
 

This project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 830892. 

   

 

 

D7.6 
Validation and evaluation report 

 
Project number 830892 

Project acronym SPARTA 

Project title 
Strategic programs for advanced research and 

technology in Europe 

Start date of the project 1st February, 2019 

Duration 36 months 

Programme H2020-SU-ICT-2018-2020 

 

Deliverable type Report 

Deliverable reference number SU-ICT-03-830892 / D7.6 / V1.0 

Work package contributing to the 

deliverable 
WP7 

Due date January 2022 – M36 

Actual submission date 1st February, 2022 

 

Responsible organisation TUM 

Editor Mohammad Reza Norouzian 

Dissemination level PU 

Revision V1.0 

 

Abstract 

This report specifies the results for testing and 
evaluation of SPARTA SAFAIR solutions. The focus 
is on protection against adversarial attacks and 
ensuring machine learning models' robustness. The 
report describes an open AI contest that will be 
organized by SAFAIR program to check the 
proposed solutions. Besides, we developed a 
machine learning adversarial tool to benchmark 
machine learning solutions in a standardised way. 

Keywords 
Adversarial Machine Learning, Secure AI, 

Robustness, Testing, Validation, AI Contest 

 

    



D7.6 – Validation and evaluation report  

SPARTA D7.6 Public Page I 

 

Editor 

Mohammad Reza Norouzian (TUM) 

 

 

Contributors (ordered according to beneficiary numbers)  

Augustin Lemesle, Serge Durand, François Terrier (CEA) 

Erkuden Rios, Eider Iturbe, Carmen Palacios, Cristina Martinez (TEC) 

Xabier Etxeberria Barrio, Amaia Gil Lerchundi, Raul Orduna (VICOM) 

Marek Pawlicki (ITTI) 

 

 

Reviewers (ordered according to beneficiary numbers)  

Robertas Damaševičius (KTU) 

Rimantas Zylius (L3CE) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the information 
is fit for any particular purpose. The content of this document reflects only the author’s view – the European 
Commission is not responsible for any use that may be made of the information it contains. The users use the 
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Executive Summary 

The current report D7.61 is the final delivery of the SPARTA SAFAIR program project (WP7), which 
is tightly coupled to the deliverable D7.32 . It presents the final version of the work done in the SAFAIR 
program, particularly in the testing and evaluation of the results presented in previous deliverables.  
This work aims to address recent primary issues faced in Artificial Intelligence (AI) systems based 
on Machine Learning (ML). This report presents the extensive results of the SPARTA SAFAIR 
adversarial AI Contest, an adversarial benchmark tool for testing and evaluation of ML solutions, the 
evaluation of the SAFAIR AI Threat Model and Knowledge Base, and an external validation of 
defence method through a peer review. This report presents the extensive evaluation results, 
including: i) the results of the SPARTA SAFAIR adversarial AI Contest (proposed in D7.3), ii) an 
adversarial benchmark tool for testing and evaluation of ML solutions (proposed in D7.3), iii) the 
feedback of the evaluation of the SAFAIR AI Threat Model and Knowledge Base (described in D7.13  
and D7.54), and iv) an external peer review of a SAFAIR defence method (presented in D7.5). 

It is important to note that the focus of this document is on adversarial machine learning, and not on 
Artificial Intelligence (AI) systems in general (such as expert systems, reasoners, fuzzy systems, 
etc.). Nonetheless, because this delivery is the scope of the SAFAIR program tasks, we will refer to 
ML concepts as AI concepts in this document too. 

To this end, we designed and developed methods and tools to benchmark the robustness of current 
ML algorithms and models, ensuring their security and reliability. In the SAFAIR adversarial AI 
contest, we pitted models against various adversarial perturbations. This shall facilitate measurable 
progress towards robust machine learning models. The adversarial benchmark tool will provide a 
standardised benchmark on the performances of models in the adversarial machine learning domain. 
It will also ease in evaluating the performance of the models in an adversarial setting.  

As part of SAFAIR results evaluation, the latest updated version of the SAFAIR AI Threat Model and 
Knowledge Base, created in D7.1 and updated in D7.5, was also evaluated by a team of Tecnalia 
AI experts not working in SAFAIR and the results of the evaluation are presented in this report. 
Please note that D7.5 presented the updates performed on the Model and the KB, including enlarged 
knowledge corpus and the latest advances in trustworthy AI works, as well as countermeasures, 
explainability, and fairness solutions resulting from SAFAIR works. The followed evaluation plan was 
also introduced in D7.5. 

The report D7.6, due for Month 36 (January 2022), presents the final results of the AI contest in 
Chapter 2, the adversarial machine learning benchmark tool with example results in Chapter 3, the 
AI threat model testing and evaluation in Chapter 4, and external evaluation and validation of defence 
methods through a peer review in Chapter 5. 

  

                                                

1 D7.6 - Validation and evaluation report 
2 D7.3 - Validation and evaluation plan 
3 D7.1 – AI systems threat analysis mechanisms and tools 
4 D7.5 - Final version of AI systems security mechanisms and tools 
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Chapter 1 Introduction 

Machine learning has been revealed to be susceptible to complicated attacks, such as test-phase 
evasion (i.e., adversarial examples) and training-phase poisoning [1-5]. The primary hypothesis 
behind such adversarial attacks has formalised them as optimisation problems and uses gradient 
based to produce the related attack samples [6].  

They are adversarial, which means that, after produced perturbations are included to the inputs of 
the classifiers, human observations do not alter what they perceive, but the predictions of a classifier 
can be exploited. Investigations on the robustness of the ML model's research can be approximately 
categorised into the following: (i) developing powerful and efficient attacks [7, 8]; (ii) detecting 
adversarial examples [9]; (iii) defences on the trained models [10]; (iv) training robust models [11]; 
(v) evaluating the robustness of classifiers [12, 13]. 

However, this research domain had growled when Szegedy [3] revealed a vulnerability on the state-
of-the-art classifiers. After that, adversarial examples have been presented in various domains such 
as intrusion detection, spam detection, biometric authentication (e.g., facial recognition system), and 
etc. Despite many publications in this field, appropriately, evaluation of the robustness and security 
of machine learning algorithms and developing practical defences against adversarial attacks is still 
challenging open problems, and during the recent years, the vulnerability of neural networks against 
adversarial perturbations shifted from a strange situation to a primary subject in deep learning. 
Despite extensive engagement, however, improvement towards the model's robustness is still 
degraded by the difficulty to evaluate the robustness of neural network models. 

To this end, the hypothesis behind a security evaluation is to expect the attacker's behaviour to 
recognise potential vulnerabilities of ML algorithms and develop appropriate countermeasures 
before the related attacks may happen. 

To tackle these issues, we propose a dual approach. First, we proposed an adversarial AI contest 
which gives a useful intermediate form of evaluation. Each defence is pitted against attacks built by 
the participating teams. The evaluation of such scenarios is not as conclusive as theoretical proof 
but, however, it represents a better real-world case study. The evaluation carried out by the proposer 
of a defence technique, though valid, has no guarantee about the techniques that were not evaluated 
against. As such, having an open-ended evaluation scheme is much more beneficial. 

Second, we propose a method and adversarial benchmark tool that supports developing more robust 
ML models. It will provide a standardised benchmark on the performances of models. The proposed 
tool provides reference implementations of the attacks, which are intended to be used for 
constructing more robust models and motivate researchers and developers to use the standardised 
reference implementation of attack and defences. 
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Chapter 2 The SAFAIR AI contest 

One of the most effective and thriving ways to explore and push the adversarial machine learning 
research domain is to build up an open contest. We have comprehensively described in the 
deliverable D7.3, the objectives and motivation for having such an adversarial machine learning 
contest. The SAFAIR AI contest [18] was trying to simulate a challenging IT security use case 
scenario in order to explore the latest attacks and defences in the community and also was trying to 
motivate the researchers and developers to design and implement new techniques and algorithms. 

2.1 Introduction 

One of the most remarkable distinctions between machine learning (ML) and human perception is 
the vulnerability of recent ML algorithms to particularly little and nearly invisible perturbations of their 
inputs [2, 35, 36]. For instance, a small piece of noise in an image is usually adequate to cause a 
failure in object recognition with neural networks. These perturbations are typically characterised as 
adversarial, and the techniques to identify them are named adversarial attacks.  

Adversarial perturbations in the field of artificial intelligence demonstrate that decision-making in 
existing DNNs is due to correlational instead of causal features. As a security viewpoint, they are 
challenging and problematic because they make many opportunities to be manipulated by attackers, 
which will be unseen for humans with causing a seriously impact on machine decisions. 

So far, current attacks [7, 32]) have had merely little success to challenge real-world software such 
as autonomous driving that does not conduct model information to an adversary. Actually, existing 
transfer-based attacks could be defended by adversarial ensemble training. Moreover, if model 
information is obtainable for attackers, most current attacks are simply unarmed via gradient masking 
or natural noise. An essential objective of the contest was to encourage the development of more 
powerful attacks and more robust defences. 

Adversarial examples show that NNs do not depend on the exact causal attributes that humans 
perceive in their visualisations. There are reasons to address this gap: it could facilitate safety-critical 
applications of NNs, could lead to interpreting the NNs better, could cause humans to have a more 
profound understanding of ML visual systems and could improve the transferability in how to learn 
the features. However, regardless of these benefits and various published articles, there is little 
progress to have more robust NNs [1, 6]. The essential issue is still the accurate and valid way of 
model robustness evaluation. A model will be identified robust if the developed attacks fail. 

Therefore, as it happens in cryptography, the proper way of testing the model robustness is to study 
the attacks that are particularly developed against it. Subsequently, the adversarial AI contest was 
designed as a two-player game that attacks and defences continually pitted against each other. This 
could lead to the evolution of attacks that they can adapt themselves against defence’s mechanisms. 

In chapter 2 of the deliverable D7.6 report, we explain the SAFAIR AI contest on adversarial attack 
and defences, besides to have an overview of main challenges involving adversarial examples 
(sections 2.1.1 and 2.1.2), the structure and organisation of the contest (sections 2.2, 2.4 and 2.5), 
the submitted solution results that are developed by the contest participants (section 2.8), and the 
conclusion of the contest (section 2.9). 

2.1.1 Overview of adversarial attack scenarios 

First, the attack techniques can be categorised as: 

 Non-targeted attack. In such a scenario, the attacker tries to modify the classifier outputs 
in order to predict any incorrect class label. 

 Targeted attack. In such a scenario, the attacker tries to modify the classifier outputs in 
order to predict some particular class label. 
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Second, attack strategies can be categorised by the portion of knowledge that the attacker knows 
about the model: 

 White box. In such a scenario, the attacker has complete knowledge about the model. For 
instance, knows the architecture, parameters or even the weights the model trained. 

 Black box. In such a scenario, on the other hand, we assume the attacker has no knowledge 
of the model and perform attacks continuously by querying the target model. 

 Grey box. Unlike the previous two, the attacker has limited knowledge and access to the 
model during the training phase in this scenario. 

Third, attack strategies categorised as the attacker inject data into the classifier: 

 Digital attack. In this scenario, the attacker has access to the real data injected into the 
classifier. For example, the attacker can determine particular float values as input for the 
model. This might happen in a real-world use-case when an adversary uploads a JPEG file 
to a web service and deliberately develops the file to be read wrongly [34].   

 Physical attack. In this case, the attacker does not have access to the digital environment 
that the model exist, but, on the other hand, the adversary can change, add, or remove 
physical objects that sensors such as cameras or microphones are running. In the end, the 
model which has been designed and developed for the physical world deviates from its 
behaviour. 

The attack method examples which are implemented in different settings and scenarios were 
described in the deliverables D7.2, D7.3, D7.4 and D7.5. 

2.1.2 Overview of defences 

Defending methods against adversarial examples are still not satisfying, and it requires more 
research in most cases. We have described many defence methods in different deliverables such 
as D7.2, D7.3, D7.4, and D7.5, which are implemented in the SAFAIR program. Besides, we will 
summarize the most successful defence methods submitted in the SAFAIR AI contest in the section 
of contest results 2.8.  

Most defences that exist can be classified as "gradient masking". Many white-box attacks perform 
by calculating gradients of the model and therefore not succeed if it is impossible to calculate proper 
gradients. Gradient masking makes the gradient ineffective, either by altering the model to construct 
it non-differentiable or with zero gradients or making the gradient points out of the decision boundary. 
Gradient masking represents cheating the optimiser without substantially changing the class 
decision boundaries. Since the class decision boundaries are mostly similar, defences established 
on gradient masking are extremely susceptible to black-box attacks [34]. Like adversarial training, 
other defences are not developed with gradient masking as a purpose, but they appear as gradient 
masking in practice. 

Numerous defences are developed to detect adversarial examples, and if they are aware of any form 
of tampering [28], they reject to classify the input. As long as the attacker does not aware of the 
detector or the technique is not strong enough, this way of defence strategy works. Otherwise, the 
adversary can create an attack deceiving the detector that the input is legitimate, and the classifier's 
output is an incorrect classification [5].   

In recent research studies, adversarial training [22] is the most favoured defence method. The 
concept is to inject adversarial examples into the model in the training time. One of the essential 
disadvantages of adversarial training is that it can overfit to the exact attack used in the training 
phase. However, by adding some noise intentionally in small datasets, adversarial training can be 
effective [27]. An additional essential weakness related to adversarial training leads to unintentionally 
learning to perform gradient masking instead of moving the decision boundary [34]. This can be 
resolved by having an ensemble detector consisting of several models. However, as a motivation for 
evaluating various defence methods, we have designed the SAFAIR AI contest to test and 
benchmark the robust model against numerous attacks. 
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2.2 Contest tasks 

As we have described the tasks in the deliverable D7.3, here we have just summarised them in four 
main different tracks: 

1. Targeted Face Re-Identification. The purpose of the targeted face re-identification attack 
is to modify the input image in order to classify the image in a particular class label. 

2. Face Attributes Alteration. The purpose of the face attributes alteration attack is to modify 
the input image, but the k-features specified should be classified wrongly. 

3. Defence against Attribute Alteration. The purpose of this task is to create a machine 
learning model which is robust to adversarial perturbations in the attribute alteration 
scenarios 

4. Defence against Targeted Face Re-Identification. The purpose of this task is to create a 
machine learning model, which is robust to adversarial perturbations to cause the model to 
classify the sample image as the particular target class. 

In all of the tracks mentioned above, participants submitted their code that executes the desired 
tasks, and we executed their code utilizing our evaluation infrastructure. The submitted code fed a 
set of images as input and made either an adversarial image (for attack tracks) or classification label 
(for defence tracks). We should notice that our classification problem has a binary (Face Re-
Identification) or multi-class classification (Face Attributes Alteration). 

2.3 Dataset 

For having a dataset for the contest, we have been decided on three main points: 

1. To make the contest interesting, we have used a large dataset with a recent challenging 
problem. 

2. With having a well-known problem, participants can reuse various existent models. 
3. Creating hidden test set in the dataset that never existed before. 

These conditions were fulfilled by having an image classification problem and having a public 
dataset, which was studied in many research studies. To accomplish that, we use the CelebA dataset 
[15] to train the models. Each of the images is annotated with 40 facial attributes. The images are 
focused on celebrity faces and consist of 10K unique identities with 40 binary attributes per image. 
We have released a data loader to simplify access to the data. We expected classification models 
to be trained on CelebA. In general, we collected and created two datasets for the contest: 

 The development toolkit (dev_toolkit) [16] was released for the participants at the beginning 
of the contest to develop and implement their solutions based on that. 

 The final hidden test set was kept secret throughout the contest days and was utilised to 
evaluate and rank the participant solutions. 

The dev_toolkit consists of PyTorch code for baseline models. For the final evaluation, we have 
collected 1000 test images, which are similar to the training dataset. Participants should make use 
of only the CelebA dataset and the publicly available "train-val-test" split to train their models. The 
dev_toolkit enables easy access to the various splits and the training pipeline for the model. 

To create the final hidden test set for the evaluation of the submissions, we would refer to this dataset 
as the benchmark dataset. Since we had two main scenarios in our contest, it also required to have 
two main different benchmark dataset that with describe as follows: 

1. Attribute Alteration. For the attribute alteration task, we would need another dataset 

different from CelebA (remember, CelebA is a public dataset, and we did not have access to 

their hidden test set. If we tried using the same images, the contestant has an undue 

advantage. They could train their models on the entire publicly available dataset. We could 

not try many augmentations since things such as contrast change, or random rotation would 

require updating certain labels (e.g., 5_o_Clock_Shadow or heavy_makeup attributes would 

require a change). However, the images could not be very different from the CelebA dataset 
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either; else, we fall into issues related to the domain shift. As such, we found a sweet 

compromise by using the Labelled Faces in the Wild (LFW) dataset [14]. The dataset can be 

used out of the box and is already available in the adversarial benchmark tool folders (see 

Chapter 3). 

2. Targeted Face Re-Identification. However, the LFW dataset does not use the same labels 

for the celebrity identities. Many celebrities from CelebA are missing in LFW and, similarly, 

many celebrities in LFW that are not present in CelebA. Hence, until and unless we can find 

a one-to-one mapping of image labels in the two datasets, we cannot use them for the re-

identification task. As such, to give a fair chance to participants, we decided to use the CelebA 

dataset itself. However, the samples would have many augmentations applied. The code to 

handle the task is as follows: 

"" 
This file shall be used to perform a random rotation on our test set samples and save them for the evaluation. 
This way 
the process becomes deterministic (compared to stochastic nature used in augmentation task) 
""" 
import csv 
import os 
 
import PIL 
import torch 
from torchvision import transforms 
 
from environment_setup import PROJECT_ROOT_DIR 
from networks.utils.mtcnn import MTCNN 
 
root = os.path.join(PROJECT_ROOT_DIR, 'data') 
base_folder = "celeba" 
 
random_transforms = transforms.Compose([ 
    transforms.RandomChoice([ 
        transforms.ColorJitter(brightness=0.4, contrast=0.4), 
        transforms.Grayscale(num_output_channels=3), 
        transforms.RandomHorizontalFlip(p=0.7), 
        transforms.RandomRotation(degrees=5) 
    ]) 
]) 
 
mtcnn = MTCNN( 
    image_size=160, margin=0, min_face_size=20, 
    thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, 
    device=torch.device("cuda" if torch.cuda.is_available() else "cpu") 
) 
 
 
def load_data(csv_file): 
    """ 
    The function reads data stored in the form of a csv file 
    :param csv_file: filename obtianed based on the split 
    :return: list of tuples of image, label pair 
    """ 
    image, label = [], [] 
    with open(csv_file) as csvfile: 
        reader = csv.DictReader(csvfile) 
        for row in reader: 
            image.append(row['image']) 
            label.append(int(row['label'])) 
    return list(zip(image, label)) 
 
 
def handle_single_sample(image): 
    """ 
    Apply the transformations to an image. If the transformations are not successful, repeat 25 times else skip 
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    :param image: Input image to apply transformations to 
    :return: The transformed image 
    """ 
    X, prob = perform_transforms(image) 
    ctr = 0 
    while prob is None: 
        X, prob = perform_transforms(image) 
        ctr += 1 
        if ctr == 25: 
            print(f"Skipping Image -------------------> {image}") 
            return None 
    return X 
 
 
def perform_transforms(image): 
    """ 
    Apply the transformations on the given image. The MTCNN ensures that the transformations do not occlude 
    central object that needs to be detected. 
    :param image: Input images to the model 
    :return: Transformed image and associated probability that it is properly detected by MTCNN 
    """ 
    X = PIL.Image.open(os.path.join(root, base_folder, "img_align_celeba", image)) 
    X = random_transforms(X) 
    _, prob = mtcnn(X, return_prob=True) 
    return X, prob 
 
 
def bootstrap(): 
    """ 
    Bootstrap method for dataset generation 
    :return: None 
    """ 
    filename = 'test.csv' 
    csv_file = os.path.join(root, 'reid_dataset', filename) 
    data = load_data(csv_file) 
    dest_folder_name = 'transformed_img' 
    # creating destination folder 
    os.makedirs(os.path.join(root, 'reid_dataset', dest_folder_name)) 
    for image, target in data: 
        rotated_img = handle_single_sample(image=image) 
        # Now let us save the image 
        if rotated_img is not None: 
            rotated_img.save(os.path.join(root, 'reid_dataset', dest_folder_name, image)) 
 
 
if __name__ == '__main__': 

bootstrap() 

A natural question arises about the justification of using these rotations and testing the models. Does 

this give an unfair advantage to participants? Please remember, we are testing the model under the 

"L infinity" constraint. Even a slight amount of rotation would break this constraint, and thus the 

examples are implicitly harder for our models. Still, one possible way in which the defence teams 

might be at an advantage is by training their model on augmentations same as the ones we have 

used and memorized the entire training dataset. We can not rule out this possibility. One way to 

handle this might be to download a few more images from the internet or find a direct correspondence 

between LFW and CelebA dataset labels. This is an open task that can be explored further. 

Since we have collocted and generated 1000 test samples for the evalution, we have selected them 

from LFW and our hugely augmented CelebA datasets. It simply performed a random sampling and 

generates examples for us while most of the heavy lifting is done by modules we discussed above. 

Here, you the code is as follows: 

import os 
 
import mat73 
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import pandas as pd 
 
import random 
 
base_path = '/path/to/lfwa' 
 
from environment_setup import PROJECT_ROOT_DIR 
 
category_names = os.listdir(os.path.join(base_path, 'lfw')) 
category_dict = {} 
for idx, name in enumerate(category_names): 
    category_dict[name] = idx 
 
 
def generate_dataset(): 
    # PART - 01: Attribute Alteration Dataset Creation 
    attr_list = 'lfw_att_40.mat' 
    att_dict = mat73.loadmat(os.path.join(base_path, attr_list)) 
 
    df_label = pd.DataFrame(att_dict['label'], columns=att_dict['AttrName'], index=att_dict['name']) 
    df_label.index = [name.replace('\\', '/') for name in df_label.index] 
 
    random.seed = 42 
    selected_rows_df = df_label.sample(n=1000, replace=False) 
    selected_rows_df.to_csv(os.path.join(PROJECT_ROOT_DIR, 'data', 'benchmark', 'benchmark_attr.csv')) 
 
    # PART - 02: Now we try to get the dataset for reid task 
    test_set_df = pd.read_csv(os.path.join(PROJECT_ROOT_DIR, "data", "reid_dataset", "test.csv")) 
    selected_samples = test_set_df.sample(n=1000, replace=False) 
    selected_samples.to_csv(os.path.join(PROJECT_ROOT_DIR, 'data', 'benchmark', 'benchmark_reid.csv'), index=False) 
 
 
if __name__ == '__main__': 
    generate_dataset() 

Finally, we would simply loaded the datasets created for final testing and benchmarking the models. 
The module also had code for some visualizations of the model as well as logic for computing 
accuracy metric for attribute alteration and targeted re-identification tasks. It is a self-contained 
module and essentially follows the overall project structure. The code is as follows: 

import csv 
from torchvision import transforms 
import torch 
import PIL 
 
from networks.utils.mtcnn import MTCNN 
 
from torch.utils.data import Dataset, DataLoader 
 
import os 
import pandas as pd 
import matplotlib.pyplot as plt 
 
from environment_setup import PROJECT_ROOT_DIR 
 
 
class BenchMarkDataset(Dataset): 
    def __init__(self, task_type, min_val, max_val, use_mtcnn): 
        super(BenchMarkDataset, self).__init__() 
        data_dir = os.path.join(PROJECT_ROOT_DIR, 'data', 'benchmark') 
        self.task_type = task_type 
        self.min_val = min_val 
        self.max_val = max_val 
        if task_type == 'attr': 
            self.transform = transforms.Compose([ 
                transforms.Resize((256, 256)), 
                transforms.ToTensor() 
            ]) 
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            csv_file = os.path.join(data_dir, 'benchmark_attr.csv') 
            self.img_folder = os.path.join(data_dir, 'lfw') 
 
        elif task_type == 'reid': 
            csv_file = os.path.join(data_dir, 'benchmark_reid.csv') 
            self.img_folder = os.path.join(PROJECT_ROOT_DIR, 'data', 'reid_dataset', 'transformed_img') 
            self.data = self.load_data(csv_file) 
            self.use_mtcnn = use_mtcnn 
            if use_mtcnn: 
                self.transform = None  # No additional transformation used 
                self.mtcnn = MTCNN( 
                    image_size=160, margin=0, min_face_size=20, 
                    thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, 
                    device=torch.device("cuda" if torch.cuda.is_available() else "cpu") 
                ) 
            else: 
                self.transform = transforms.Compose([ 
                    transforms.ToTensor()]) 
 
        else: 
            raise AttributeError("Invalid Task Selection") 
        self.data = self.load_data(csv_file) 
 
    def __len__(self): 
        """ 
        Total number of samples in the dataset 
        :return: Integer value representing the total number of samples 
        """ 
        return len(self.data) 
 
    def __getitem__(self, item): 
        """ 
        Return a single instance of the dataset object 
        :param item: index from dataset 
        :return: image_index, transformed image, gt_label 
        """ 
        image, target = self.data.iloc[item, 0], torch.as_tensor(self.data.iloc[item, 1:].tolist()).squeeze() 
        X = PIL.Image.open(os.path.join(self.img_folder, image)) 
        if self.transform is not None: 
            X = self.transform(X) 
        if self.task_type == 'reid' and self.use_mtcnn: 
            X, prob = self.mtcnn(X, return_prob=True) 
            if prob is None: 
                print(f"culprit image is {image}") 
        return item, X, target 
 
    def load_data(self, csv_file): 
        """ 
        The function reads data stored in the form of a csv file 
        :param csv_file: filename obtianed based on the split 
        :return: list of tuples of image, label pair 
        """ 
        df = pd.read_csv(csv_file) 
        return df 
 
    def pred_acc(self, prediction, gt_label): 
        """ 
        Each of the datasets defines their own criterion for accuracy 
        :param prediction: (B, 40) tensor of logits 
        :param gt_label: (B, 40) ground truth tensor 
        :return: Accuracy value 
        """ 
        if self.task_type == 'attr': 
            return (prediction >= 0).eq(gt_label).sum().item() / 40 
        elif self.task_type == 'reid': 
            _, predicted_label = torch.max(prediction, 1) 
            return predicted_label.eq(gt_label).sum().item() 

        else: 
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            raise AttributeError("Invalid Task Selection") 
 
    def viz_sample_with_index(self, idx): 
        """ 
        Utility method to visualize an input sample 
        :param idx: Index of the input dataset element 
        :return: None 
        """ 
        image, target = self.data.iloc[idx, 0], torch.as_tensor(self.data.iloc[idx, 1:].tolist()) 
        X = PIL.Image.open(os.path.join(self.img_folder, image)) 
        plt.imshow(X) 
        plt.show() 
        items = list(self.data.columns)[1:] 
        for sample in zip(items, target): 
            print(sample) 
 
 
def get_benchmark_data_loader(batch_size, task_type, min_val, max_val, num_workers=4, use_mtcnn=False): 
    """ 
    Method to get the hidden Test set dataloader 
    :param use_mtcnn: If we are using MTCNN for the reid task 
    :param max_val: The maximum value for the input samples 
    :param min_val: The minimum value for the input samples 
    :param batch_size: int 
    :param task_type: reid/attr 
    :param num_workers: int. number of cores. Default 4 
    :return: Dataloader object 
    """ 
    return DataLoader(dataset=BenchMarkDataset(task_type=task_type, min_val=min_val, max_val=max_val, 
use_mtcnn=use_mtcnn), 
                      num_workers=num_workers, 
                      shuffle=True, 
                      batch_size=batch_size 
                      ) 
 
 
if __name__ == '__main__': 
    from tqdm import tqdm 
    dataloader = get_benchmark_data_loader(batch_size=1, task_type='reid', num_workers=0, min_val=-1, max_val=1, 
use_mtcnn=True) 
    dataset = dataloader.dataset 
    for img_name, img, label in tqdm(dataloader): 
        print(img_name) 
        print(img.shape) 
        print(img.max()) 
        print(img.min()) 
        print(label.shape) 

        break 

 

2.4 Contest schedule 

The contest was announced and advertised in February 2021, launched at the beginning of March 
2021 and finished on June 13 2021. Meanwhile, to have more participants in the contest, we have 
extended the initial deadline from May 15 to June 13 2021. The updated schedule was the following: 

 March 1, – June 13, 2021. The contest started on the 1st of March, and Participants were 
working on their solutions. 

 June 13, 2021. Deadline for the final submission. 

 June 13 – June 21, 2021.  Organisers evaluated submissions. 

 June 21, 2021. Announce contest results. 
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2.5 Contest structure and rules 

As we have described the rules and structures of the contest briefly in the deliverable D7.3, here we 
explain the rest. 

1. Participants were allowed to take on three tasks at the same time, but they could not play for 
both "attack" and "defence" teams for the same task. 

2. We had Grey box attack scenario. The attack team had knowledge about the input data on 
which defence models were trained on. They could ran gradient-based update for generating 
adversarial perturbations. However, they had no information about the defence technique 
used by the other team. 

3. Every submission evaluated against several baseline methods provided by the organisers, 
as well as the models submitted by the other participants playing for the opposite team. 

4. Every participant had only have a limited amount of submissions; this prevented participants 
from trying to guess our test labels. 

5. We had a maximum allowed perturbation of epsilon = 8/255. 
6. We used L-inf norm for all the submissions. 
7. We used 2 Nvidia GPUs (Titan X Pascal and GeForce GTX) with 12 GB VRAM. We had a 

32 core AMD CPU with 128 GB RAM. The code ran using docker containers which used 
Ubuntu:18.04 base image and cuda:10.1 with access to both the available GPUs. 

8. The adversarial sample generation process had an upper limit time of 4 hours (240 minutes) 
for 1000 samples. 

9. An attack had to produce an image, i.e. with discrete pixel values in {0, 1, …, 255}. 

We have also explained the procedures and guidelines of the contest on the contest websites. For 
more information, please check out the website, which is hosted on the TUM homepage [18] and 
GitLab5 version. 

2.6 Evaluation metrics 

All evaluations are made based on the L infinity norm. We have described the evaluation metrics 
comprehensively in deliverable D7.3 and on the contest website [18]. However, minor changes 
happened because we have not received any submissions in the attack tracks, and we just have 
used our proposed baseline attacks to evaluate the model robustness. In the end, we have computed 
the delta value, which is computed by the difference between the initial accuracy and final accuracy.  

delta = A_initial - A_final 

We ran the model against test samples and compute its initial accuracy 𝐴_𝑖𝑛𝑖𝑡𝑖𝑎𝑙. Then we ran the 
same model on the same dataset against the baseline’s attack method and compute the decrease 
in the accuracy. Let us say that the new accuracy is 𝐴_𝑓𝑖𝑛𝑎𝑙. The defence teams are ranked based 
on the delta value with the smallest first. 

However, there might be a question regarding the metric accuracy itself. A defence that particularly 
reduces the accuracy of the model on the actual task (the clean data) may not be practical in many 
circumstances. If the chance of an existing attack is pretty low and the error's cost on adversarial 
examples is not significant, then it might be inappropriate to cause any decrease in clean accuracy. 
Sometimes there would be a distinction in consequence of an error on random input and an attacker 
who determined the input. It can depend on different domain use cases that the system is running 
on. 

When a defence method rejects to classify the inputs and detect them as adversarial, it is crucial to 
evaluate how this influences accuracy on the clean inputs. Also, in some cases, it is satisfactory to 
reject classifying inputs with considerable noise. On the other hand, other cases must be able to 
classify simple noisy inputs accurately. There can be a suggestion to produce a Receiver Operating 

                                                

5 https://git.sec.in.tum.de/Norouzian/safair-ai-contest 



D7.6 – Validation and evaluation report   

SPARTA D7.6 Public Page 11 of 66 

Characteristic (ROC) curve to indicate how selecting the threshold for refusing inputs drives the clean 
accuracy to drop. 

2.7 Development toolkit of the contest 

The dev_toolkit6 was designed to facilitate the ease of participation in the contest and a way to 
standardise the way to evaluate the submissions. The dev_toolkit includes: 

 Dev dataset, which participants can use for development and testing of their attacks and 
defences. 

 Adversarial attacks examples. 

 Example of defence models. 

 A method to execute attacks against models and calculate the scores. 

2.7.1 Installation 

Following software are required to use the dev_toolkit: 

 Python 3.6 with installed Numpy7 and Pillow8 packages. 

 Docker9 

All provided examples were written with use of the PyTorch10. Additionally, other utility packages 
required can be obtained by taking a look at the requirements.txt file. 

2.7.2 Installation procedure 

The requirements were placed in the requirements.txt file and the participants had to use the 
following command: 

pip install -r requirements.txt 

To set up the dependencies, we also suggested making virtual environments by using conda or 
python virtual environment using the following commands: 

python3 -m venv /path/to/new/virtual/environment 

2.7.3 Dataset 

The toolkit includes Dev dataset which uses the publicly available celebA dataset which is described 
in section 2.3.  

The data loaders provided with the dev_toolkit will take care of downloading the dataset. However, 
since the celebA dataset is hosted on google drive automatically, often time the direct download 
would fail with a warning message indicating that the download limit is exceeded. This is an expected 
behaviour. Participants could try again later to download the dataset. However, oftentimes, even if 
the direct download fails, it is still possible to download the dataset using a browser. You can 
download the zip file and extract it in the data folder. Here are the expected structure of the folders: 

--- data 

    --- reid_dataset 

        --- train.csv 

        --- val.csv 

        --- test.csv 

                                                

6 https://git.sec.in.tum.de/Norouzian/safair-ai-contest/-/blob/master/dev_toolkit 
7 https://numpy.org/ 
8 https://pypi.org/project/Pillow/ 
9 https://www.docker.com/ 
10 https://pytorch.org/ 
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    --- celeba 

        --- img_align_celeba 

        --- identity_celebA.txt 

        --- list_attr_celeba.txt 

        --- list_bbox_celeba.txt 

        --- list_eval_partition.txt 

        --- list_landmarks_align_celeba.txt 

2.7.4 Example of attacks and defences 

The toolkit consist of examples of attacks and defences in the following directories: 

 Attacks, the directory with examples of attacks: 
o attacks/attack_models/fgsm/ - Fast Gradient Sign Method attack 
o attacks/attack_models/bim/ - Basic Iterative Method Attack 
o attacks/attack_models/pgd/ - Projected Gradient Descent Attack 
o attacks/attack_models/ CarliniWagnerL2Attack/ - The Carlini Wagner Attack based on L2 

metric 

 Defences, the directory with examples of defences: 
o defence/defence_models/NoDefence - baseline model, that essentially does not deliver any 

defence against adversarial examples. 
o defence/defence_models/AdversarialTraining - A class which acts as a wrapper and allows 

for the adversarial training of the model 
o defence/defence_models/autoencoder_defence - Uses a denoising autoencoder [17] for the 

robustness. 

2.7.5 Attacks and defences structure 

Each attack and defence has to be saved  in a individual subdirectory, and expected to be execute  
into a Docker container. 

One can create a new attack model by extending the attacks/attack_models/AbstractAttack.py. Along with 
this, for an easy interplay between different methods, we have attacks/attack_config.ini file where one 
can put the required configurations. We also provided with the attacks/adversarial_factory file which can 
be used to expose the attack method. This comes in handy during final evaluation of the methods. 
An example from the config file (attack_config.ini) is given here: 

alpha=0.01 

num_iterations=400 

save_folder = pgd 

targeted=False 

 save_folder indicates the location to store generated adversarial perturbations. 

 targeted indicates whether the mechanism uses targeted or untargeted attack. Other attribute 
specific to the model can be included as well. 

 alpha value is specific to the PGD attack 

 num_iterations indicates the number of iterations we have to run through for the attack 

The perturbations are computed using infinity norm. 

2.7.6 Dev_toolkit structure 

Overall, the dev_toolkit is structured as follows: 

1. The attack related configurations and model source code are present in attacks folder.  
2. The defence related configurations and model source code is present in defence folder. 
3. The pytorch dataset files are present in dataset folder 
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4. Raw data is present in data folder 
5. All the generated tensorboard logs and saved models are present in execution_results folder. 

Even the adversarial examples that are going to be generated would be present in the 
execution_results folder 

6. For loading a pretrained model, the code searches it in the model_weights subdirectory in the 
execution_results/<output_dir> folder (where output_dir is the specific directory name given in each 
execution).  So in case someone want to load a pretrained model, they should make sure 
model weights are placed in this subfolder. 

Let us say someone ran the code with --output_dir=adv5, in that case one could see: 

--- execution_results 

    --- adv5  

           --- logs 

                --- adv 

                --- train 

                --- val 

           --- model_weights 

           --- nn.txt 

           --- perturb_samples 

                    --- fgsm 

                        --- images 

                        --- json 

                        --- orig_images 

                    --  pgd 

                        --- images 

                        --- json 

                        --- orig_images 

2.7.7 Attacks 

To create adversarial examples, one could take a look at AbstractAttack.py in attacks folder. All the 

adversarial classes should be a subclass of this class. The attack_config.ini file is created to 
enable easy configuration management. Here is a snippet of the file. 

[ADVERSERIAL] 

name = bim  

 

[fgsm] 

save_folder = fgsm 

targeted=False 

 

[bim] 

alpha = 0.01 

num_iterations = 100 

save_folder = bim 

targeted=False 

The name configuration in [ADVERSARIAL] section determines the active attack. To create a new attack 
class, one had to follow by: 
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1. Extend from AbstractAttack in attacks/attack_models/AbstractAttack.py 
2. Create a section in the attack_config.ini file 
3. Change the name in attack_config.ini to the new attack name 
4. Update the adversarial_factory.py class with instantiation of the new type 
5. The generated samples can be stored by using save=True in Adversarial.py while calling the 

method get_perturbed_acc() 

The generated samples can also be visualized using a simple matplotlib utility. 

visualizations/visualize_attributes.py file has the logic built in. This file is dependant upon the 

logic used for saving generated samples in save() method of attacks/AbstractAttack.py. So any 
change in the method should lead to corresponding changes in the file. 

2.7.8 Defences 

All defence methods extend the AbstractDefence class. For creation of the defence type we used 

defence.config file: 

[DEFENCE] 

key = adv_train  

 

[no_defence] 

 

[autoencoder] 

attack_type=fgsm 

attack_epsilon = 0.05 

 

[adv_train] 

attack_type=fgsm 

attack_epsilon = 0.05 

This is very similar in spirit to the attack counterpart. The method used for defence would depend 

upon the key in defence_config.ini file. The defence_factory.py is executed in order to get the 
correct defence mechanism. . To create a new defence class, one had to follow by: 

1. Extend from AbstractDefence in defence/defence_models/base.py 
2. Create a section in the defence_config.ini file 
3. Change the key in defence_config.ini to the new defence name 
4. Update the defence_factory.py class with instantiation of the new type 

2.7.9 Execution Steps 

To start with execute: 

python main.py -h 

To get a list of options and instructions to execute the program. For starting a simple training loop, 
simply use: 

python main.py --mode train --task_type attr 

Since the options have default arguments in most of the cases, one can make use of the default 
options and reduce the above command to: 

python main.py 

Since default operation mode is train and default task is attr, we supported two tasks. This can be 
selected by using task_type argument. For instance: 

python main.py --output_dir adv5 --task_type reid --lr 0.01 
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The results shall be computed on the CelebA dataset. Once the training is done, adversarial samples 
can be generated using: 

python main.py --mode adv --output_dir adv5 --model_number 9 

The mode argument should be adv and the execution also expects a saved model to load the 

weights. For this it will use output_dir argument as passed from the command line. For instance, if 

one use --output_dir adv5 as an argument, the framework would search for the model weights 

within execution_results/adv5/model_weights/. The models are saved with names such as 

step_0.pth. The prefix can be changed from network_config.ini file. This is a required parameter 

for the model. The default value for output_dir is checkpoints/ but since the folder is pivotal to the 
code execution, we strongly encourage not using the default folder name. To execute a defence 
method, one would use: 

python main.py  --output_dir adv6 --defence --task_type reid 

The --defence switch is used to start training the model with the configured defence technique. 

2.7.10 Data Augmentations 

Data augmentations have proven to be really useful for improving performance of the Deep Neural 
Networks (DNNs). We strongly encouraged the participants to explore different data augmentation 
techniques. PyTorch provides some built in augmentation methods which might prove to be really 
useful for the training process. However, in general, different augmentation methods would lead to 
different range of values for the inputs. Deep Learning models and attack methods are very sensitive 
to the range of these inputs values. Hence, one needs to be really careful with the augmentation 
techniques. To make things easier, we provided the TaskWrapper.py class which can be used to 
handle it. 

my_transform = transforms.Compose([ 

                transforms.Resize((256, 256)), 

                transforms.ToTensor() 

            ]) 

dataloader_test = get_reid_data_loader(self.args.batch_size, split='test', use_mtcnn=True, 

                                               transform=my_transform, shuffle=False, num_workers=0, 

                                               dataset_min_val=0, dataset_max_val=1) 

We explicitly provide the minimum and maximum value that the dataset is expected to have. For 
instance, the ToTensor() methods scales the inputs in the range of [0, 1] and the values are explicitly 
passed to the data loader. This encourages seamless interaction between the attack mechanisms. 
One should make sure that it updates the value range in case it want to use different augmentation 
techniques. 

Also, the code can be run on multiple GPUs without any configuration change needed. The code 
detects for presence of multiple GPUs and if present, it can handle the multi-processing itself. 
Similarly, the code handles execution on CPU seamlessly. 

2.7.11 Docker 

The code snippets submitted would be run as a Docker container. This ensures easy dependency 

management. The participants submitted their Dockerfile along with the code. The Docker container 

was built by us. We used nvidia/cuda:10.0-cudnn7-devel-ubuntu18.04 as our base image. 
Participants are encouraged to use the same base image since it is compatible with our 
infrastructure. A sample Docker file is provided which shows aids in creating the Docker images. For 
building the image, one can use: 

docker build -t sparta_image:1.0 --build-arg USER_ID=<some_user_id> --build-arg GROUP_ID=<user's group id> 
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Here some_user_id and user's group id is to ensure that the Docker container does not run with 
ROOT privileges. Once the container is built, it can be run using: 

docker run --gpus all --ipc=host --rm -it -v ${PWD}/data/:/app/data/ -v ${PWD}/execution_results:/app/execution_results 
sparta_image:1.0 --mode train --task_type reid --output_dir adv5 

Here, we allow GPU access to the containers by using --gpus all and allow for memory sharing 

with the host machine by using --ipc=host.These two steps are essential. We also mount the data 

folder to allow access to dataset and finally, mount execution_results folder so that we can have 

access to all generated logs, model_weights and perturbed_samples. The sparta_image:1.0 

indicates the Docker image and version number and --mode train --task_type reid --output_dir 

adv5 indicate the task and mode for the code execution. 

2.8 Contest results 

Since we did not get any submissions in the attack tracks, we just report the best three score results 
in the defence tracks. However, throughout the contest submission days, as the participants can 
submit three times, we have seen improvement compared to their first submissions. The final results 
of the top best defence submissions are provided in Table 1. The column Rank is the submission 
ranks among different participants, the Best score is the best delta value (see section 2.6) every 

team achieved within their various submissions, and the Worst score is the worst delta value they 
have achieved against the hidden test sets. 

Table 1: Top three defence submission results 

Ran

k 

Team  

name 

Defence Tasks Clean 

accuracy 

Best perturbed 

accuracy score 

Worst perturbed 

accuracy score 

Delta 

value 

1 SD Targeted Face 

Re-Identification 

0.87 0.85 0.67 0.02 

2 Vicomtech Targeted Face 

Re-Identification 

0.85 0.72 0.72 0.13 

Attribute 

Alteration 

0.80 0.65 0.65 0.15 

3 BPI Targeted Face 

Re-Identification 

0.84 0.68 0.68 0.16 

As it has shown in Table 1, the best defence method demonstrated 87% accuracy on all adversarial 
images produced by the baseline attacks. On the other hand, the worst-case score of SD defence 
achieved 61% of accuracy. This shows us that the last submission by the team SD got more powerful 
by mixing different methods 2.8.1. This indicates that with such a high level of 88% accuracy 
achieved by the best submission against the adversarial images, the model is still vulnerable to 
adversarial examples that could bypass the classifier. However, the BPI team achieved the worst 
score because their model was highly over-fitted to the CelebA public dataset.  

The next sections explain the best submission methods and techniques that participated in the 
contest. 

2.8.1 1st place in defence track: team SD (CEA) 

For this contest, the CEA team submitted three models in the defence track for the task of re-
identification using the CelebA dataset. The three submitted models were the results of various 
experimentation for this contest, and only the three best models we had were submitted for this 
contest. Here we will briefly describe each model and the rationales behind the choices and their 
submission. All the submissions are specific to neural networks models; the extension of any method 
to other types of models is not clear. 
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2.8.1.1 First submission: Adversarial training 

The first submitted model in the contest is based on adversarial training. During the initial trials for 
the contest, they started by the standard of defences, i.e. training the model on adversarial samples. 
Here they tested different adversarial training settings, using transferred attacks, i.e. obtained on 
another model, using pre-computed attacks on the model or computing adversarial samples on the 
model itself as they trained. They encountered the classical disadvantages of adversarial training, 
i.e. the balance between the time of training, accuracy on clean data and robustness on adversarial 
samples.  

To assess the performances of the model, they based themselves on the calculated according to 
the rules of the competition with multiple types of attacks (FGSM, BIM, PGD). They compared the 
attacks computed directly on the model itself and transferred attacks computed on another model 
trained on the CelebA dataset. Overall, for normal adversarial training, they achieved quite a low 
delta ~2-3 using direct attacks but transferred attacks result in delta > 20, which remains largely 
unsatisfying. 

Nonetheless, during their investigation they encountered a rather specific case, which ended up 
becoming the first model. This model is a simple convolutional network adversarially trained using 
PGD attacks samples with an epsilon parametrized to 0.3 for the attack. This epsilon corresponds 
to 30% total perturbation on an image; this is an overly robust epsilon as we hover generally around 
3%. Nevertheless, they trained this model and noticed that after a certain number of epochs for the 
training, the model has only the same output regardless of the input image. This is not in any way 
hardcoded by them but naturally the result of the training. Since the output remains for all, even for 
adversarial samples, the robustness of the model never decreases and achieves a 𝑑𝑒𝑙𝑡𝑎 = 0.  

Of course, they need to take here another parameter into consideration, the accuracy of the model 
on clean samples. Surprisingly, this model has around 80% clean accuracy, which was not perfect 
remains a good score here. We believe this is due to the distribution of the dataset (see Figure 111). 
In the subset we have we evaluate the model on 40 attributes but some of them are a lot rarer than 
others. For example, the absence of the moustache attribute already includes all women and some 
part of men, which makes easily more than 80% of the dataset. With this always predicting the 
majority attributes seem to be the best solution for the model to optimise it loss. 

                                                

11 From https://www.researchgate.net/figure/CelebA-Dataset-Bias-This-figure-shows-the-distribution-of-the-
attribute-labels_fig1_30183830 

Figure 1: CelebA Dataset Bias: distribution of the attribute labels throughout the dataset: 
presence (blue) or absence (tan) 
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It might be difficult to envision this as a proper defence, and maybe they can see it more as a gap in 
the dataset/rules of the contest as this would be equivalent to only using statistics and not using a 
neural network after training to learn this only best output. However, considering the accuracy of the 
model on the dataset and that it can in no way be attacked, we believe it remains something to 
consider. 

2.8.1.2 Second submission: Transfer learning + obfuscating gradient 

Following the investigation on adversarial training, they used transfer learning in a concern of 
efficiency during the training. They selected models trained for classification on the ImageNet12 
dataset and used them as a basis to train on CelebA. The models came from the timm library 
available on Github13. To train them on CelebA they had to first change the number of class to predict 
to 40 and then they did a classical training using an Adam optimizer. 

They combined this transfer learning with ensemble methods, i.e. they used multiple trained models 
to predict together the result. Here they selected six “efficientnet_b3_ap” models [19] and three 
“ecaresnet101d_pruned” models [20]. Each model was individually trained on a random (with 
replacement) subset of the training set following a bootstrapping method. 

They tried multiple solutions to obtain the final decision of their ensemble, selecting the output either 
by voting or by averaging the results of the models. The advantage of the voting method is that this 
is not a differentiable operation; this means that any attack using the gradient to compute the 
adversarial sample will fail on this operation and thus not work for their ensemble. On the other hand, 
averaging the results of the models leads here to a better accuracy but is a differentiable operation. 
Note here that the ensemble method does not really bring any substantial benefit to the defence or 
robustness. It mostly increases the clean accuracy of their solution. 

As mentioned, the averaging method leads to better accuracy; thus, they chose to use this method 
instead of the voting and then add another non-differentiable operation to obfuscate the gradient. As 
the network output for the 40 attributes is a binary value for each attribute using the criteria, the score 
is either positive or negative, and they can easily replace this with a threshold on the logits. For any 
positive logit in the output vector, they assigned the value ten, and for any negative logits, the value 
-10. This new layer did not change in any way the performance of the solution but is not differentiable, 
and thus any gradient-based attack will now fail on this model. 

On this model, following their previous criteria to evaluate the model, the direct attacks are not able 
to compute the gradient and thus are not working properly. However, they hover around 92% 
accuracy for the model and 79% accuracy on transferred adversarial attacks, which would mean a 

𝑑𝑒𝑙𝑡𝑎 of 13 here. This score remains high, but as they successfully defend from any gradient-based 
attacks which made this model promising. 

2.8.1.3 Third submission: Transfer learning + obfuscating gradient + adversarial training 

To improve on this low robustness to transferred attacks, they tried their third model to add 
adversarial training to the second model. Unfortunately, as they have informed us, limited by their 
hardware, they were unable to train, similarly to nine models on adversarial examples for the second 
model. Thus in this third model, they limited themselves to only one model. As noticed in the last 
part, the ensemble method was mainly directed at improving the accuracy of the model. Thus, they 
could suppose this third model be implemented with the addition of ensemble without any loss to the 
defence and an increase in terms of accuracy. 

They selected an “ecaresnet101d_pruned” trained on ImageNet as the starting point and then learnt 
on a subset of CelebA. For the next step of adversarial training, they used the efficient training 
method described in [21]. It used PGD attacks limited to three steps at each epoch of the training 
building at each epoch upon the adversarial sample computed at the previous epoch. This method 

                                                

12 https://www.image-net.org/ 

13 https://github.com/rwightman/pytorch-image-models  

https://github.com/rwightman/pytorch-image-models
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did not increase the accuracy versus a standard PGD training with a higher number of steps, but it 
saves a lot of training time with only a slight decrease in accuracy and robustness. 

Finally, they applied on this model the same technique of gradient obfuscating as in the second 
model, i.e. transforming the output logits into -10/10. With this, the model was able to defend itself 
from any attack that relies on the computed gradient of the attacked model.  

To compare this model to the second model, we can look at the robustness and 𝑑𝑒𝑙𝑡𝑎 on transferred 
attacks. Here, they had around 87% accuracy on clean images, and they achieved 84-85% of 

robustness on these attacks and a 𝑑𝑒𝑙𝑡𝑎 of 2~3. Thus, in conclusion, we can see that the adversarial 
training they did in this third model brings a real advantage to increase the defence and robustness 
of the model compared to the second model.  

As a further step, we have seen the advantage of the adversarial training in this third model, but the 
clean accuracy remains lower than the second model. As mentioned in the beginning, they could 
extend this third model training all nine ensemble models with adversarial training. 

2.8.2 2nd place in defence track: Vicomtech team 

They presented two models in the contest. One of them for defence against targeted face re-
identification and the other one for defence against attribute alteration. For both cases, they started 
from an original pre-trained model for the specific task and them a middle autoencoder is added in 
order to generate the defended model (dimensional reduction middle autoencoder defence [22, 23]). 
Both original models were formed by a convolutional neural network (CNN) and deep neural network 
(DNN). In both tasks, the CNN is the pre-trained model MovileNetV3Large [24] architecture with 
Imagenet weights. 

The DNN in the face re-identification task defence the is formed by a flatten layer, hidden dense 
layer (with 1536 neurons and relu activation), a batch normalization layer, a dropout layer of 0.3, an 
output dense layer (with 10178 neurons and softmax activation) and all compiled with adam and 
categorical crossentropy function. 

For the attribute alteration task defence, the DNN is formed by a flatten layer, hidden dense layer 
(with 1536 neurons and relu activation), a batch normalization layer, a dropout layer of 0.3, and 
output dense layer (with 40 neurons and sigmoid activation) and all compiled with adam delta and 
cosine similarity function. 

Once the original task models were trained with original data (without adversarial examples) in order 
to generate the defended method, in both cases an autoencoder layer was added between CNN and 
DNN. This autoencoder layer was trained with adversarial samples obtained using FGSM, BIM and 
PGD attacks (the ones to be defended from). The intention of this layer is to reduce the noise used 
to generate the adversarial examples and therefore obtain a more robust defended model. 

As these models are generated using tensorflow, equivalent gradient function was defined to be the 
benchmark compatible with contest defined torch functions.  Similar work has been done with the 
prediction function to allow calls from torch tensors to defended tensorflow models. By such 
architectural model the Vicomtech team got  85% clean accuracy in the task of face re-identification, 
achieved 72% of accuracy against adversarial images, and the 𝑑𝑒𝑙𝑡𝑎 at the end was 13 on average. 
We should mention that for all of the accuracy calculations we had ten time cross-validation. Besides, 
in the task of attribute alteration they got 80% accuracy on the clean data test sets and achieved 
65% accuracy against the adversarial images which subsequently leads to 15 in the 𝑑𝑒𝑙𝑡𝑎 value. 

2.8.3 3rd place in defence track: BPI team 

This submission used a modified version of the adversarial training [25, 26] method with the DNN 
model. In each training iteration phase, they used an effective iterative attack to generate adversarial 

example 𝑥′. In the training phase, they tried to minimise the cross entropy of the generated 
adversarial example.  

𝑅′(𝑥, 𝑦, 𝛾) = 𝑅(𝑥′, 𝑦, 𝛾) 
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Their technique is trying to optimise the 𝑥′ to the closest perturbed data. 

 𝛿
𝑚𝑖𝑛 ||𝛿||2 subject to max 𝑃(𝑦𝑟|𝑥 +  𝛿, 𝛾) ≠ 𝑦𝑡𝑟𝑢𝑒 and 0 ≤ 𝑥 +  𝛿 ≪ 𝑁 

Here in the formulas, the 𝑥 is the input, 𝑦𝑡𝑟𝑢𝑒 is the true label and 𝑁 the pixel range from 0 to 255. 

They have used the default PyTorch version of contest dev_toolkit, and by such adversarial tanning 
modification method, they have got 84% clean accuracy in the task of targeted face re-identification. 
When the generated perturbed data applies to the model, they achieved 68% of accuracy against 

our baseline attacks, which leads to the 16 in 𝑑𝑒𝑙𝑡𝑎 value on average. we should again mention that 
for all of the accuracy calculations we had ten time cross-validation. 

2.8.4 ITTI team 

The ITTI team submitted a preprocessing pipeline that is capable of mitigating the effects of 
adversarial evasion attacks on any computer vision model, along with a model trained on the CelebA 
dataset - which was the benchmark chosen by the contest organisers. The detailed description of 
the submission was included in D7.5. The approach to the problem, the experiments and results of 
the experiments have been published in a top-tier scientific journal with Impact Factor of 3.012 [27]. 

2.9 Conclusion 

The objective of the AI Contest was to encourage the development of more practical and typically 
powerful decision based adversarial attacks and classifiers more robust against optimisation-based 
attacks. 

The winning defence developed a broad range of methods to achieve this purpose, running by 
adversarial training, transfer learning, and obfuscating gradient. 

However, during the contest, we faced an issue regarding the number of participants. We have got 
six submissions in total, which weakens our idea of the two-player game of attacks and defences. 
One of the lessons we have learned was the prize of contest that drives the motivation for the 
researchers investing their worthy time to solve our challenges. We have dedicated around 100 
Euros for the winners which were suitable to our budget, but it seemed not enough. One of the other 
aspects that influenced our contest was the Covid pandemic which decreased the number of 
voluntary works. Our contest was designed for developers, students or researchers that have free 
time to explore, but the Covid pandemic made a strong obstacle. 

To end that, considerably more additional work is required towards even better attacks and defences; 
however, the AI Contest tried to push the community to move one step more. 
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Chapter 3 Adversarial machine learning benchmark 

tool 

Altering a few data points in input can simply change the predictions of a neural network. This 
vulnerability endangers developed ML models and emphasises a gap between machine perception 
and humans. It has comprehensively investigated since its finding in deep learning [28], but progress 
has been slow [29]. 

One essential problem causing this deficiency is the lack of tools evaluating the robustness of ML 
models reliably. Many published defences addressing adversarial perturbations have been 
discovered to be ineffective [29]. The defences methods just seemed robust with the first look due 
to general adversarial attacks could not detect the actual minimum adversarial perturbations. 
Existing advance attacks like PGD [30] or C&W [31] fail for several reasons, for instance, an 
inadequate number of optimisation steps or masking of the backpropagated gradients. 

As it has been described in the deliverables D7.3 (please read it due to its explanation regarding our 
approaches in D7.6), there are many concrete arguments to investigate defences to the adversarial 
attacks and thus to have an adversarial benchmark tool. The four main reasons and motivations are: 

1. Defending the systems against any adversarial attacks. 
2. Testing the robustness of machine learning models in the worst-case scenario. 
3. Measuring the progress of ML methods in regards to the level of human capabilities. 
4. Having reference implementations of several attacks and defence procedures as open-

source. 

To this end, possible attacks against the provided classifier are simulated concerning a provided 
attackers' model by manipulating the train and test data, and their consequences on the targeted 
model's performance are evaluated. 

In this work, we present the adversarial benchmark tool which has been developed in SAFAIR 
program for the final deliverable D7.6. 

3.1 The adversarial benchmark tool 

In this work, we present the SAFAIR adversarial benchmark tool, an open-source Python tool that 
strives to improve address the problems mentioned above and favour the implementation of more 
secure ML techniques. 

The adversarial benchmark tool has a flexible architecture. We have determined abstract interfaces 
for the tool components, such as models, attacks, datasets, or loss functions. Our tool integrates the 
components and also has a well-designed wrapper to utilize powerful open-source tools or libraries 
like Foolbox [33]. We have integrated many attack implementations from Foolbox.  

Our tool supports deep neural networks by having a PyTorch library, which can be extended to 
incorporate various widespread neural network frameworks, such as TensorFlow and Keras. This 
facilitates us to execute attacks natively developed in Foolbox against PyTorch or TensorFlow and 
Keras models. The adversarial benchmark tool is available on Git repository14. 

Our tool could provides reference implementation of various attack mechanisms, we have a tool 
which can aid in benchmarking. Due to the need for a standard reference implementation, we cannot 
compare different benchmarks. A benchmark resulting in high accuracy may indicate more 
robustness; however, it may additionally show that the attack implementation is weak too. By using 

                                                

14 https://git.sec.in.tum.de/Norouzian/adversarial-benchmark-tool 
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the proposed tool, our researchers, especially in the SAFAIR program, can be ensured that the 
reporting high accuracy on our benchmarking approach corresponds to a robust model. 

Besides, developers and researchers are able to utilize our proposed tool to evaluate the robustness 
of their proposed solutions against standardised, state-of-the-art attacks and defences. Then, if a 
defence demonstrates a top score accuracy against the tool attack, the evaluation conclusively 
indicates that the defence defeats this standardised implementation of attacks; on the other hand, if 
an attack demonstrates a top score failure rate against a tool defence, the evaluation conclusively 
indicates that the attack is being capable of defeating a definite implementation of the defence. 

3.1.1 Tool structure 

The adversarial benchmark tool has a modular architecture oriented software. As it shows in Figure 
2 it consists of five primary modules: 

1. Attacks: The module contains some various attack implementations. One can use these as 
a template, easily implement other Foolbox adversarial attacks, and extend it attack 
scenario to the modular tool. 

2. Datasets: Contains the code for loading different dataset such CelebA. 
3. Models: Contains the source code for a model. We have a PyTorch model in the directory 

as an example. Please note that we expect that the model is already trained and we are 
going to test it against adversarial perturbations. 

4. Use cases: Contains the logic specific to different use cases such as the Face Re-
identification and Face Attribute Alteration tasks in the SAFAIR AI Contest. 

5. Wrapper: Contains the model converter. This would take a model, for example, implemented 
in PyTorch and convert it into other open-source tools, such as Foolbox. 

 

 

Figure 2: Architecture and main components of Adversarial Benchmark Tool 

 

It can run the following steps: (i) it uses the train_test_split to randomly split the data; (ii) for each 
training piece, learn the related classifiers; (iii) starting to attack each learned model; and (iv) 
present the results. Any investigation is run according to the parameters determined in the setup 
files (like config file), such as the type and parameters of the selected attacks, the chosen datasets, 
or the use cases. It is possible to execute various investigations via a proper definition of various 
setup files. 

We would like to reiterate in a way that the model is already trained. Hence, one should make sure 
have saved the model weights. The model conversion process would first load the model weights 
and then convert the model to Foolbox. 
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3.1.1.1 Attacks 

This module implements interfaces to various popular ML adversarial attacks. Each attack takes a 
model and apply the chosen attacks on the classifiers. The default measure is misclassification. In 
Figure 3 you can see the attacks that has been implemented in the benchmark tool. Here are two 
mian examples of the attack_base interface and the list of attacks (attack_lists) which can be use and 
exten by reseachers and developers. 

attack_base 

import os 

 

import torch 

 

from foolbox.attacks import LinfPGD 

import eagerpy as ep 

 

from environment_setup import PROJECT_ROOT_DIR 

 

 

class Attack: 

    def __init__(self): 

        pass 

 

    def instantiate_attack(self): 

        """ 

        Attack the model 

        :return: NotImplementedError 

        """ 

        raise NotImplementedError 

 

    def attack_description(self): 

        """ 

        String description for the attack 

        :return: NotImplementedError 

        """ 

        raise NotImplementedError 

 

    def get_use_case_loss_fn(self, model, labels): 

        """ 

        Selected between reid/attr tasks for proper loss computation. We can switch between cross entropy and bce 

        depending upon the task (reid/attr respectively). One can extend this class to accommodate more loss 

        functions. 

        :param model: Foolbox model :param labels: labels for the inputs 

        :return: cross_entropy/bce_with_logits loss 

        """ 
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        # can be overridden by users 

        def loss_fn(inputs): 

            logits = model(inputs) 

            if self.task_type == 'reid': 

                return ep.crossentropy(logits, labels).sum() 

            else: 

                # binary cross entropy case in here 

                return ep.astensor( 

                    torch.nn.functional.binary_cross_entropy_with_logits(logits.raw, labels.raw.to(torch.float), 

                                                                         reduction="sum")) 

 

        return loss_fn 

 

attacks_lists 

""" 

Helper function for loading all the attacks defined in `attacks/attack_types folder` 

""" 

import importlib 

import os 

import pkgutil 

import sys 

 

from attacks.base import Attack 

from environment_setup import PROJECT_ROOT_DIR 

import config 

 

def load_all_modules_from_dir(dirname): 

    """ 

    Loads all the attack modules in the current run 

    :param dirname: base directory to search from 

    :return: None 

    """ 

    for root_dirname, module_name, ispkg in pkgutil.iter_modules([dirname]): 

        relative_module_name = f'attacks.attack_types.{module_name}' 

        importlib.import_module(relative_module_name, PROJECT_ROOT_DIR) 

 

 

def get_attacks(task_type): 

    """ 

    Create a list of all the attack instances 

    :param task_type: reid/attr attacks 

    :return: list of all attack instances 

    """ 
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    # First load all modules in the 

    attack_base_dir = os.path.join(PROJECT_ROOT_DIR, 'attacks', 'attack_types') 

    load_all_modules_from_dir(dirname=attack_base_dir) 

 

    attack_subclasses = Attack.__subclasses__() 

    attack_list = [] 

    for subclass_name in attack_subclasses: 

        subclass = subclass_name(task_type=task_type) 

        if subclass.attack_description() not in config.skip_list: 

            attack_list.append(subclass) 

    return attack_list 

 

 

if __name__ == '__main__': 

    print(get_attacks(task_type='attr')) 

 

 

Figure 3: List of attacks available at Git repository 

3.1.2 How to use the tool 

Following software required to use the package: 

 It has been tested on GNU/Linux, and macOS systems running Python 3.6, and 3.7 installed. 

 Other utility packages required can be obtained by taking a look at the requirements.txt file. 

3.1.2.1 Installation procedure 

The requirements are placed in the requirements.txt file. 

pip install -r requirements.txt 
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To set up the dependencies. We also suggest making virtual environments by using conda or python 
virtual environment using: 

python3 -m venv /path/to/new/virtual/environment 

3.1.2.2 Execution Steps 

To start with execute: 

python main.py -h 

To get a list of options and instructions to execute the program. For starting a simple training loop, 
simply use: 

python main.py --task_type attr --checkpoint_dir saved_models --model_number 0 

In our examples, we support two use cases currently (targeted face re-identification and attribute 
alterations). Everyone can easily develop its own use case to use the tool. This can be selected by 
using task_type argument. For instance: 

python main.py --checkpoint_dir saved_models --task_type reid --model_number 0 

Here we specify the checkpoint_dir and model_number (specific model to load). We expect that 

model weights are present in the saved_models folder before starting the conversion process. The 
results shall be computed on the CelebA dataset. 

3.1.2.3 Creating a new Attack 

To create a new Attack, one has to create a new python file in the attacks/attack_types package. 

Please make sure all attacks extend the attacks.base.Attack class. The class has three methods 

that are used: 

 instantiate_attack(). Which is used in order to create an instance of attack type defined in 
Foolbox framework.  

 attack_description(). A string representation of the attack. 

Once this is done, the tool would automatically recognize the new Attack and compute the model 
performance against the new attack along with the previous ones (basically all the attacks that are 

present in the attacks.attack_types package). 

3.1.2.4 Configuration 

There may be scenarios in which you want to skip certain attack types (for instance Carlini and 

Wagner). This can be done by editing the config.py file. The skip_list can be used to skip attacks. 
The tool performs string matching based on the string representation of each attack class. For 
instance, if you want to skip C&W attack, just use: 

skip_list = ['carlini_wagner'] 

The string representation of Carlini and Wagner attack is carlini_wagner and the same name needs 

to be used in the configuration list. If the skip_list is empty, we run the model against all the test 
types. 

3.1.2.5 Targeted Attacks 

One can perform targeted attacks as well. For this simply pass --target label flag with an appropriate 
target label. For instance: 

python main.py --checkpoint_dir saved_models --task_type reid --model_number 3 --target_label 17 

The targeted attacks are not defined for attribute alteration tasks and the tool would throw an error 

before starting. There are certain attacks such as FGSM for which targeted attacks are not defined by 
Foolbox. They would be skipped and the tool would compute results for the remaining attack types. 
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3.1.2.6 Sample Output 

Here are some sample output obtained from the execution of the tool. For example, When executed 
with the command: 

python main.py --checkpoint_dir saved_models --model_number 8 

 

Figure 4: Example output of benchmark tool for attribute alteration task 

 

Similarly, when we execute the tool for performing “Un-targeted Re-Identification” task. 

python main.py --checkpoint_dir saved_models --task_type reid --model_number 3 

 

Figure 5: Example output of benchmark tool for untargeted re-identification task 

 

Finally, when we execute the tool for targeted ReIdentification task, we would get: 

python main.py --checkpoint_dir saved_models --task_type reid --model_number 3 --target_label 17 

 

Figure 6: Example output of benchmark tool for targeted re-identification task 
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3.1.2.7 Discussion 

The benchmark tool also supports Tensorflow or Keras models too. The respective model definitions 
using the desired library should be included. Once the class members are defined, one can import 

the model class in the main.py file and then convert it using tensorflow_to_foolbox module. If your 
method uses multiple models, it can be handled easily by properly organizing it under parent model 
and then call it accordingly. Necessary data processing steps should be included while passing the 
batches of data from the benchmark tool. 

Also, the Foolbox framework does not support Multi-label classification out of the box. Hence, it does 
not support Attribute Alteration Task of contest directly. We have modified the tool by adding a 

wrapper which can manage all instances of FixedEpsilonAttack. 

However, for AttackWithDistance subclasses (for instance carlini_wagner) it is not possible to 

perform monkey patching and manage the code. The only possible way is to override the run method 
and basically copy everything with changes to the code as per need. For the sake of keeping the 
framework simpler and easily extensible, we decided to skip the operation for such cases. 
Developers are encouraged to update the code themselves and reach out to us for any help. 

3.1.3 Reporting benchmark results 

This section reports an example of the benchmark tool that Vicomtech has used to test and evaluate 
their submitted defence methods in D7.2. Any researcher or developer can extend this way of 
reporting when using the tool to evaluate their solutions. 

3.1.3.1 Vicomtech use case evaluation results 

All defences were generated for avoiding adversarial attacks in an originally trained model formed 
by a vgg16 pre-trained layer with a dense layer after it. This model was trained with a breast cancer 
image dataset for classification task. Due to its vulnerability to adversarial attack, multiple defences 
were implemented and are detailed next: 

 Adversarial training: the model is retrained with a dataset containing adversarial examples 
to learn to classify them correctly [22]. 

 Dimensionality reduction (top and middle version): an autoencoder or encoder layer is 
added to the initial model (before de input data (top version) or between vgg16 and dense 
layer (middle version)) with the main idea that this dimensionality reduction happening in this 
new layer helps reducing the noise added to the original image to convert them into 
adversarials [22]. 

 Prediction similarity: an external layer is added to save the history of prediction. With the 
use of this layer’s data, the idea is to detect that an adversarial example is being generated. 

 Activations' detector: studying the behaviour of the activation in the original model for non-
adversarial and adversarial images, a detector is trained in order to detect these different 
behaviours. 

Prediction similarity and activations’ detector has been modified in order to be able to calculate 
accuracies of this defences. As the dataset only contains two classes, in the case the external layer 
detects that an adversarial is being generated or an adversarial was introduced as input images, the 
prediction is changed to the contrary class as expected from the original model. 

All the defences detailed above were validated with all the attacks provided in the benchmark tool. 
The results of their accuracy are summarised in the Table 2. 

Table 2: Benchmark tool results against Vicomtech defence methods 

Defence / 
Accuracy 

Adversarial 
training 

Dimensionality 
reduction top 

Dimensionality 
reduction 

middle 

Prediction 
Similarity 

Activations’ 
detector 

Original 0.844 0.726 0.817 0.844 0.708 
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Defence / 
Accuracy 

Adversarial 
training 

Dimensionality 
reduction top 

Dimensionality 
reduction 

middle 

Prediction 
Similarity 

Activations’ 
detector 

FGSM 0.837 0.716 0.812 0.837 0.708 

L2 Basic Iter 0.844 0.725 0.817 0.842 0.708 

BIM 0.837 0.716 0.812 0.837 0.708 

Deep Fool 0.003 0 0.001 0.015 0.708 

Additive 
noise 

0.844 0.725 0.817 0.844 0.708 

Newton Fool 0.464 0 0 0.46 0.708 

PGD 0.837 0.717 0.813 0.837 0.708 

 

The widely known adversarial training defence got a good result in several attacks. However, this 
countermeasure manages to avoid the adversarial examples that it already knows. In other words, 
this method defends the model from the corrupted examples, which are used to retrain the model. 
That is why the adversarial example would be the ideal defence in case of all these possible attacks 
are known, and different researches show the impossibility of that. In this case, the model was 
retrained by adversarials obtained with FGSM, PGD, and BIM algorithms. Therefore, it was expected 
that this defence was more accurate in those cases. Due to their resemblance in the attacks, this 
defence also works with Additive noise and L2 Basic Iter attack.  

Concerning the dimensionality reduction defence, it was implemented in two ways. The first 
implementation was the injection of the autoencoder at the beginning of the model to be defended. 
That method reduces the initial accuracy significantly, and hence it is the defence with the worst 
results. The second implementation was the addition of the autoencoder in the middle of the original 
model. In that case, the accuracy was not lowered considerably, improving the previous 
implementation only changing the position of the developed autoencoder in the defended model. 
Thus, the second dimensionality reduction shows improved results, even with adversarials that it did 
not see previously. 

The Table 2 shows the dominance of the prediction similarity defence. That proves its potential to 
avoid the majority of the presented attacks. Concretely, this countermeasure is focused on a history 
of injected images and the difference between those. Therefore, this method detects the tested 
algorithms which are constructing the adversarial example by using the gradient. 

Finally, the Activations’ detector method reduces the accuracy in clean images considerably. 
However, it is the unique defence that shows robustness against the Deep Fool and Newton Fool 
attacks. That makes this countermeasure interesting, even though it lowers the precision of the 
original data significantly.  

To summarize, according to the accuracy in the original data, adversarial training and prediction 
similarity maintain the initial accuracy obtained by the model without any defence. Comparing both 
versions of dimensionality reduction defences, the middle one generates a more robust model with 
minimal loss in original accuracy. Finally, although the initial accuracy of the model is reduced 
drastically, the activations’ detector defence is the only one that can be effective against Deep Fool 
and Newton Fool attacks. 
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3.1.4 Conclusion 

A critical barrier delaying the search for robust ML models is the shortage of reliable evaluation tools. 
In our explorations and experiments during the SAFAIR program, we believe our tool can help the 
community evaluate their solutions in an easier and standardised way. 

As the adversarial benchmark tool is modular and straightforward to extend, state-of-the-arts and 
more complicated attacks can be easily implemented, as well as countermeasures and robust 
models, hopefully, by helping the researchers and developers within the community. 
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Chapter 4 AI threat model testing and evaluation 

The present chapter describes the evaluation of the SAFAIR AI Threat Model and Knowledge Base 
carried out as part of the task T7.5 and according to the plan detailed in D7.5. After the introductory 
section, where the aim and context of the evaluation is presented, the following sections summarise 
the evaluation objectives, evaluation methodology dimensions, evaluation means (online 
questionnaire), evaluation team, the process followed, and the results obtained. The Appendix A at 
the end of the report transcripts the questionnaire used in the process and the Appendix B shows 
the presentation made during the training workshop with the evaluators.  

4.1 Introduction 

One of the interests of SAFAIR researchers was to learn whether the knowledge gained in the Work 
Package 7 would be of interest and use of AI system developers. Therefore, as part of the validation 
of SAFAIR results in T7.5, the SAFAIR AI Threat model and accompanying Knowledge Base were 
evaluated. 

The following sections detail the process and results of the evaluation of the final version of the 
SAFAIR AI Threat model and Knowledge Base.  

The final version of the SAFAIR AI Threat KB evaluated was the version explained in D7.5, updated 
from that initial version of deliverable D7.1, and which includes the latest advances in trustworthy AI 
works, such as the “AI Cybersecurity Challenges” by ENISA (ENISA, 2020)15, which beyond the 
challenges, offers taxonomies of AI assets and AI threats, as well as the Mitre's ATLAS - Adversarial 
Threat Landscape for Artificial-Intelligence Systems (MITRE ATLAS, 2021)16, and the ETSI-SAI’s 
“Mitigation Strategy Report” (ETSI SAI Mitigation, 2021)17 dedicated to countermeasures. 
Furthermore, the updated version of the SAFAIR AI Threat Knowledge Base enlarged the knowledge 
corpus with countermeasures, explainability and fairness solutions resulting from SAFAIR work as 
described in D7.5, as well as other state-of-the-art works on Adversarial Machine Learning (AML) 
attacks and safeguards published and analysed after D7.1 was issued.  

4.2 SAFAIR AI Threat Knowledge Base evaluation 

The evaluation of the SAFAIR AI Threat Knowledge Base tool (a.k.a. SAFAIR AI Threat KB) was the 
mean to evaluate the SAFAIR AI Threat Model and the analysed corpus knowledge structured 
following the Model. The initial version of the tool was part of D7.1 and was updated into the final 
version presented in D7.5 which was the subject of the evaluation. 

The evaluation process followed the methodology and the work plan outlined in D7.5 and it is 
explained in more detail in the following sections. The last section summarizes the feedback and the 
evaluation results obtained. 

4.2.1 Evaluation Objectives 

The main objective of the SAFAIR AI Threat KB evaluation is to assess if its knowledge content and 
structure is correct and sufficient for the users when interacting with it. Therefore, the focus of the 
evaluation was the quality and completeness of the KB content. 

                                                

15 ENISA, AI Cybersecurity Challenges - Chapter 1.  Threat Landscape for Artificial In-telligence. 
December 2020. Available at: https://www.enisa.europa.eu/publications/artificial-intelligence-cybersecurity-
challenges/at_download/fullReport  
16 MITRE ATLAS, Adversarial Threat Landscape for Artificial-Intelligence Systems. Available at: 
https://atlas.mitre.org/  
17 ETSI GR SAI 005 V1.1.1 (2021-03), Securing Artificial Intelligence (SAI); Mitigation Strategy Report 

https://www.enisa.europa.eu/publications/artificial-intelligence-cybersecurity-challenges/at_download/fullReport
https://www.enisa.europa.eu/publications/artificial-intelligence-cybersecurity-challenges/at_download/fullReport
https://atlas.mitre.org/
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4.2.2 Evaluation Dimensions 

We considered five dimensions in the evaluation process, being the following, in order of importance: 

 Quality – to check if the information provided by the Knowledge Base is good, correct, 

sufficient and useful.  

 Correctness – to check if the description of techniques and countermeasures is appropriate 

(i.e. it reflects well the source) and if it is well understood. 

 Completeness – to check if all the content that should be in the Knowledge Base has been 

included. 

 Usability – to check whether the content is useful for the users in the AI use case under 

study, and whether there are enough instances of attack techniques and countermeasures 

that have been useful or previously unknown to them. Please, note that in this dimension, we 

are not evaluating the user experience of the tool because the tool has no GUI. 

 Re-usability – to check whether the information provided by the Knowledge Base could be 

used in the future for models similar to the model under study. 

4.2.3 Evaluation Questionnaire 

A questionnaire with dedicated questions to assess the different evaluation dimensions above was 
designed to support the evaluation process (see Appendix A). The questionnaire was used to get 
the evaluators’ feedback about different aspects of the tool after reading the documentation of the 
tool and after using the Knowledge Base.  

In order to facilitate the feedback gathering and statistics, the questionnaire was an online 
questionnaire shared with the evaluators. Both the questionnaire editing and the questionnaire 
processing procedures followed GDPR principles with regards to protection of personal information 
of the responding data subjects, i.e. securely storing and processing this information; letting the 
responders know the purpose of the processing; and allowing them opting out at any time. 

The questions included general questions about the evaluator profile and AI development practices 
and AML knowledge, as well as technical questions related to the quality of the content of the KB. 
The questions were grouped in seven sections:  

1. Profile. In this section, we collect information about the evaluators’ experience in AI 

development. 

2. Current Practice. This section collects information about the current evaluators’ AI 

trustworthiness practices when developing AI systems.  

3. Correctness. This section asks the evaluator to assess the overall quality of the threat and 

countermeasure information provided by the Knowledge Base in terms of correctness. 

4. Completeness. In this section, we ask the evaluator to assess the overall quality of the threat 

and countermeasure information provided by the Knowledge Base in terms of completeness. 

5. Usefulness. In this section, the evaluator is required to assess the usefulness of the attack 

and defence information provided, i.e. whether s/he thinks the information is useful for 

improving the AI system design with respect to trustworthiness. 

6. Re-usability. This section includes questions to the evaluators on the re-usability of the 

attack and defence information provided in the Threat KB, i.e. whether they believe the 

information can be used for improving the trustworthiness of AI systems in other contexts 

beyond the ones evaluated. 
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7. Background knowledge and suggestions. This section inquires the evaluators about their 

background on similar tools and initiatives around the “Trustworthy AI” principles. This 

information is relevant in order to learn on the knowledge and interest of the evaluators about 

the AI trustworthiness support subject. 

4.2.4 Evaluators 

The selected evaluation team was composed of eleven actual AI designers and developers in 
Tecnalia that are members of different Tecnalia divisions and are working in AI system development 
projects in different industry sectors and application domains (health, energy, cybersecurity, etc.).  

From them, 9 out of 11 are experts coming from the field of AI with limited knowledge on 
cybersecurity and two of them are cybersecurity experts with less experience in AI development.  

All of them took the role of AI designer or AI developer  responsible for developing secure AI systems 
and were asked to learn the concept and use the SAFAIR AI Threat KB to get information and gain 
insights into threats against AI systems and possible countermeasures.  

All the evaluators participated in the evaluation in a voluntary basis.  

4.2.5 Evaluation process 

Figure 7 depicts the overall evaluation process followed. As shown in the figure, first, a Training 
workshop was held organised by Tecnalia participants in SAFAIR with the evaluators of the SAFAIR 
AI Threat KB as trainees. During the session, the evaluators were enlightened on SPARTA project 
objectives and main research activities and outcomes, as well as on WP7 SAFAIR objectives, tasks 
and results among which the AI Threat model and KB were carefully explained and thoroughly 
detailed (see Appendix B). In the Training workshop, the evaluators were also instructed on the 
evaluation goals and the process to follow, including a detailed description of the questionnaire they 
had to fill.  

In order to illustrate what they need to do to get information from the KB, two supporting videos were 
showcased, showing two use cases of the potential use of the KB for improving the trustworthiness 
of the ML models. 

After that, the evaluators were aided in browsing the contents of the SAFAIR AI Threat KB so they 
could learn the threats and countermeasures that had more interest to them according to the type of 
algorithms they research and develop.  

The evaluation concluded with all the evaluators voluntarily filling out the online questionnaire to 
provide their feedback, which is reported in the next section. 
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Figure 7: SAFAIR AI Threat Knowledge Base Evaluation process 

 

The supporting materials offered to the evaluators included the following: 

 D7.1 “AI systems threat analysis mechanisms and tools” document, which describes the AI 

Threat model together with the KB structure and summarizes the literature review performed 

in SAFAIR. 

 D7.5 “Final version of AI systems security mechanisms and tools” report, which describes 

the updates performed on the AI Threat model and KB, as well as details the mechanisms 

for defence, explainability and fairness developed in SAFAIR (which are also part of the final 

version of the KB). 

 Supporting videos illustrating two example use cases of the SAFAIR AI Threat Knowledge 

Base: 

 UC1: Poisoning Threat Analysis on AI-based Healthcare system for disease detection. 

 UC2: Threat Analysis on AI-based network traffic classification system realized by 

Support Vector Machines (SVM). 

 The final version of the SAFAIR AI Threat Knowledge Base tool. 

 Presentation for the Training workshop (see Appendix B). 

 Recording of the Training workshop. 

The evaluators were asked to perform a threat analysis of the AI system of their interest using the 
SAFAIR AI Threat Knowledge Base. The information about the threats and associated potential 
countermeasures were consulted following the process explained to them:  

 First: Identify the ML algorithm and family of your interest (i.e. the AI asset). 

 Second: Identify the relevant potential threats and attacks, including all the attributes, e.g. 

attack tactic group, tactic, technique, threat agent knowledge, etc. 

 Third: Identify the countermeasures to adopt for protecting your ML algorithm. 
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4.2.6 Evaluation results 

In this section, we provide the statistics of questionnaire responses gathered and the analysis of the 
results. The results have provided relevant feedback to improve the contents of the SAFAIR AI 
Threat KB and the design of the questionnaire so that it can be extended to an external audience to 
further improve the KB. 

4.2.6.1 Section 1: Profile 

As shown by the responses of the evaluators, all of them have more than three years of experience 
in ML system development, and 36% of them have more than seven years, which reflects the deep 
knowledge of the evaluators on the types of systems to be protected. 

Furthermore, the types of ML algorithms most used by the evaluators, that is, those used at least by 
the 60% of the evaluators, were: K-means clustering, PCA, Linear Regression, Logistic Regression, 
SVM, Genetic Algorithm and Neural Networks. 

The target domains of the ML models developed were multiple, including health applications, energy 
efficiency, cybersecurity, etc.  

While only 27% of the responders have a background in cybersecurity, 45% of them did already 
have experience in AML practices, which makes their answer even more valuable for the purpose. 

1. Please indicate how many years of 
experience you have in AI development 

 

2. Please specify the types of ML algorithms or 
AI models you develop 
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3. Please specify the types of AI applications you develop (i.e. the mission and domain of 
application). 

 

4. Do you have any experience in cyber 
security in general? 

 

5. Do you have any experience in Adversarial 
Machine Learning? 

 

 

4.2.6.2 Section 2: Current Practice 

As reported by the evaluators, the current practice on threat analysis and protection of AI systems 
is limited. Only 27% of the evaluators consider the exposure of the AI system to cyber threats and 
the possible attacks on them. Even more, only 18% try to adopt measures to counter such risks. 
However, 18% also test their AI systems for integrity, robustness and security.  

When asked about the potential attacks of their interest, all the main four families (poisoning, 
evasion, oracle and data access) were mentioned by the evaluators, with a greater proportion of 
poisoning and evasion threats. 

6. When developing an AI system, do you think 
on how exposed the AI system is to cyber-
attacks? 

 

7. Do you assess potential forms of attacks 
against your AI systems? 
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8. If yes, what types of potential attacks do you 
consider? 

 

9. Do you put measures in place to counter 
such potential attacks over the lifecycle of the 
AI system? 

 

10. Do you test the AI system to check its 
integrity, robustness and security? 

 

11. What types of potential attacks are more 
relevant to you? 

 

 

4.2.6.3 Section 3: Correctness 

The great majority of the evaluators agree on the quality of the KB with respect to the correctness 
and easiness of the information contained, while none of them indicated any mistake in the content 
or source references provided in the threat or countermeasure information.  

12. Did you find any mistake or erroneous 
information? 

 

13. Do you think the information is easy to 
understand? 
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14. Do you think the information reflects or 
summarises well the corresponding reference 
source? 

 

 

4.2.6.4 Section 4: Completeness 

The completeness of the KB was evaluated very positively by 82% of the evaluators, even though 
one evaluator indicated that some attack technique and countermeasure information could be 
improved, and 64% of the evaluators would have appreciated having additional complementary 
information and materials. 

15. Did you miss any information? 

 

16. If yes, please specify which type of 
information 

 

17.  Did you miss any complementary tool, 
background documentation or other 
material/resource? 

 

 

4.2.6.5 Section 5: Usefulness 

Most of the evaluators, a total of 91% of them, deemed relevant the information about threats and 
countermeasures offered by the KB. Even more, 82% of them acknowledge that the KB offered new 
information not previously known.  

The utility of the content was clearly evaluated positively, particularly for aiding AI system developers 

in their work. A total of 82% of the evaluators considered it useful for developers, while 55% agreed 

that it is also useful for researchers. When asked for clarifications, the disagreeing evaluator 

explained that there was a misunderstanding on the roles of “AI developer” and “AI researcher”. The 

negative evaluation reflects the opinion of this evaluator about the fact that AML threats are usually 

an issue of AI system implementation rather than an issue of the mathematical algorithm itself. 

Therefore, from the perspective of the ML model creator, the information in the KB may not impact 

his work. 

The evaluators replied that the knowledge compiled is clearly most useful for improving security-by-

design and privacy-by-design of AI systems, while AI fairness and interpretability are less improved, 

which is normal considering the current proportion of threats gathered for each of the aspects. 
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The confidence of the evaluators about being able to use the KB to actually improve the AI systems 

by applying the countermeasures information provided is in a ratio of 73% of the evaluators who 

agree they have sufficient skills.  

18. Do you think that the information given has 
been relevant? 

 

19. Was the information given new and not 
previously known? 

 

20. Do you think the information given is useful 
for a developer of the AI use cases you 
studied? 

 

21. Do you think the information given is useful 
for a researcher of the AI use cases you studied? 

 

22. If yes, which aspects of the AI system do 
you think the information given helps to 
improve? 

 

23. Do you think that you have the skills to 
implement the recommended 
countermeasures? 

 

 

4.2.6.6 Section 6: Re-usability  

The re-usability quality of the KB has also been evaluated very positively as 91% of the evaluators 
agree with the statement that the KB could be used in similar use cases beyond the studied ones. 
Furthermore, 82% agree that the knowledge gained could be useful for improving the trustworthiness 
of other ML models in the future. 

24. Do you think that the information provided 
could be used in other use cases similar to the 
ones you studied? 

 

25. Do you think that the knowledge you gained 
could be useful in the future for improving the  
trustworthiness of other models you will 
develop? 
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4.2.6.7 Section 7: Background knowledge and suggestions 

Being great experts in AI but not cybersecurity, the majority of the evaluators did not have an 
extensive background in AML. 82% stated they did not know further frameworks of AML testing or 
similar KBs, and they did not even know about the current work on AI certification by ENISA.  

82% also think that it would be interesting to automate the AML testing/assessment techniques of 
ML/AI models, which gives the idea of similar tools such as the SAFAIR AI Threat KB. 

26. Do you know any tool or framework to 
perform the AML testing? Please provide the 
reference(s) 

 

“I know python AML libraries where you can apply 
well-known AML countermeasures to evaluate the 
robustness of a model.” 

27. Do you know any other similar public or 
private Knowledge Base? Please provide the 
reference(s). 

 

“The MITRE ML Threat Matrix.” 

28. Did you already know that ENISA is working 
on an AI system certification scheme? 

 

29. Do you think it would be interesting to have 
a European certification of AI system 
trustworthiness? 

 

30. Do you think it would be interesting to 
automate the AML testing/assessment 
techniques of ML/AI models? 
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4.3 Conclusions 

The overall conclusion of the SAFAIR AI Threat KB evaluation results is that the great majority of 
the evaluators agreed on the high quality, correctness, completeness, usefulness and re-usability of 
the contents of the Knowledge Base. 

According to their feedback, in general, the KB does not present any error or gap of information, 
providing easy to understand descriptions as well as complete references. Most of the evaluators 
considered the information about threats and countermeasures therein as relevant and useful for 
developers to improve the security and privacy of ML models, with limited usefulness to improve AI 
fairness and explainability, which is aligned with the amount and proportion of the types of 
mechanisms collected. 

Moreover, the evaluators believe that the knowledge gained from the techniques and 
countermeasures studied could aid in improving multiple types of ML models of diverse use cases. 

The evaluation also showed the need of spreading the Trustworthy AI concepts and works among 
AI developers, including SAFAIR results on AML, since most of the evaluators showed limited 
awareness of the landscape of works and other initiatives around Trustworthy AI, and only a minority 
of the evaluators already knew about current efforts in these aspects. 

Most of the evaluators also think that it would be interesting to automate the AML testing and 
assessment, which gives a positive view of the future of the SAFAIR AI Threat KB in support of such 
automation.
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Chapter 5 External validation through peer review 

One of the only widely accepted methods for the validation of scientific research is the peer-review 
process. The procedure has a successful tradition of over 350 years and plays a critical role in the 
scientific publishing process. Major scientific publishers maintain the peer review process as a way 
to guarantee the validity and quality of published research pieces. 

Some of the work completed in the Sparta SAFAIR program have successfully undergone validation 
through the peer review process in top-tier journals. The following chapter presents the key concepts 
and findings of the published works. 

5.1 Defending network intrusion detection systems against adversarial 
evasion attacks  

The work completed on the detection of Evasion Attacks on the CICIDS2017 dataset has been 
described in d7.2. The results of this work have been evaluated and published in a top tier journal -
Future Generation Computer System (Impact Factor = 7.187).  

 Pawlicki, Marek, Michał Choraś, and Rafał Kozik. "Defending network intrusion detection 
systems against adversarial evasion attacks." Future Generation Computer Systems 110 
(2020): 148-154 

 

The algorithms used for the creation of evasion attacks were: 

 Carlini and Wagner attack (CW) 

 Fast Gradient Sign Method (FGM)  

 Basic Iterative Method (BIM)  

 Projected Gradient Descent (PGD)  

The diagram in Figure 8 shows the Training/Testing Pipeline of the adversarial detector. In essence, 
a secondary ML-based model trained on the neuron activation values from the network intrusion 
detection neural network, which allows spotting odd behaviour of the network, which might indicate 
the occurrence of an attack.  

 

Figure 8: The Adversarial Detector Training/Testing Pipeline 

The detector achieved an accuracy of 0.8506 on the testing set. The detailed results containing the 
precision and recall metrics are assembled in Figure 9 and Figure 10. 
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Figure 9: Results of ANN-based Adversarial Attack Detector over the test set activations 

 

Figure 10: Results of Adversarial Attack Detection with other ML methods 

 

5.2 The application of preprocessing adversarial defences to robustify 
face reidentification systems 

The work on preprocessing pipelines to protect computer vision algorithms in face re-identification 
tasks against adversarial evasion attacks has been described in d7.5 and also published in the 
Entropy Journal (Impact Factor = 3.012) 

 Pawlicki, Marek, and Ryszard S. Choraś. "Preprocessing Pipelines including Block-Matching 
Convolutional Neural Network for Image Denoising to Robustify Deep Reidentification 
against Evasion Attacks." Entropy 23, no. 10 (2021): 1304. 

 

The classifier performance on the test set containing the 14 most populated classes is found in Table 
3. 

Table 3: Classifier performance on the test set containing the 14 most populated classes. 

label precision recall f1-score 

1757.0 1.00 1.00 1.00 

2114.0 1.00 1.00 1.00 

2820.0 0.88 1.00 0.93 
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label precision recall f1-score 

3227.0 1.00 0.86 0.92 

3699.0 0.88 1.00 0.93 

3745.0 1.00 1.00 1.00 

3782.0 1.00 1.00 1.00 

4262.0 0.88 1.00 0.93 

4740.0 1.00 1.00 1.00 

4978.0 1.00 1.00 1.00 

6568.0 1.00 1.00 1.00 

8968.0 1.00 1.00 1.00 

9152.0 1.00 1.00 1.00 

9256.0 1.00 0.71 0.83 

macro avg 0.97 0.97 0.97 

weighted avg 0.97 0.97 0.97 

accuracy 0.9693877551020408 

balanced accuracy  0.9693877551020408 

 

The effects of PGD eps=4 on the performance of the classifier can be seen in Table 4.  

Table 4: The effects of PGD eps=4 on the performance of the classifier. 

label precision recall f1-score 

1757.0 1.00 0.14 0.25 

2114.0 0.33 0.14 0.20 

2820.0 0.00 0.00 0.00 

3227.0 1.00 0.17 0.29 

3699.0 0.32 1.00 0.48 

3745.0 0.00 0.00 0.00 

3782.0 0.00 0.00 0.00 

4262.0 0.33 0.71 0.45 
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label precision recall f1-score 

4740.0 0.08 0.14 0.11 

4978.0 0.00 0.00 0.00 

6568.0 1.00 0.14 0.25 

8968.0 0.00 0.00 0.00 

9152.0 0.50 0.14 0.22 

9256.0 1.00 0.40 0.57 

macro avg 0.40 0.21 0.20 

weighted avg 0.38 0.21 0.19 

accuracy 0.21052631578947367 

balanced accuracy  0.2139455782312925 

 

The results of the classifier using JPEG compression with quality set to 20 on PGD attacks with 
epsilon=4 can be found in Table 5. 

Table 5: The results of the classifier using JPEG compression with quality set to 20 on PGD attacks with 
epsilon=4. 

label precision recall f1-score 

1757.0 1.00 1.00 1.00 

2114.0 1.00 1.00 1.00  

2820.0 1.00 1.00 1.00 

3227.0 1.00 0.83 0.91   

3699.0 0.88 1.00 0.93 

3745.0 0.86 0.86  0.86 

3782.0 0.86 0.86 0.86 

4262.0 0.78 1.00 0.88 

4740.0 1.00 1.00 1.00 

4978.0 0.86 0.86 0.86 

6568.0 1.00 1.00 1.00 

8968.0 1.00 0.86 0.92 
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label precision recall f1-score 

9152.0 1.00 0.86 0.92 

9256.0 0.80 0.80 0.80 

macro avg 0.93 0.92 0.92 

weighted avg 0.93 0.93 0.93 

accuracy 0.9263157894736842 

balanced accuracy  0.9227891156462587 

 

Table 6: The results of the classifier using BMCNN with sigma set to 20 used on adversarial samples created 
with PGD using with epsilon set to four. 

label precision recall f1-score 

1757.0 1.00 1.00 1.00 

2114.0 1.00 1.00 1.00 

2820.0 1.00 1.00 1.00 

3227.0 0.83 0.83 0.83 

3699.0 0.70 1.00      0.82         

3745.0 1.00 0.71 0.83 

3782.0 0.88 1.00 0.93 

4262.0 0.78 1.00 0.88 

4740.0 1.00 1.00 1.00 

4978.0 0.88 1.00 0.93 

6568.0 1.00       0.86       0.92          

8968.0 1.00 0.86 0.92 

9152.0 0.80 0.57 0.67 

9256.0 1.00 0.8 0.89 

macro avg 0.92 0.90 0.90 

weighted avg 0.92 0.91 0.90 

accuracy 0.9052631578947369 

balanced accuracy  0.9023809523809525 
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Table 7: The results of the classifier using spatial smoothing with JPEG compression, gaussian 
augmentation, total variance minimisation and BMCNN with sigma set to 20 on PGD images with  epsilon set 

to four. 

label precision recall f1-score 

1757.0 0.50 0.71 0.59 

2114.0 0.50 0.43 0.46 

2820.0 0.00 0.00 0.00 

3227.0 0.40 0.33 0.36 

3699.0 0.37 1.00 0.54 

3745.0 0.25 0.14 0.18 

3782.0 0.25 0.86 0.39 

4262.0 0.25 0.14 0.18 

4740.0 0.50 0.57 0.53 

4978.0 0.67 0.29 0.40 

6568.0 1.00 0.14 0.25 

8968.0 0.50 0.14 0.22 

9152.0 0.67 0.29 0.40 

9256.0 0.00 0.00 0.00 

macro avg 0.42 0.36 0.32 

weighted avg 0.43 0.37 0.33 

accuracy 0.3684210526315789  

balanced accuracy  0.36054421768707484 

 

Table 8: The results of the classifier using spatial smoothing with JPEG compression, gaussian 
augmentation and BMCNN with sigma set to 20 on PGD images with  epsilon set to four, without total 

variance minimisation. 

label precision recall f1-score 

1757.0 1.00 1.00 1.00 

2114.0 1.00 1.00 1.00 

2820.0 1.00 1.00 1.00 

3227.0 0.83 0.83 0.83 
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label precision recall f1-score 

3699.0 0.78 1.00  0.88 

3745.0 1.00 0.86 0.92 

3782.0 0.75 0.86 0.80 

4262.0 0.78 1.00 0.88 

4740.0 1.00 1.00 1.00 

4978.0 0.86 0.86 0.86 

6568.0 1.00 0.86 0.92 

8968.0 1.00 0.86 0.92 

9152.0 1.00 0.57 0.73 

9256.0 0.83 1.00 0.91 

macro avg 0.92 0.91 0.90 

weighted avg 0.92 0.91 0.90 

accuracy 0.9052631578947369 

balanced accuracy  0.9064625850340137 

 

Table 9: The results of the classifier using spatial smoothing with JPEG compression on PGD images with 
epsilon set to four.  

label precision recall f1-score 

1757.0 1.00 1.00 1.00 

2114.0 1.00 1.00 1.00 

2820.0 1.00 1.00 1.00 

3227.0 1.00 0.83 0.91 

3699.0 0.78 1.00 0.88 

3745.0 0.86 0.86 0.86 

3782.0 0.86 0.86 0.86 

4262.0 0.78 1.00 0.88 

4740.0 1.00 1.00 1.00 

4978.0 0.86 0.86 0.86 
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label precision recall f1-score 

6568.0 1.00 1.00 1.00 

8968.0 1.00 0.86 0.92 

9152.0 1.00 0.71 0.83 

9256.0 0.80 0.80 0.80 

macro avg 0.92 0.91 0.91 

weighted avg 0.93 0.92 0.92 

accuracy 0.9157894736842105  

balanced accuracy  0.9125850340136055 

 

Table 10: The results of the classifier using JPEG compression, gaussian augmentation and BMCNN on 
PGD images with epsilon set to four. 

label precision recall f1-score 

1757.0 0.88 1.00  0.93 

2114.0 1.00 1.00 1.00 

2820.0 1.00 1.00 1.00 

3227.0 1.00 0.83 0.91 

3699.0 0.78 1.00 0.88 

3745.0 0.86 0.86 0.86 

3782.0 0.86 0.86 0.86 

4262.0 0.88 1.00 0.93 

4740.0 1.00 1.00 1.00 

4978.0 0.86 0.86 0.86 

6568.0 1.00 1.00 1.00 

8968.0 1.00 0.86 0.92 

9152.0 1.00 0.71 0.83 

9256.0 1.00 1.00 1.00 

macro avg 0.94 0.93 0.93 

weighted avg 0.93 0.93 0.93 
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label precision recall f1-score 

accuracy 0.9263157894736842 

balanced accuracy  0.9268707482993197 

To assess the results of the preprocessing defences, the best performing preprocessing pipeline 
was tested on a clean, unperturbed set. The results of this experiment can be found in Table 9. 

 

Table 11: Results of classification with preprocessing defences on a clean dataset. 

label precision recall f1-score 

1757.0 1.00 1.00 1.00 

2114.0 1.00 1.00 1.00 

2820.0 1.00  1.00 1.00 

3227.0 1.00 0.83 0.91 

3699.0 0.88 1.00 0.93 

3745.0 0.83 0.71 0.77 

3782.0 0.75 0.86 0.80 

4262.0 0.78 1.00 0.88 

4740.0 1.00 1.00 1.00 

4978.0 1.00 1.00 1.00 

6568.0 1.00 1.00 1.00 

8968.0 1.00 1.00 1.00 

9152.0 1.00 1.00 1.00 

9256.0 1.00 0.60 0.75 

macro avg 0.95 0.93 0.93 

weighted avg 0.94 0.94 0.94 

accuracy 0.9368421052631579  

balanced accuracy  0.9289115646258503 

The classifier performance indicates that using preprocessing defences causes a drop in the 
measured metrics, at the same time, the achieved robustness is considerable. The results of the 
experiments prove that input transformations are an effective weapon against adversarial attacks, 
though the robustness comes at a cost. The utility of the proposed preprocessing pipeline solution 
comes in the fact that it can be used as a plug-and-play quick-fix, granting a measure of robustness 
against adversarial attacks without having to incur the costs of re-training the classifier. 
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Chapter 6 Summary and Conclusion 

This document proposed solutions to evaluate the adversarial machine learning methods within the 
SPARTA WP7 SAFAIR program. One is designing an adversarial machine learning contest to test 
participants’ attacks and defences solutions which is an intermediate solution. The design of the 
contest proved to be working and can be recommended. 

The next one is implementing an adversarial ML benchmark tool that helps researchers and 
developers to design and implement more robust ML models and present standardised benchmarks 
of proposed solutions in the area of adversarial machine learning. The adversarial ML benchmark 
tool is functional and can be recommended by SPARTA to use in the wider community. However, 
the AI contest and the benchmark tool solutions are generic and adaptive, which can be used for 
lots of different adversarial ML scenarios (not just SAFAIR ML scenarios) for evaluations. 

Last but not least, the SAFAIR AI Threat KB evaluation results demonstrates that the great majority 
of the evaluators agreed on the high quality, correctness, completeness, usefulness and re-usability 
of the contents of the Knowledge Base and the KB does not present any error or gap of information, 
providing easy to understand descriptions as well as complete references. Most of the evaluators 
considered the information about threats and countermeasures to be relevant and useful for 
developers to improve the security and privacy of ML models. 

To this end, the verification of ML models robustness is at the beginning of the pathway because the 
algorithms and techniques have presumptions that avoid them presenting full guarantees of not 
having any adversarial examples. Consequently, we hope our readers will be inspired to solve some 
of the challenges mentioned in this document.  
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Chapter 7 List of Abbreviations  

Abbreviation Translation 

AI  Artificial Intelligence 

ML Machine Learning 

AML Adversarial Machine Learning 

FGSM Fast Gradient Sign Method attack 

Iter-FGSM iterative Fast Gradient Sign Method attack (same as BIM – Basic 
Iterative Method) 

C&W Carlini and Wagner attack 

NN Neural Network 

DNN Deep Neural Network 

CNN Convolutional Neural Network 

ROC Receiver Operating Characteristic 
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Appendix A AI Threat Knowledge Base evaluation 
questionnaire 

This section transcripts the online questionnaire that was designed for getting the feedback of the 
evaluators of the SAFAIR AI Threat Knowledge Base. The figures below represent the different 
sections in which the questions were grouped. 

 
Figure 11: Introduction to the Questionnaire 
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Figure 12: Section 1 - Profile 
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Figure 13: Section 2 – Current Practice 
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Figure 14: Section 3 – Correctness 

 

 

Figure 15: Section 4 – Completeness 
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Figure 16: Section 5 – Usefulness 
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Figure 17: Section 6 – Re-usability 
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Figure 18: Section 7 – Background knowledge and suggestions 
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Appendix B AI Threat Knowledge Base evaluation 
presentation 

This section transcripts the contents of the presentation that was used in the SAFAIR Training 
workshop. The figures below represent the different slides of the presentation. 
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