we would get:

python main.py --checkpoint_dir saved_models --task_type reid --model_number 3 --target_label 17

Figure 6: Example output of benchmark tool for targeted re-identification task

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 28 of 66

3.1.2.7 Discussion

The benchmark tool also supports Tensorflow or Keras models too. The respective model definitions
using the desired library should be included. Once the class members are defined, one can import

the model class in the main.py file and then convert it using tensorflow_to_foolbox module. If your
method uses multiple models, it can be handled easily by properly organizing it under parent model
and then call it accordingly. Necessary data processing steps should be included while passing the
batches of data from the benchmark tool.

Also, the Foolbox framework does not support Multi-label classification out of the box. Hence, it does
not support Attribute Alteration Task of contest directly. We have modified the tool by adding a

wrapper which can manage all instances of FixedEpsilonAttack.

However, for AttackWithDistance subclasses (for instance carlini_wagner) it is not possible to

perform monkey patching and manage the code. The only possible way is to override the run method
and basically copy everything with changes to the code as per need. For the sake of keeping the
framework simpler and easily extensible, we decided to skip the operation for such cases.
Developers are encouraged to update the code themselves and reach out to us for any help.

3.1.3 Reporting benchmark results

This section reports an example of the benchmark tool that Vicomtech has used to test and evaluate
their submitted defence methods in D7.2. Any researcher or developer can extend this way of
reporting when using the tool to evaluate their solutions.

3.1.3.1 Vicomtech use case evaluation results

All defences were generated for avoiding adversarial attacks in an originally trained model formed
by a vgg16 pre-trained layer with a dense layer after it. This model was trained with a breast cancer
image dataset for classification task. Due to its vulnerability to adversarial attack, multiple defences
were implemented and are detailed next:

 Adversarial training: the model is retrained with a dataset containing adversarial examples
to learn to classify them correctly [22].

 Dimensionality reduction (top and middle version): an autoencoder or encoder layer is
added to the initial model (before de input data (top version) or between vgg16 and dense
layer (middle version)) with the main idea that this dimensionality reduction happening in this
new layer helps reducing the noise added to the original image to convert them into
adversarials [22].

 Prediction similarity: an external layer is added to save the history of prediction. With the
use of this layer’s data, the idea is to detect that an adversarial example is being generated.

 Activations' detector: studying the behaviour of the activation in the original model for non-
adversarial and adversarial images, a detector is trained in order to detect these different
behaviours.

Prediction similarity and activations’ detector has been modified in order to be able to calculate
accuracies of this defences. As the dataset only contains two classes, in the case the external layer
detects that an adversarial is being generated or an adversarial was introduced as input images, the
prediction is changed to the contrary class as expected from the original model.

All the defences detailed above were validated with all the attacks provided in the benchmark tool.
The results of their accuracy are summarised in the Table 2.

Table 2: Benchmark tool results against Vicomtech defence methods

Defence /
Accuracy

Adversarial
training

Dimensionality
reduction top

Dimensionality
reduction

middle

Prediction
Similarity

Activations’
detector

Original 0.844 0.726 0.817 0.844 0.708

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 29 of 66

Defence /
Accuracy

Adversarial
training

Dimensionality
reduction top

Dimensionality
reduction

middle

Prediction
Similarity

Activations’
detector

FGSM 0.837 0.716 0.812 0.837 0.708

L2 Basic Iter 0.844 0.725 0.817 0.842 0.708

BIM 0.837 0.716 0.812 0.837 0.708

Deep Fool 0.003 0 0.001 0.015 0.708

Additive
noise

0.844 0.725 0.817 0.844 0.708

Newton Fool 0.464 0 0 0.46 0.708

PGD 0.837 0.717 0.813 0.837 0.708

The widely known adversarial training defence got a good result in several attacks. However, this
countermeasure manages to avoid the adversarial examples that it already knows. In other words,
this method defends the model from the corrupted examples, which are used to retrain the model.
That is why the adversarial example would be the ideal defence in case of all these possible attacks
are known, and different researches show the impossibility of that. In this case, the model was
retrained by adversarials obtained with FGSM, PGD, and BIM algorithms. Therefore, it was expected
that this defence was more accurate in those cases. Due to their resemblance in the attacks, this
defence also works with Additive noise and L2 Basic Iter attack.

Concerning the dimensionality reduction defence, it was implemented in two ways. The first
implementation was the injection of the autoencoder at the beginning of the model to be defended.
That method reduces the initial accuracy significantly, and hence it is the defence with the worst
results. The second implementation was the addition of the autoencoder in the middle of the original
model. In that case, the accuracy was not lowered considerably, improving the previous
implementation only changing the position of the developed autoencoder in the defended model.
Thus, the second dimensionality reduction shows improved results, even with adversarials that it did
not see previously.

The Table 2 shows the dominance of the prediction similarity defence. That proves its potential to
avoid the majority of the presented attacks. Concretely, this countermeasure is focused on a history
of injected images and the difference between those. Therefore, this method detects the tested
algorithms which are constructing the adversarial example by using the gradient.

Finally, the Activations’ detector method reduces the accuracy in clean images considerably.
However, it is the unique defence that shows robustness against the Deep Fool and Newton Fool
attacks. That makes this countermeasure interesting, even though it lowers the precision of the
original data significantly.

To summarize, according to the accuracy in the original data, adversarial training and prediction
similarity maintain the initial accuracy obtained by the model without any defence. Comparing both
versions of dimensionality reduction defences, the middle one generates a more robust model with
minimal loss in original accuracy. Finally, although the initial accuracy of the model is reduced
drastically, the activations’ detector defence is the only one that can be effective against Deep Fool
and Newton Fool attacks.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 30 of 66

3.1.4 Conclusion

A critical barrier delaying the search for robust ML models is the shortage of reliable evaluation tools.
In our explorations and experiments during the SAFAIR program, we believe our tool can help the
community evaluate their solutions in an easier and standardised way.

As the adversarial benchmark tool is modular and straightforward to extend, state-of-the-arts and
more complicated attacks can be easily implemented, as well as countermeasures and robust
models, hopefully, by helping the researchers and developers within the community.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 31 of 66

Chapter 4 AI threat model testing and evaluation

The present chapter describes the evaluation of the SAFAIR AI Threat Model and Knowledge Base
carried out as part of the task T7.5 and according to the plan detailed in D7.5. After the introductory
section, where the aim and context of the evaluation is presented, the following sections summarise
the evaluation objectives, evaluation methodology dimensions, evaluation means (online
questionnaire), evaluation team, the process followed, and the results obtained. The Appendix A at
the end of the report transcripts the questionnaire used in the process and the Appendix B shows
the presentation made during the training workshop with the evaluators.

4.1 Introduction

One of the interests of SAFAIR researchers was to learn whether the knowledge gained in the Work
Package 7 would be of interest and use of AI system developers. Therefore, as part of the validation
of SAFAIR results in T7.5, the SAFAIR AI Threat model and accompanying Knowledge Base were
evaluated.

The following sections detail the process and results of the evaluation of the final version of the
SAFAIR AI Threat model and Knowledge Base.

The final version of the SAFAIR AI Threat KB evaluated was the version explained in D7.5, updated
from that initial version of deliverable D7.1, and which includes the latest advances in trustworthy AI
works, such as the “AI Cybersecurity Challenges” by ENISA (ENISA, 2020)15, which beyond the
challenges, offers taxonomies of AI assets and AI threats, as well as the Mitre's ATLAS - Adversarial
Threat Landscape for Artificial-Intelligence Systems (MITRE ATLAS, 2021)16, and the ETSI-SAI’s
“Mitigation Strategy Report” (ETSI SAI Mitigation, 2021)17 dedicated to countermeasures.
Furthermore, the updated version of the SAFAIR AI Threat Knowledge Base enlarged the knowledge
corpus with countermeasures, explainability and fairness solutions resulting from SAFAIR work as
described in D7.5, as well as other state-of-the-art works on Adversarial Machine Learning (AML)
attacks and safeguards published and analysed after D7.1 was issued.

4.2 SAFAIR AI Threat Knowledge Base evaluation

The evaluation of the SAFAIR AI Threat Knowledge Base tool (a.k.a. SAFAIR AI Threat KB) was the
mean to evaluate the SAFAIR AI Threat Model and the analysed corpus knowledge structured
following the Model. The initial version of the tool was part of D7.1 and was updated into the final
version presented in D7.5 which was the subject of the evaluation.

The evaluation process followed the methodology and the work plan outlined in D7.5 and it is
explained in more detail in the following sections. The last section summarizes the feedback and the
evaluation results obtained.

4.2.1 Evaluation Objectives

The main objective of the SAFAIR AI Threat KB evaluation is to assess if its knowledge content and
structure is correct and sufficient for the users when interacting with it. Therefore, the focus of the
evaluation was the quality and completeness of the KB content.

15 ENISA, AI Cybersecurity Challenges - Chapter 1. Threat Landscape for Artificial In-telligence.
December 2020. Available at: https://www.enisa.europa.eu/publications/artificial-intelligence-cybersecurity-
challenges/at_download/fullReport
16 MITRE ATLAS, Adversarial Threat Landscape for Artificial-Intelligence Systems. Available at:
https://atlas.mitre.org/
17 ETSI GR SAI 005 V1.1.1 (2021-03), Securing Artificial Intelligence (SAI); Mitigation Strategy Report

https://www.enisa.europa.eu/publications/artificial-intelligence-cybersecurity-challenges/at_download/fullReport
https://www.enisa.europa.eu/publications/artificial-intelligence-cybersecurity-challenges/at_download/fullReport
https://atlas.mitre.org/

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 32 of 66

4.2.2 Evaluation Dimensions

We considered five dimensions in the evaluation process, being the following, in order of importance:

 Quality – to check if the information provided by the Knowledge Base is good, correct,

sufficient and useful.

 Correctness – to check if the description of techniques and countermeasures is appropriate

(i.e. it reflects well the source) and if it is well understood.

 Completeness – to check if all the content that should be in the Knowledge Base has been

included.

 Usability – to check whether the content is useful for the users in the AI use case under

study, and whether there are enough instances of attack techniques and countermeasures

that have been useful or previously unknown to them. Please, note that in this dimension, we

are not evaluating the user experience of the tool because the tool has no GUI.

 Re-usability – to check whether the information provided by the Knowledge Base could be

used in the future for models similar to the model under study.

4.2.3 Evaluation Questionnaire

A questionnaire with dedicated questions to assess the different evaluation dimensions above was
designed to support the evaluation process (see Appendix A). The questionnaire was used to get
the evaluators’ feedback about different aspects of the tool after reading the documentation of the
tool and after using the Knowledge Base.

In order to facilitate the feedback gathering and statistics, the questionnaire was an online
questionnaire shared with the evaluators. Both the questionnaire editing and the questionnaire
processing procedures followed GDPR principles with regards to protection of personal information
of the responding data subjects, i.e. securely storing and processing this information; letting the
responders know the purpose of the processing; and allowing them opting out at any time.

The questions included general questions about the evaluator profile and AI development practices
and AML knowledge, as well as technical questions related to the quality of the content of the KB.
The questions were grouped in seven sections:

1. Profile. In this section, we collect information about the evaluators’ experience in AI

development.

2. Current Practice. This section collects information about the current evaluators’ AI

trustworthiness practices when developing AI systems.

3. Correctness. This section asks the evaluator to assess the overall quality of the threat and

countermeasure information provided by the Knowledge Base in terms of correctness.

4. Completeness. In this section, we ask the evaluator to assess the overall quality of the threat

and countermeasure information provided by the Knowledge Base in terms of completeness.

5. Usefulness. In this section, the evaluator is required to assess the usefulness of the attack

and defence information provided, i.e. whether s/he thinks the information is useful for

improving the AI system design with respect to trustworthiness.

6. Re-usability. This section includes questions to the evaluators on the re-usability of the

attack and defence information provided in the Threat KB, i.e. whether they believe the

information can be used for improving the trustworthiness of AI systems in other contexts

beyond the ones evaluated.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 33 of 66

7. Background knowledge and suggestions. This section inquires the evaluators about their

background on similar tools and initiatives around the “Trustworthy AI” principles. This

information is relevant in order to learn on the knowledge and interest of the evaluators about

the AI trustworthiness support subject.

4.2.4 Evaluators

The selected evaluation team was composed of eleven actual AI designers and developers in
Tecnalia that are members of different Tecnalia divisions and are working in AI system development
projects in different industry sectors and application domains (health, energy, cybersecurity, etc.).

From them, 9 out of 11 are experts coming from the field of AI with limited knowledge on
cybersecurity and two of them are cybersecurity experts with less experience in AI development.

All of them took the role of AI designer or AI developer responsible for developing secure AI systems
and were asked to learn the concept and use the SAFAIR AI Threat KB to get information and gain
insights into threats against AI systems and possible countermeasures.

All the evaluators participated in the evaluation in a voluntary basis.

4.2.5 Evaluation process

Figure 7 depicts the overall evaluation process followed. As shown in the figure, first, a Training
workshop was held organised by Tecnalia participants in SAFAIR with the evaluators of the SAFAIR
AI Threat KB as trainees. During the session, the evaluators were enlightened on SPARTA project
objectives and main research activities and outcomes, as well as on WP7 SAFAIR objectives, tasks
and results among which the AI Threat model and KB were carefully explained and thoroughly
detailed (see Appendix B). In the Training workshop, the evaluators were also instructed on the
evaluation goals and the process to follow, including a detailed description of the questionnaire they
had to fill.

In order to illustrate what they need to do to get information from the KB, two supporting videos were
showcased, showing two use cases of the potential use of the KB for improving the trustworthiness
of the ML models.

After that, the evaluators were aided in browsing the contents of the SAFAIR AI Threat KB so they
could learn the threats and countermeasures that had more interest to them according to the type of
algorithms they research and develop.

The evaluation concluded with all the evaluators voluntarily filling out the online questionnaire to
provide their feedback, which is reported in the next section.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 34 of 66

Figure 7: SAFAIR AI Threat Knowledge Base Evaluation process

The supporting materials offered to the evaluators included the following:

 D7.1 “AI systems threat analysis mechanisms and tools” document, which describes the AI

Threat model together with the KB structure and summarizes the literature review performed

in SAFAIR.

 D7.5 “Final version of AI systems security mechanisms and tools” report, which describes

the updates performed on the AI Threat model and KB, as well as details the mechanisms

for defence, explainability and fairness developed in SAFAIR (which are also part of the final

version of the KB).

 Supporting videos illustrating two example use cases of the SAFAIR AI Threat Knowledge

Base:

 UC1: Poisoning Threat Analysis on AI-based Healthcare system for disease detection.

 UC2: Threat Analysis on AI-based network traffic classification system realized by

Support Vector Machines (SVM).

 The final version of the SAFAIR AI Threat Knowledge Base tool.

 Presentation for the Training workshop (see Appendix B).

 Recording of the Training workshop.

The evaluators were asked to perform a threat analysis of the AI system of their interest using the
SAFAIR AI Threat Knowledge Base. The information about the threats and associated potential
countermeasures were consulted following the process explained to them:

 First: Identify the ML algorithm and family of your interest (i.e. the AI asset).

 Second: Identify the relevant potential threats and attacks, including all the attributes, e.g.

attack tactic group, tactic, technique, threat agent knowledge, etc.

 Third: Identify the countermeasures to adopt for protecting your ML algorithm.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 35 of 66

4.2.6 Evaluation results

In this section, we provide the statistics of questionnaire responses gathered and the analysis of the
results. The results have provided relevant feedback to improve the contents of the SAFAIR AI
Threat KB and the design of the questionnaire so that it can be extended to an external audience to
further improve the KB.

4.2.6.1 Section 1: Profile

As shown by the responses of the evaluators, all of them have more than three years of experience
in ML system development, and 36% of them have more than seven years, which reflects the deep
knowledge of the evaluators on the types of systems to be protected.

Furthermore, the types of ML algorithms most used by the evaluators, that is, those used at least by
the 60% of the evaluators, were: K-means clustering, PCA, Linear Regression, Logistic Regression,
SVM, Genetic Algorithm and Neural Networks.

The target domains of the ML models developed were multiple, including health applications, energy
efficiency, cybersecurity, etc.

While only 27% of the responders have a background in cybersecurity, 45% of them did already
have experience in AML practices, which makes their answer even more valuable for the purpose.

1. Please indicate how many years of
experience you have in AI development

2. Please specify the types of ML algorithms or
AI models you develop

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 36 of 66

3. Please specify the types of AI applications you develop (i.e. the mission and domain of
application).

4. Do you have any experience in cyber
security in general?

5. Do you have any experience in Adversarial
Machine Learning?

4.2.6.2 Section 2: Current Practice

As reported by the evaluators, the current practice on threat analysis and protection of AI systems
is limited. Only 27% of the evaluators consider the exposure of the AI system to cyber threats and
the possible attacks on them. Even more, only 18% try to adopt measures to counter such risks.
However, 18% also test their AI systems for integrity, robustness and security.

When asked about the potential attacks of their interest, all the main four families (poisoning,
evasion, oracle and data access) were mentioned by the evaluators, with a greater proportion of
poisoning and evasion threats.

6. When developing an AI system, do you think
on how exposed the AI system is to cyber-
attacks?

7. Do you assess potential forms of attacks
against your AI systems?

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 37 of 66

8. If yes, what types of potential attacks do you
consider?

9. Do you put measures in place to counter
such potential attacks over the lifecycle of the
AI system?

10. Do you test the AI system to check its
integrity, robustness and security?

11. What types of potential attacks are more
relevant to you?

4.2.6.3 Section 3: Correctness

The great majority of the evaluators agree on the quality of the KB with respect to the correctness
and easiness of the information contained, while none of them indicated any mistake in the content
or source references provided in the threat or countermeasure information.

12. Did you find any mistake or erroneous
information?

13. Do you think the information is easy to
understand?

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 38 of 66

14. Do you think the information reflects or
summarises well the corresponding reference
source?

4.2.6.4 Section 4: Completeness

The completeness of the KB was evaluated very positively by 82% of the evaluators, even though
one evaluator indicated that some attack technique and countermeasure information could be
improved, and 64% of the evaluators would have appreciated having additional complementary
information and materials.

15. Did you miss any information?

16. If yes, please specify which type of
information

17. Did you miss any complementary tool,
background documentation or other
material/resource?

4.2.6.5 Section 5: Usefulness

Most of the evaluators, a total of 91% of them, deemed relevant the information about threats and
countermeasures offered by the KB. Even more, 82% of them acknowledge that the KB offered new
information not previously known.

The utility of the content was clearly evaluated positively, particularly for aiding AI system developers

in their work. A total of 82% of the evaluators considered it useful for developers, while 55% agreed

that it is also useful for researchers. When asked for clarifications, the disagreeing evaluator

explained that there was a misunderstanding on the roles of “AI developer” and “AI researcher”. The

negative evaluation reflects the opinion of this evaluator about the fact that AML threats are usually

an issue of AI system implementation rather than an issue of the mathematical algorithm itself.

Therefore, from the perspective of the ML model creator, the information in the KB may not impact

his work.

The evaluators replied that the knowledge compiled is clearly most useful for improving security-by-

design and privacy-by-design of AI systems, while AI fairness and interpretability are less improved,

which is normal considering the current proportion of threats gathered for each of the aspects.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 39 of 66

The confidence of the evaluators about being able to use the KB to actually improve the AI systems

by applying the countermeasures information provided is in a ratio of 73% of the evaluators who

agree they have sufficient skills.

18. Do you think that the information given has
been relevant?

19. Was the information given new and not
previously known?

20. Do you think the information given is useful
for a developer of the AI use cases you
studied?

21. Do you think the information given is useful
for a researcher of the AI use cases you studied?

22. If yes, which aspects of the AI system do
you think the information given helps to
improve?

23. Do you think that you have the skills to
implement the recommended
countermeasures?

4.2.6.6 Section 6: Re-usability

The re-usability quality of the KB has also been evaluated very positively as 91% of the evaluators
agree with the statement that the KB could be used in similar use cases beyond the studied ones.
Furthermore, 82% agree that the knowledge gained could be useful for improving the trustworthiness
of other ML models in the future.

24. Do you think that the information provided
could be used in other use cases similar to the
ones you studied?

25. Do you think that the knowledge you gained
could be useful in the future for improving the
trustworthiness of other models you will
develop?

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 40 of 66

4.2.6.7 Section 7: Background knowledge and suggestions

Being great experts in AI but not cybersecurity, the majority of the evaluators did not have an
extensive background in AML. 82% stated they did not know further frameworks of AML testing or
similar KBs, and they did not even know about the current work on AI certification by ENISA.

82% also think that it would be interesting to automate the AML testing/assessment techniques of
ML/AI models, which gives the idea of similar tools such as the SAFAIR AI Threat KB.

26. Do you know any tool or framework to
perform the AML testing? Please provide the
reference(s)

“I know python AML libraries where you can apply
well-known AML countermeasures to evaluate the
robustness of a model.”

27. Do you know any other similar public or
private Knowledge Base? Please provide the
reference(s).

“The MITRE ML Threat Matrix.”

28. Did you already know that ENISA is working
on an AI system certification scheme?

29. Do you think it would be interesting to have
a European certification of AI system
trustworthiness?

30. Do you think it would be interesting to
automate the AML testing/assessment
techniques of ML/AI models?

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 41 of 66

4.3 Conclusions

The overall conclusion of the SAFAIR AI Threat KB evaluation results is that the great majority of
the evaluators agreed on the high quality, correctness, completeness, usefulness and re-usability of
the contents of the Knowledge Base.

According to their feedback, in general, the KB does not present any error or gap of information,
providing easy to understand descriptions as well as complete references. Most of the evaluators
considered the information about threats and countermeasures therein as relevant and useful for
developers to improve the security and privacy of ML models, with limited usefulness to improve AI
fairness and explainability, which is aligned with the amount and proportion of the types of
mechanisms collected.

Moreover, the evaluators believe that the knowledge gained from the techniques and
countermeasures studied could aid in improving multiple types of ML models of diverse use cases.

The evaluation also showed the need of spreading the Trustworthy AI concepts and works among
AI developers, including SAFAIR results on AML, since most of the evaluators showed limited
awareness of the landscape of works and other initiatives around Trustworthy AI, and only a minority
of the evaluators already knew about current efforts in these aspects.

Most of the evaluators also think that it would be interesting to automate the AML testing and
assessment, which gives a positive view of the future of the SAFAIR AI Threat KB in support of such
automation.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 42 of 66

Chapter 5 External validation through peer review

One of the only widely accepted methods for the validation of scientific research is the peer-review
process. The procedure has a successful tradition of over 350 years and plays a critical role in the
scientific publishing process. Major scientific publishers maintain the peer review process as a way
to guarantee the validity and quality of published research pieces.

Some of the work completed in the Sparta SAFAIR program have successfully undergone validation
through the peer review process in top-tier journals. The following chapter presents the key concepts
and findings of the published works.

5.1 Defending network intrusion detection systems against adversarial
evasion attacks

The work completed on the detection of Evasion Attacks on the CICIDS2017 dataset has been
described in d7.2. The results of this work have been evaluated and published in a top tier journal -
Future Generation Computer System (Impact Factor = 7.187).

 Pawlicki, Marek, Michał Choraś, and Rafał Kozik. "Defending network intrusion detection
systems against adversarial evasion attacks." Future Generation Computer Systems 110
(2020): 148-154

The algorithms used for the creation of evasion attacks were:

 Carlini and Wagner attack (CW)

 Fast Gradient Sign Method (FGM)

 Basic Iterative Method (BIM)

 Projected Gradient Descent (PGD)

The diagram in Figure 8 shows the Training/Testing Pipeline of the adversarial detector. In essence,
a secondary ML-based model trained on the neuron activation values from the network intrusion
detection neural network, which allows spotting odd behaviour of the network, which might indicate
the occurrence of an attack.

Figure 8: The Adversarial Detector Training/Testing Pipeline

The detector achieved an accuracy of 0.8506 on the testing set. The detailed results containing the
precision and recall metrics are assembled in Figure 9 and Figure 10.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 43 of 66

Figure 9: Results of ANN-based Adversarial Attack Detector over the test set activations

Figure 10: Results of Adversarial Attack Detection with other ML methods

5.2 The application of preprocessing adversarial defences to robustify
face reidentification systems

The work on preprocessing pipelines to protect computer vision algorithms in face re-identification
tasks against adversarial evasion attacks has been described in d7.5 and also published in the
Entropy Journal (Impact Factor = 3.012)

 Pawlicki, Marek, and Ryszard S. Choraś. "Preprocessing Pipelines including Block-Matching
Convolutional Neural Network for Image Denoising to Robustify Deep Reidentification
against Evasion Attacks." Entropy 23, no. 10 (2021): 1304.

The classifier performance on the test set containing the 14 most populated classes is found in Table
3.

Table 3: Classifier performance on the test set containing the 14 most populated classes.

label precision recall f1-score

1757.0 1.00 1.00 1.00

2114.0 1.00 1.00 1.00

2820.0 0.88 1.00 0.93

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 44 of 66

label precision recall f1-score

3227.0 1.00 0.86 0.92

3699.0 0.88 1.00 0.93

3745.0 1.00 1.00 1.00

3782.0 1.00 1.00 1.00

4262.0 0.88 1.00 0.93

4740.0 1.00 1.00 1.00

4978.0 1.00 1.00 1.00

6568.0 1.00 1.00 1.00

8968.0 1.00 1.00 1.00

9152.0 1.00 1.00 1.00

9256.0 1.00 0.71 0.83

macro avg 0.97 0.97 0.97

weighted avg 0.97 0.97 0.97

accuracy 0.9693877551020408

balanced accuracy 0.9693877551020408

The effects of PGD eps=4 on the performance of the classifier can be seen in Table 4.

Table 4: The effects of PGD eps=4 on the performance of the classifier.

label precision recall f1-score

1757.0 1.00 0.14 0.25

2114.0 0.33 0.14 0.20

2820.0 0.00 0.00 0.00

3227.0 1.00 0.17 0.29

3699.0 0.32 1.00 0.48

3745.0 0.00 0.00 0.00

3782.0 0.00 0.00 0.00

4262.0 0.33 0.71 0.45

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 45 of 66

label precision recall f1-score

4740.0 0.08 0.14 0.11

4978.0 0.00 0.00 0.00

6568.0 1.00 0.14 0.25

8968.0 0.00 0.00 0.00

9152.0 0.50 0.14 0.22

9256.0 1.00 0.40 0.57

macro avg 0.40 0.21 0.20

weighted avg 0.38 0.21 0.19

accuracy 0.21052631578947367

balanced accuracy 0.2139455782312925

The results of the classifier using JPEG compression with quality set to 20 on PGD attacks with
epsilon=4 can be found in Table 5.

Table 5: The results of the classifier using JPEG compression with quality set to 20 on PGD attacks with
epsilon=4.

label precision recall f1-score

1757.0 1.00 1.00 1.00

2114.0 1.00 1.00 1.00

2820.0 1.00 1.00 1.00

3227.0 1.00 0.83 0.91

3699.0 0.88 1.00 0.93

3745.0 0.86 0.86 0.86

3782.0 0.86 0.86 0.86

4262.0 0.78 1.00 0.88

4740.0 1.00 1.00 1.00

4978.0 0.86 0.86 0.86

6568.0 1.00 1.00 1.00

8968.0 1.00 0.86 0.92

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 46 of 66

label precision recall f1-score

9152.0 1.00 0.86 0.92

9256.0 0.80 0.80 0.80

macro avg 0.93 0.92 0.92

weighted avg 0.93 0.93 0.93

accuracy 0.9263157894736842

balanced accuracy 0.9227891156462587

Table 6: The results of the classifier using BMCNN with sigma set to 20 used on adversarial samples created
with PGD using with epsilon set to four.

label precision recall f1-score

1757.0 1.00 1.00 1.00

2114.0 1.00 1.00 1.00

2820.0 1.00 1.00 1.00

3227.0 0.83 0.83 0.83

3699.0 0.70 1.00 0.82

3745.0 1.00 0.71 0.83

3782.0 0.88 1.00 0.93

4262.0 0.78 1.00 0.88

4740.0 1.00 1.00 1.00

4978.0 0.88 1.00 0.93

6568.0 1.00 0.86 0.92

8968.0 1.00 0.86 0.92

9152.0 0.80 0.57 0.67

9256.0 1.00 0.8 0.89

macro avg 0.92 0.90 0.90

weighted avg 0.92 0.91 0.90

accuracy 0.9052631578947369

balanced accuracy 0.9023809523809525

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 47 of 66

Table 7: The results of the classifier using spatial smoothing with JPEG compression, gaussian
augmentation, total variance minimisation and BMCNN with sigma set to 20 on PGD images with epsilon set

to four.

label precision recall f1-score

1757.0 0.50 0.71 0.59

2114.0 0.50 0.43 0.46

2820.0 0.00 0.00 0.00

3227.0 0.40 0.33 0.36

3699.0 0.37 1.00 0.54

3745.0 0.25 0.14 0.18

3782.0 0.25 0.86 0.39

4262.0 0.25 0.14 0.18

4740.0 0.50 0.57 0.53

4978.0 0.67 0.29 0.40

6568.0 1.00 0.14 0.25

8968.0 0.50 0.14 0.22

9152.0 0.67 0.29 0.40

9256.0 0.00 0.00 0.00

macro avg 0.42 0.36 0.32

weighted avg 0.43 0.37 0.33

accuracy 0.3684210526315789

balanced accuracy 0.36054421768707484

Table 8: The results of the classifier using spatial smoothing with JPEG compression, gaussian
augmentation and BMCNN with sigma set to 20 on PGD images with epsilon set to four, without total

variance minimisation.

label precision recall f1-score

1757.0 1.00 1.00 1.00

2114.0 1.00 1.00 1.00

2820.0 1.00 1.00 1.00

3227.0 0.83 0.83 0.83

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 48 of 66

label precision recall f1-score

3699.0 0.78 1.00 0.88

3745.0 1.00 0.86 0.92

3782.0 0.75 0.86 0.80

4262.0 0.78 1.00 0.88

4740.0 1.00 1.00 1.00

4978.0 0.86 0.86 0.86

6568.0 1.00 0.86 0.92

8968.0 1.00 0.86 0.92

9152.0 1.00 0.57 0.73

9256.0 0.83 1.00 0.91

macro avg 0.92 0.91 0.90

weighted avg 0.92 0.91 0.90

accuracy 0.9052631578947369

balanced accuracy 0.9064625850340137

Table 9: The results of the classifier using spatial smoothing with JPEG compression on PGD images with
epsilon set to four.

label precision recall f1-score

1757.0 1.00 1.00 1.00

2114.0 1.00 1.00 1.00

2820.0 1.00 1.00 1.00

3227.0 1.00 0.83 0.91

3699.0 0.78 1.00 0.88

3745.0 0.86 0.86 0.86

3782.0 0.86 0.86 0.86

4262.0 0.78 1.00 0.88

4740.0 1.00 1.00 1.00

4978.0 0.86 0.86 0.86

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 49 of 66

label precision recall f1-score

6568.0 1.00 1.00 1.00

8968.0 1.00 0.86 0.92

9152.0 1.00 0.71 0.83

9256.0 0.80 0.80 0.80

macro avg 0.92 0.91 0.91

weighted avg 0.93 0.92 0.92

accuracy 0.9157894736842105

balanced accuracy 0.9125850340136055

Table 10: The results of the classifier using JPEG compression, gaussian augmentation and BMCNN on
PGD images with epsilon set to four.

label precision recall f1-score

1757.0 0.88 1.00 0.93

2114.0 1.00 1.00 1.00

2820.0 1.00 1.00 1.00

3227.0 1.00 0.83 0.91

3699.0 0.78 1.00 0.88

3745.0 0.86 0.86 0.86

3782.0 0.86 0.86 0.86

4262.0 0.88 1.00 0.93

4740.0 1.00 1.00 1.00

4978.0 0.86 0.86 0.86

6568.0 1.00 1.00 1.00

8968.0 1.00 0.86 0.92

9152.0 1.00 0.71 0.83

9256.0 1.00 1.00 1.00

macro avg 0.94 0.93 0.93

weighted avg 0.93 0.93 0.93

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 50 of 66

label precision recall f1-score

accuracy 0.9263157894736842

balanced accuracy 0.9268707482993197

To assess the results of the preprocessing defences, the best performing preprocessing pipeline
was tested on a clean, unperturbed set. The results of this experiment can be found in Table 9.

Table 11: Results of classification with preprocessing defences on a clean dataset.

label precision recall f1-score

1757.0 1.00 1.00 1.00

2114.0 1.00 1.00 1.00

2820.0 1.00 1.00 1.00

3227.0 1.00 0.83 0.91

3699.0 0.88 1.00 0.93

3745.0 0.83 0.71 0.77

3782.0 0.75 0.86 0.80

4262.0 0.78 1.00 0.88

4740.0 1.00 1.00 1.00

4978.0 1.00 1.00 1.00

6568.0 1.00 1.00 1.00

8968.0 1.00 1.00 1.00

9152.0 1.00 1.00 1.00

9256.0 1.00 0.60 0.75

macro avg 0.95 0.93 0.93

weighted avg 0.94 0.94 0.94

accuracy 0.9368421052631579

balanced accuracy 0.9289115646258503

The classifier performance indicates that using preprocessing defences causes a drop in the
measured metrics, at the same time, the achieved robustness is considerable. The results of the
experiments prove that input transformations are an effective weapon against adversarial attacks,
though the robustness comes at a cost. The utility of the proposed preprocessing pipeline solution
comes in the fact that it can be used as a plug-and-play quick-fix, granting a measure of robustness
against adversarial attacks without having to incur the costs of re-training the classifier.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 51 of 66

Chapter 6 Summary and Conclusion

This document proposed solutions to evaluate the adversarial machine learning methods within the
SPARTA WP7 SAFAIR program. One is designing an adversarial machine learning contest to test
participants’ attacks and defences solutions which is an intermediate solution. The design of the
contest proved to be working and can be recommended.

The next one is implementing an adversarial ML benchmark tool that helps researchers and
developers to design and implement more robust ML models and present standardised benchmarks
of proposed solutions in the area of adversarial machine learning. The adversarial ML benchmark
tool is functional and can be recommended by SPARTA to use in the wider community. However,
the AI contest and the benchmark tool solutions are generic and adaptive, which can be used for
lots of different adversarial ML scenarios (not just SAFAIR ML scenarios) for evaluations.

Last but not least, the SAFAIR AI Threat KB evaluation results demonstrates that the great majority
of the evaluators agreed on the high quality, correctness, completeness, usefulness and re-usability
of the contents of the Knowledge Base and the KB does not present any error or gap of information,
providing easy to understand descriptions as well as complete references. Most of the evaluators
considered the information about threats and countermeasures to be relevant and useful for
developers to improve the security and privacy of ML models.

To this end, the verification of ML models robustness is at the beginning of the pathway because the
algorithms and techniques have presumptions that avoid them presenting full guarantees of not
having any adversarial examples. Consequently, we hope our readers will be inspired to solve some
of the challenges mentioned in this document.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 52 of 66

Chapter 7 List of Abbreviations

Abbreviation Translation

AI Artificial Intelligence

ML Machine Learning

AML Adversarial Machine Learning

FGSM Fast Gradient Sign Method attack

Iter-FGSM iterative Fast Gradient Sign Method attack (same as BIM – Basic
Iterative Method)

C&W Carlini and Wagner attack

NN Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

ROC Receiver Operating Characteristic

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 53 of 66

Chapter 8 Bibliography

[1] L. Huang, A. D. Joseph, B. Nelson, B. Rubinstein, and J. D. Tygar. “Adversarial machine
learning.” In 4th ACM Workshop AISec, pages 43–57, Chicago, IL, USA, 2011.

[2] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndic, P. Laskov, G. Giacinto, and F. Roli.
“Evasion attacks against machine learning at test time.” In ECML PKDD, Part III, volume 8190 of
LNCS, pages 387–402. Springer Berlin Heidelberg, 2013.

[3] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
“Intriguing properties of neural networks.” In ICLR, 2014.

[4] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. “The limitations of
deep learning in adversarial settings.” In 1st IEEE Euro SP, pages 372–387. IEEE, 2016.

[5] B. Biggio and F. Roli. Wild patterns: “Ten years after the rise of adversarial machine learning.
Pattern Recognition”, 84:317–33, 2018.

[6] A. D. Joseph, B. Nelson, B. I. P. Rubinstein, and J. Tygar. “Adversarial Machine Learning.”
Cambridge University Press, 2018.

[7] Brendel, W., Rauber, J., and Bethge, M. (2017). “Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models.” 2017.

[8] Xiao, C., Zhu, J.-Y., Li, B., He, W., Liu, M., and Song, D. “Spatially transformed adversarial
examples.” 2018.

[9] Metzen, Jan Hendrik, et al. "On detecting adversarial perturbations." arXiv preprint
arXiv:1702.04267 (2017).

[10] Guo, Chuan, et al. "Countering adversarial images using input transformations." arXiv preprint
arXiv:1711.00117 (2017).

[11] Kurakin, Alexey, Ian Goodfellow, and Samy Bengio. "Adversarial machine learning at scale."
arXiv preprint arXiv:1611.01236 (2016).

[12] Shafahi, Ali, et al. "Are adversarial examples inevitable?." arXiv preprint arXiv:1809.02104
(2018).

[13] Ding, Gavin Weiguang, et al. "On the Sensitivity of Adversarial Robustness to Input Data
Distributions." ICLR (Poster). 2019.

[14] Huang, Gary B., and Erik Learned-Miller. "Labeled faces in the wild: Updates and new reporting
procedures." Dept. Comput. Sci., Univ. Massachusetts Amherst, Amherst, MA, USA, Tech.
Rep 14.003 (2014).

[15] N. Ateqah, B. Mat, N. Hidayah, B. Abd, and Z. Ibrahim, “Celebrity Face Recognition using Deep
Learning,” vol. 12, no. 2, pp. 476–481, 2018, doi: 10.11591/ijeecs.v12.i2.pp476-481.

[16] https://git.sec.in.tum.de/Norouzian/safair-ai-contest/-/tree/master/dev_toolkit

[17] Sahay, Rajeev, Rehana Mahfuz, and Aly El Gamal. "Combatting adversarial attacks through
denoising and dimensionality reduction: A cascaded autoencoder approach." 2019 53rd Annual
conference on information sciences and systems (CISS). IEEE, 2019.

[18] https://www.sec.in.tum.de/i20/projects/sparta-safair-ai-contest

[19] Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural
networks." International Conference on Machine Learning. PMLR, 2019.

[20] Wang, Qilong, et al. "ECA-Net: efficient channel attention for deep convolutional neural
networks, 2020 IEEE." CVF Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE. 2020.

https://www.sec.in.tum.de/i20/projects/sparta-safair-ai-contest

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 54 of 66

[21] Zheng, Haizhong, et al. "Efficient adversarial training with transferable adversarial
examples." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020.

[22] Echeberria-Barrio, Xabier, et al. "Deep Learning Defenses Against Adversarial Examples for
Dynamic Risk Assessment." Conference on Complex, Intelligent, and Software Intensive Systems.
Springer, Cham, 2020.

[23] Sahay, Rajeev, Rehana Mahfuz, and Aly El Gamal. "Combatting adversarial attacks through
denoising and dimensionality reduction: A cascaded autoencoder approach." 2019 53rd Annual
conference on information sciences and systems (CISS). IEEE, 2019.

[24] Howard, Andrew, et al. "Searching for mobilenetv3." Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019.

[25] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
“Towards deep learning models resistant to adversarial attacks.” arXiv preprint arXiv:1706.06083,
2017.

[26] Jérôme Rony, Luiz G Hafemann, Luiz S Oliveira, Ismail Ben Ayed, Robert Sabourin, and Eric
Granger. “Decoupling direction and norm for efficient gradient-based l2 adversarial attacks and
defenses.” arXiv preprint arXiv:1811.09600, 2018.

[27] Pawlicki, Marek, and Ryszard S. Choraś. "Preprocessing Pipelines including Block-Matching
Convolutional Neural Network for Image Denoising to Robustify Deep Reidentification against
Evasion Attacks." Entropy 23, no. 10 (2021): 1304.

[28] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. “Intriguing properties of neural networks.” In International Conference
on Learning Representations, 2014. URL http://arxiv.org/abs/1312.6199

[29] Anish Athalye, Nicholas Carlini, and David A. Wagner. “Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples.” CoRR, abs/1802.00420, 2018b. URL
http://arxiv.org/abs/1802.00420.

[30] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
“Towards deep learning models resistant to adversarial attacks.” In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings, 2018.

[31] Nicholas Carlini and David A. Wagner. “Towards evaluating the robustness of neural networks.”
CoRR, abs/1608.04644, 2016.

[32] Papernot, Nicolas, et al. "Practical black-box attacks against machine learning." Proceedings of
the 2017 ACM on Asia conference on computer and communications security. 2017.

[33] J. Rauber, W. Brendel, and M. Bethge, “Foolbox: A Python toolbox to benchmark the robustness
of machine learning models,” arXiv. 2017.

[34] Kurakin, Alexey, et al. "Adversarial attacks and defences competition." The NIPS'17
Competition: Building Intelligent Systems. Springer, Cham, 2018. 195-231.

[35] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing
adversarial examples." arXiv preprint arXiv:1412.6572 (2014).

[36] Papernot, Nicolas, Patrick McDaniel, and Ian Goodfellow. "Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples." arXiv preprint arXiv:1605.07277
(2016).

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 55 of 66

Appendix A AI Threat Knowledge Base evaluation
questionnaire

This section transcripts the online questionnaire that was designed for getting the feedback of the
evaluators of the SAFAIR AI Threat Knowledge Base. The figures below represent the different
sections in which the questions were grouped.

Figure 11: Introduction to the Questionnaire

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 56 of 66

Figure 12: Section 1 - Profile

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 57 of 66

Figure 13: Section 2 – Current Practice

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 58 of 66

Figure 14: Section 3 – Correctness

Figure 15: Section 4 – Completeness

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 59 of 66

Figure 16: Section 5 – Usefulness

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 60 of 66

Figure 17: Section 6 – Re-usability

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 61 of 66

Figure 18: Section 7 – Background knowledge and suggestions

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 62 of 66

Appendix B AI Threat Knowledge Base evaluation
presentation

This section transcripts the contents of the presentation that was used in the SAFAIR Training
workshop. The figures below represent the different slides of the presentation.

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 63 of 66

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 64 of 66

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 65 of 66

D7.6 – Validation and evaluation report

SPARTA D7.6 Public Page 66 of 66

	Executive Summary
	Table of Content
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 The SAFAIR AI contest
	2.1 Introduction
	2.1.1 Overview of adversarial attack scenarios
	2.1.2 Overview of defences

	2.2 Contest tasks
	2.3 Dataset
	2.4 Contest schedule
	2.5 Contest structure and rules
	2.6 Evaluation metrics
	2.7 Development toolkit of the contest
	2.7.1 Installation
	2.7.2 Installation procedure
	2.7.3 Dataset
	2.7.4 Example of attacks and defences
	2.7.5 Attacks and defences structure
	2.7.6 Dev_toolkit structure
	2.7.7 Attacks
	2.7.8 Defences
	2.7.9 Execution Steps
	2.7.10 Data Augmentations
	2.7.11 Docker

	2.8 Contest results
	2.8.1 1st place in defence track: team SD (CEA)
	2.8.1.1 First submission: Adversarial training
	2.8.1.2 Second submission: Transfer learning + obfuscating gradient
	2.8.1.3 Third submission: Transfer learning + obfuscating gradient + adversarial training

	2.8.2 2nd place in defence track: Vicomtech team
	2.8.3 3rd place in defence track: BPI team
	2.8.4 ITTI team

	2.9 Conclusion

	Chapter 3 Adversarial machine learning benchmark tool
	3.1 The adversarial benchmark tool
	3.1.1 Tool structure
	3.1.1.1 Attacks

	3.1.2 How to use the tool
	3.1.2.1 Installation procedure
	3.1.2.2 Execution Steps
	3.1.2.3 Creating a new Attack
	3.1.2.4 Configuration
	3.1.2.5 Targeted Attacks
	3.1.2.6 Sample Output
	3.1.2.7 Discussion

	3.1.3 Reporting benchmark results
	3.1.3.1 Vicomtech use case evaluation results

	3.1.4 Conclusion

	Chapter 4 AI threat model testing and evaluation
	4.1 Introduction
	4.2 SAFAIR AI Threat Knowledge Base evaluation
	4.2.1 Evaluation Objectives
	4.2.2 Evaluation Dimensions
	4.2.3 Evaluation Questionnaire
	4.2.4 Evaluators
	4.2.5 Evaluation process
	4.2.6 Evaluation results
	4.2.6.1 Section 1: Profile
	4.2.6.2 Section 2: Current Practice
	4.2.6.3 Section 3: Correctness
	4.2.6.4 Section 4: Completeness
	4.2.6.5 Section 5: Usefulness
	4.2.6.6 Section 6: Re-usability
	4.2.6.7 Section 7: Background knowledge and suggestions

	4.3 Conclusions

	Chapter 5 External validation through peer review
	5.1 Defending network intrusion detection systems against adversarial evasion attacks
	5.2 The application of preprocessing adversarial defences to robustify face reidentification systems

	Chapter 6 Summary and Conclusion
	Chapter 7 List of Abbreviations
	Chapter 8 Bibliography
	Appendix A AI Threat Knowledge Base evaluation questionnaire
	Appendix B AI Threat Knowledge Base evaluation presentation

